1
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
2
|
Halacli SO. The effect of mutatio-type on proteo-phenotype and clinico-phenotype in selected primary immunodeficiencies. Immunol Res 2021; 70:56-66. [PMID: 34622368 DOI: 10.1007/s12026-021-09239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
In the diagnosis of primary immunodeficiencies which are heterogeneous groups of genetic disorders, next-generation sequencing strategies take an important place. Protein expression analyses and some functional studies which are fundamental to determine the pathogenicity of the mutation are also performed to accelerate the diagnosis of PIDs before sequencing. However, protein expressions and functions do not always reflect the genetic and clinical background of the disease even the existence of a pathogenic variant or vice versa. In this study, it was aimed to understand genotype-proteophenotype-clinicophenotype correlation by investigating the effect of mutation types on protein expression, function, and clinical severity in X-linked, autosomal dominant, and autosomal recessive forms of PIDs. It was searched in PubMed and Web of Science without any restrictions on study design and publication time. Totally, 1178 patients with PIDs who have 553 different mutations were investigated from 174 eligible full-text articles. For all mutations, the effect of mutation type on protein expressions and protein functions was analyzed. Furthermore, the most frequent missense and nonsense mutations that were identified in patients with PIDs were evaluated to determine the genotype-clinicophenotype correlation. Protein expressions and functions were changed depending on the mutation type and the affected domain. A significant relationship was observed between protein expression level and clinical severity among all investigated patients. There was also a positive correlation between clinical severity and the affected domains. Mutation types and affected domains should be carefully evaluated with respect to protein expression levels and functional changes during the evaluation of clinico-phenotype.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Nunes-Santos CJ, Kuehn HS, Rosenzweig SD. IKAROS Family Zinc Finger 1-Associated Diseases in Primary Immunodeficiency Patients. Immunol Allergy Clin North Am 2021; 40:461-470. [PMID: 32654692 DOI: 10.1016/j.iac.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ikaros zinc finger 1 (IKZF1 or Ikaros) is a hematopoietic zinc finger DNA-binding transcription factor that acts as a critical regulator of lymphocyte and myeloid differentiation. Loss-of-function germline heterozygous mutations in IKZF1 affecting DNA-binding were described as causative of 2 distinct primary immunodeficiency (PID)/inborn error of immunity diseases. Mutations acting by haploinsufficiency present with a common variable immune deficiency-like phenotype mainly characterized by increased susceptibility to infections. Mutations acting in a dominant negative fashion present with a combined immunodeficiency phenotype with high prevalence of Pneumocystis jirovecii pneumonia. Pathophysiology and manifestations of IKAROS-associated diseases in patients with PID are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Drive, Building 10, Room 2C410F, Bethesda, MD 20892, USA
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Drive, Building 10, Room 2C410F, Bethesda, MD 20892, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Drive, Building 10, Room 2C410F, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Aluri J, Bach A, Kaviany S, Chiquetto Paracatu L, Kitcharoensakkul M, Walkiewicz MA, Putnam CD, Shinawi M, Saucier N, Rizzi EM, Harmon MT, Keppel MP, Ritter M, Similuk M, Kulm E, Joyce M, de Jesus AA, Goldbach-Mansky R, Lee YS, Cella M, Kendall PL, Dinauer MC, Bednarski JJ, Bemrich-Stolz C, Canna SW, Abraham SM, Demczko MM, Powell J, Jones SM, Scurlock AM, De Ravin SS, Bleesing JJ, Connelly JA, Rao VK, Schuettpelz LG, Cooper MA. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 2021; 137:2450-2462. [PMID: 33512449 PMCID: PMC8109013 DOI: 10.1182/blood.2020009620] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.
Collapse
Affiliation(s)
| | - Alicia Bach
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Saara Kaviany
- Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Luana Chiquetto Paracatu
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Maleewan Kitcharoensakkul
- Division of Rheumatology/Immunology and
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Magdalena A Walkiewicz
- Centralized Sequencing Initiative, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher D Putnam
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA
- San Diego Branch, Ludwig Institute for Cancer Research, La Jolla, CA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics and
| | | | - Elise M Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | - Morgan Similuk
- Centralized Sequencing Initiative, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | | | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yi-Shan Lee
- Division of Anatomic and Molecular Pathology and
| | - Marina Cella
- Division of Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Peggy L Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Division of Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Mary C Dinauer
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey J Bednarski
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Christina Bemrich-Stolz
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL
| | - Scott W Canna
- Division of Pediatric Rheumatology and RK Mellon Institute, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA
| | - Shirley M Abraham
- Division of Hematology and Oncology, Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | | | - Jonathan Powell
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Stacie M Jones
- Division of Allergy and Immunology, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Amy M Scurlock
- Division of Allergy and Immunology, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James A Connelly
- Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Laura G Schuettpelz
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
5
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Caba L, Gug C, Gorduza EV. Heterogeneity in combined immunodeficiencies with associated or syndromic features (Review). Exp Ther Med 2020; 21:84. [PMID: 33363595 PMCID: PMC7725017 DOI: 10.3892/etm.2020.9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 11/06/2022] Open
Abstract
Primary immunodeficiencies are genetic diseases, mainly monogenic, that affect various components of the immune system and stages of the immune response. The category of combined immunodeficiencies with associated or syndromic features comprises over 70 clinical entities, characterized by heterogeneity of clinical presentation, mode of transmission, molecular, biological, mutational and immunological aspects. The mutational spectrum is wide, ranging from structural chromosomal abnormalities to gene mutations. The impact on the function of the proteins encoded by the genes involved is different; loss of function is most common, but situations with gain of function are also described. Most proteins have multiple functions and are components of several protein interaction networks. The pathophysiological mechanisms mainly involve: Missing enzymes, absent or non-functional proteins, abnormal DNA repair pathways, altered signal transduction, developmental arrest in immune differentiation, impairment of cell-to-cell and intracellular communications. Allelic heterogeneity, reduced penetrance and variable expressivity are genetic phenomena that cause diagnostic difficulties, especially since most are rare/very rare diseases, which is equivalent to delaying proper case management. Most primary immunodeficiencies are Mendelian diseases with X-linked or recessive inheritance, and molecular diagnosis allows the identification of family members at risk and the application of appropriate primary and secondary prevention measures in addition to the specific curative ones. In conclusion, recognizing heterogeneity and its sources is extremely important for current medical practice, but also for the theoretical value of improving biological and biomedical applications.
Collapse
Affiliation(s)
- Lavinia Caba
- Department of Medical Genetics, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Cristina Gug
- Department of Microscopic Morphology, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Prenatal Diagnosis Department, 'Cuza Voda' Obstetrics-Gynecology Clinical Hospital, 700038 Iași, Romania
| |
Collapse
|
7
|
Zhu Y, Li L, Mao G, Zhang L, Wang J, Li N. Gene analysis of seven cases of primary immunodeficiency. Transl Pediatr 2020; 9:117-125. [PMID: 32477911 PMCID: PMC7237979 DOI: 10.21037/tp.2020.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Primary immune deficiency diseases (PID) are a group of potentially serious disorders in which inherited defects in the immune system lead to increased infections. This paper explores the clinical characteristics and pathogenic gene mutation of PID. METHODS The clinical data, clinical manifestations, and gene sequencing results of seven children were analyzed. RESULTS Among the seven children, six were male, and one was female, aged from 4 months to 13 years old. All of them had a history of repeated infection and pneumonia. High throughput sequencing (NGS) showed that the BTK gene of case 1 had c.1921c > t mutation; the BTK gene of case 2 had c.906-908del splice site mutation; the BTK gene of case 3 had c.718delg mutation; the cybb gene of case 4 had c.469c > t mutation; the IL2RG gene of case 5 had c.202g > A mutation; the STAT1 gene of case 6 had c.854a > G mutation; the case 7 had c.718delg mutation. There was c.1154c > t mutation in the STAT1 gene. Cases 1, 3, 6 and 7 were new mutations, and cases 2, 4, and 5 were inherited from mothers. CONCLUSIONS In clinical cases of children with recurrent infection, the immunologic index is abnormal, so we need to be highly aware of the possibility of PID, and timely high-throughput sequencing is helpful for the diagnosis.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| | - Li Li
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| | - Guoshun Mao
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| | - Lei Zhang
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| | - Jing Wang
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| | - Nannan Li
- Department of Pediatrics, Fuyang City People's Hospital, Fuyang 236000, China
| |
Collapse
|
8
|
Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev 2019; 287:33-49. [PMID: 30565239 DOI: 10.1111/imr.12721] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator constitutively expressed on regulatory T (Treg) cells and upregulated on activated T cells. CTLA-4 inhibits T cell activation by various suppressive functions including competition with CD28, regulation of the inhibitory function of Treg cells, such as transendocytosis, and the control of adhesion and motility. Intrinsic CTLA-4 signaling has been controversially discussed, but so far no distinct signaling pathway has been identified. The CTLA-4-mediated Treg suppression plays an important role in the maintenance of peripheral tolerance and the prevention of autoimmune diseases. Human CTLA-4 insufficiency is caused by heterozygous germline mutations in CTLA4 and characterized by a complex immune dysregulation syndrome. Clinical studies on CTLA4 mutation carriers showed a reduced penetrance and variable expressivity, suggesting modifying factor(s). One hundred and forty-eight CTLA4 mutation carriers have been reported; patients showed hypogammaglobulinemia, recurrent infectious diseases, various autoimmune diseases, and lymphocytic infiltration into multiple organs. The CTLA-4 expression level in Treg cells was reduced, while the frequency of Treg cells was increased in CTLA-4-insufficient patients. The transendocytosis assay is a specific functional test for the assessment of newly identified CTLA4 gene variants. Immunoglobulin substitution, corticosteroids, immunosuppressive therapy, and targeted therapy such as with CTLA-4 fusion proteins and mechanistic target of rapamycin (mTOR) inhibitors were applied; patients with life-threatening, treatment-resistant symptoms underwent hematopoietic stem cell transplantation. The fact that in humans CTLA-4 insufficiency causes severe disease taught us that the amount of CTLA-4 molecules present in/on T cells matters for immune homeostasis. However, whether the pathology-causing activated T lymphocytes in CTLA-4-insufficient patients are antigen-specific is an unsolved question. CTLA-4, in addition, has a role in autoimmune diseases and cancer. Anti-CTLA-4 drugs are employed as checkpoint inhibitors to target various forms of cancer. Thus, clinical research on human CTLA-4 insufficiency might provide us a deeper understanding of the mechanism(s) of the CTLA-4 molecule and immune dysregulation disorders.
Collapse
Affiliation(s)
- Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Mogensen TH. IRF and STAT Transcription Factors - From Basic Biology to Roles in Infection, Protective Immunity, and Primary Immunodeficiencies. Front Immunol 2019; 9:3047. [PMID: 30671054 PMCID: PMC6331453 DOI: 10.3389/fimmu.2018.03047] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and action of type I interferon (IFN) is of fundamental importance in human immune defenses toward microbial pathogens, particularly viruses. Basic discoveries within the molecular and cellular signaling pathways regulating type I IFN induction and downstream actions have shown the essential role of the IFN regulatory factor (IRF) and the signal transducer and activator of transcription (STAT) families, respectively. However, the exact biological and immunological functions of these factors have been most clearly revealed through the study of inborn errors of immunity and the resultant infectious phenotypes in humans. The spectrum of human inborn errors of immunity caused by mutations in IRFs and STATs has proven very diverse. These diseases encompass herpes simplex encephalitis (HSE) and severe influenza in IRF3- and IRF7/IRF9 deficiency, respectively. They also include Mendelian susceptibility to mycobacterial infection (MSMD) in STAT1 deficiency, through disseminated measles infection associated with STAT2 deficiency, and finally staphylococcal abscesses and chronic mucocutaneous candidiasis (CMC) classically described with Hyper-IgE syndrome (HIES) in the case of STAT3 deficiency. More recently, increasing focus has been on aspects of autoimmunity and autoinflammation playing an important part in many primary immunodeficiency diseases (PID)s, as exemplified by STAT1 gain-of-function causing CMC and autoimmune thyroiditis, as well as a recently described autoinflammatory syndrome with hypogammaglobulinemia and lymphoproliferation as a result of STAT3 gain-of-function. Here I review the infectious, inflammatory, and autoimmune disorders arising from mutations in IRF and STAT transcription factors in humans, highlightning the underlying molecular mechanisms and immunopathogenesis as well as the clinical/therapeutic perspectives of these new insights.
Collapse
MESH Headings
- Autoimmunity
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Candidiasis, Chronic Mucocutaneous/metabolism
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/metabolism
- Humans
- Immunity, Innate
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Janus Kinases/metabolism
- Job Syndrome/genetics
- Job Syndrome/immunology
- Job Syndrome/metabolism
- Mutation
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Mycobacterium Infections/metabolism
- Receptor, Interferon alpha-beta/metabolism
- STAT Transcription Factors/genetics
- STAT Transcription Factors/immunology
- STAT Transcription Factors/metabolism
Collapse
Affiliation(s)
- Trine H. Mogensen
- Department of Infectious diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW A comparative description of dysregulatory syndromes with mutations in signal transducer and activator of transcription (STAT) genes. RECENT FINDINGS STAT 1, 3 and 5b loss of function (LOF) and gain of function (GOF) mutations are a heterogeneous group of genetic disorders that range from immunodeficiency (ID) to autoimmune disease (AID), depending on the underlying signalling pathway defect. Between them, there are clear overlapping and differences in clinical presentation and laboratory findings. SUMMARY Dysregulatory syndromes due to LOF and GOF mutations in STAT1, 3 and 5b are a particular group of primary immunodeficiencies (PIDs) in which AID may be the predominant finding in addition to infections susceptibility. STAT1 GOF mutations were described as the major cause of chronic mucocutaneous candidiasis, while activating STAT3 mutations result in early-onset multiorgan autoimmunity and ID. Human STAT5b deficiency is a rare disease that also involves ID and severe growth failure. In recent years, the identification of the genes involved in these disorders allowed to differentiate these overlapping syndromes in order to choose the most effective therapeutic options.
Collapse
|