1
|
Dong R, Han Y, Lv P, Jiang L, Wang Z, Peng L, Liu S, Ma Z, Xia T, Zhang B, Gu X. Long-term isoflurane anesthesia induces cognitive deficits via AQP4 depolarization mediated blunted glymphatic inflammatory proteins clearance. J Cereb Blood Flow Metab 2024; 44:1450-1466. [PMID: 38443763 PMCID: PMC11342724 DOI: 10.1177/0271678x241237073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 03/07/2024]
Abstract
Perioperative neurocognitive disorders (PND) refer to cognitive deterioration that occurs after surgery or anesthesia. Prolonged isoflurane exposure has potential neurotoxicity and induces PND, but the mechanism is unclear. The glymphatic system clears harmful metabolic waste from the brain. This study sought to unveil the functions of glymphatic system in PND and explore the underlying molecular mechanisms. The PND mice model was established by long term isoflurane anesthesia. The glymphatic function was assessed by multiple in vitro and in vivo methods. An adeno-associated virus was used to overexpress AQP4 and TGN-020 was used to inhibit its function. This research revealed that the glymphatic system was impaired in PND mice and the blunted glymphatic transport was closely associated with the accumulation of inflammatory proteins in the hippocampus. Increasing AQP4 polarization could enhance glymphatic transport and suppresses neuroinflammation, thereby improve cognitive function in the PND model mice. However, a marked impaired glymphatic inflammatory proteins clearance and the more severe cognitive dysfunction were observed when decreasing AQP4 polarization. Therefore, long-term isoflurane anesthesia causes blunted glymphatic system by inducing AQP4 depolarization, enhanced the AQP4 polarization can alleviate the glymphatic system malfunction and reduce the neuroinflammatory response, which may be a potential treatment strategy for PND.
Collapse
Affiliation(s)
- Rui Dong
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yuqiang Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zimo Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Atluri N, Dulko E, Jedrusiak M, Klos J, Osuru HP, Davis E, Beenhakker M, Kapur J, Zuo Z, Lunardi N. Anatomical Substrates of Rapid Eye Movement Sleep Rebound in a Rodent Model of Post-sevoflurane Sleep Disruption. Anesthesiology 2024; 140:729-741. [PMID: 38157434 PMCID: PMC10939895 DOI: 10.1097/aln.0000000000004893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research suggests that sevoflurane anesthesia may prevent the brain from accessing rapid eye movement (REM) sleep. If true, then patterns of neural activity observed in REM-on and REM-off neuronal populations during recovery from sevoflurane should resemble those seen after REM sleep deprivation. In this study, the authors hypothesized that, relative to controls, animals exposed to sevoflurane present with a distinct expression pattern of c-Fos, a marker of neuronal activation, in a cluster of nuclei classically associated with REM sleep, and that such expression in sevoflurane-exposed and REM sleep-deprived animals is largely similar. METHODS Adult rats and Targeted Recombination in Active Populations mice were implanted with electroencephalographic electrodes for sleep-wake recording and randomized to sevoflurane, REM deprivation, or control conditions. Conventional c-Fos immunohistochemistry and genetically tagged c-Fos labeling were used to quantify activated neurons in a group of REM-associated nuclei in the midbrain and basal forebrain. RESULTS REM sleep duration increased during recovery from sevoflurane anesthesia relative to controls (157.0 ± 24.8 min vs. 124.2 ± 27.8 min; P = 0.003) and temporally correlated with increased c-Fos expression in the sublaterodorsal nucleus, a region active during REM sleep (176.0 ± 36.6 cells vs. 58.8 ± 8.7; P = 0.014), and decreased c-Fos expression in the ventrolateral periaqueductal gray, a region that is inactive during REM sleep (34.8 ± 5.3 cells vs. 136.2 ± 19.6; P = 0.001). Fos changes similar to those seen in sevoflurane-exposed mice were observed in REM-deprived animals relative to controls (sublaterodorsal nucleus: 85.0 ± 15.5 cells vs. 23.0 ± 1.2, P = 0.004; ventrolateral periaqueductal gray: 652.8 ± 71.7 cells vs. 889.3 ± 66.8, P = 0.042). CONCLUSIONS In rodents recovering from sevoflurane, REM-on and REM-off neuronal activity maps closely resemble those of REM sleep-deprived animals. These findings provide new evidence in support of the idea that sevoflurane does not substitute for endogenous REM sleep. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Elzbieta Dulko
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Michal Jedrusiak
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Joanna Klos
- Max Planck Institute for Biological Intelligence, Munich, Germany
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Eric Davis
- Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark Beenhakker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Zhang XJ, Wang Z, Chen JW, Yuan SY, Zhao L, Zhong JY, Chen JJ, Lin WJ, Wu WS. The neuroprotective effect of near infrared light therapy in aged mice with postoperative neurocognitive disorder by upregulating IRF7. J Affect Disord 2024; 349:297-309. [PMID: 38211750 DOI: 10.1016/j.jad.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jia-Wei Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Shang-Yan Yuan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jun-Ying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jun-Jun Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Medical Research Center of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Si Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Dulko E, Jedrusiak M, Osuru HP, Atluri N, Illendula M, Davis EM, Beenhakker MP, Lunardi N. Sleep Fragmentation, Electroencephalographic Slowing, and Circadian Disarray in a Mouse Model for Intensive Care Unit Delirium. Anesth Analg 2023; 137:209-220. [PMID: 37192134 DOI: 10.1213/ane.0000000000006524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND We aimed to further validate our previously published animal model for delirium by testing the hypothesis that in aged mice, Anesthesia, Surgery and simulated ICU conditions (ASI) induce sleep fragmentation, electroencephalographic (EEG) slowing, and circadian disarray consistent with intensive care unit (ICU) patients with delirium. METHODS A total of 41 mice were used. Mice were implanted with EEG electrodes and randomized to ASI or control groups. ASI mice received laparotomy, anesthesia, and simulated ICU conditions. Controls did not receive ASI. Sleep was recorded at the end of ICU conditions, and hippocampal tissue was collected on EEG recording. Arousals, EEG dynamics, and circadian gene expression were compared with t tests. Two-way repeated measures analysis of variance (RM ANOVA) was used to assess sleep according to light. RESULTS ASI mice experienced frequent arousals (36.6 ± 3.2 vs 26.5 ± 3.4; P = .044; 95% confidence interval [CI], 0.29-19.79; difference in mean ± SEM, 10.04 ± 4.62) and EEG slowing (frontal theta ratio, 0.223 ± 0.010 vs 0.272 ± 0.019; P = .026; 95% CI, -0.091 to -0.007; difference in mean ± SEM, -0.05 ± 0.02) relative to controls. In ASI mice with low theta ratio, EEG slowing was associated with a higher percentage of quiet wakefulness (38.2 ± 3.6 vs 13.4 ± 3.8; P = .0002; 95% CI, -35.87 to -13.84; difference in mean ± SEM, -24.86 ± 5.19). ASI mice slept longer during the dark phases of the circadian cycle (nonrapid eye movement [NREM], dark phase 1 [D1]: 138.9 ± 8.1 minutes vs 79.6 ± 9.6 minutes, P = .0003, 95% CI, -95.87 to -22.69, predicted mean difference ± SE: -59.28 ± 13.89; NREM, dark phase 2 (D2): 159.3 ± 7.3 minutes vs 112.6 ± 15.5 minutes, P = .006, 95% CI, -83.25 to -10.07, mean difference ± SE, -46.66 ± 13.89; rapid eye movement (REM), D1: 20.5 ± 2.1 minutes vs 5.8 ± 0.8 minutes, P = .001, 95% CI, -24.60 to -4.71, mean difference ± SE, -14. 65 ± 3.77; REM, D2: 21.0 ± 2.2 minutes vs 10.3 ± 1.4 minutes, P = .029, 95% CI, -20.64 to -0.76, mean difference ± SE, -10.70 ± 3.77). The expression of essential circadian genes was also lower in ASI mice (basic helix-loop-helix ARNT like [BMAL1] : -1.3 fold change; circadian locomotor output cycles protein kaput [CLOCK] : -1.2). CONCLUSIONS ASI mice experienced EEG and circadian changes mimicking those of delirious ICU patients. These findings support further exploration of this mouse approach to characterize the neurobiology of delirium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark P Beenhakker
- Pharmacology, University of Virginia Health, Charlottesville, Virginia
| | | |
Collapse
|
5
|
Qiu Y, Hou H, Zhang J, Wang X, Wang L, Wu Y, Deng L. The effect of preoperative sleep quality on the target plasma concentration of propofol and postoperative sleep in patients undergoing painless gastroscopy. BMC Anesthesiol 2023; 23:9. [PMID: 36609213 PMCID: PMC9824907 DOI: 10.1186/s12871-022-01957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study aims to investigate the effect of preoperative sleep quality on the target plasma concentration of propofol and postoperative sleep in patients undergoing painless gastroscopy. METHODS Ninety-three outpatients aged 45 to 64 years with body mass index (BMI) of 18.5-30 kg/m2 and ASA grades of I or II, who underwent painless gastroscopy, were selected. All patients were evaluated by the Athens insomnia scale (AIS) before the painless gastroscopy. The patients were divided into two groups according to the AIS score evaluated before painless gastroscopy: normal sleep group (group N, AIS score < 4 points, 47 cases) and sleep disorder group (group D, AIS score > 6 points, 46 cases). The target-controlled infusion (TCI) of propofol (Marsh model) was used for general anesthesia, the Bispectral index (BIS) was used to monitor the depth of anesthesia, and the BIS was maintained between 50 and 65 during the painless gastroscopy. The target plasma concentration (Cp) of propofol was recorded when the patient's eyelash reflex disappeared (T1), before the painless gastroscopy (T2), at the time of advancing the gastroscope (T3) and during the painless gastroscopy (T4), and the infusion rate per body surface area of propofol was calculated. The patient's AIS score was followed up by telephone at day 1, day 3, 1 week, and 1 month after the painless gastroscopy to assess the postoperative sleep of the patient. The occurrence of adverse reactions during the painless gastroscopy was recorded; the patient's satisfaction and the endoscopist's satisfaction with the anesthesia effect were compared between the two groups. RESULTS Compared with group N, the Cp at each time point and the infusion rate per body surface area of propofol in group D was increased significantly (P < 0.05); compared with the AIS scores before the painless gastroscopy, the AIS scores of the two groups of patients were significantly increased day 1 after the painless gastroscopy (P < 0.05); there were no significant differences in the AIS scores of the two groups at day 3, 1 week, and 1 month after the painless gastroscopy (P > 0.05). There were no statistically significant differences in the occurrence of adverse reactions and the patient's satisfaction and the endoscopist's satisfaction with the anesthesia effect between the two groups (P > 0.05). CONCLUSION The preoperative sleep disturbance will increase the Cp and the infusion rate per body surface area of propofol in patients undergoing painless gastroscopy. Propofol only affects the patients' sleep for day 1 after the painless gastroscopy. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2100045332) on 12/04/2021.
Collapse
Affiliation(s)
- Yuxue Qiu
- grid.413385.80000 0004 1799 1445Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Haitao Hou
- grid.413385.80000 0004 1799 1445Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Junxia Zhang
- grid.413385.80000 0004 1799 1445Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China ,grid.412194.b0000 0004 1761 9803Clinical College, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Xiaomei Wang
- grid.412194.b0000 0004 1761 9803Clinical College, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Lu Wang
- grid.412194.b0000 0004 1761 9803Clinical College, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Yanan Wu
- grid.412194.b0000 0004 1761 9803Clinical College, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Liqin Deng
- grid.413385.80000 0004 1799 1445Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| |
Collapse
|
6
|
Valentim AM, Gaburro S, Parker MO. Editorial: Post-anesthesia Cognitive Dysfunction: How, When and Why. Front Behav Neurosci 2021; 15:797483. [PMID: 34899208 PMCID: PMC8655304 DOI: 10.3389/fnbeh.2021.797483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana M Valentim
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | - Matthew O Parker
- Brain and Behaviour Lab, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom.,The International Zebrafish Neuroscience Research Consortium, Slidell, LA, United States
| |
Collapse
|
7
|
Manzella FM, Gulvezan BF, Maksimovic S, Useinovic N, Raol YH, Joksimovic SM, Jevtovic-Todorovic V, Todorovic SM. Neonatal Isoflurane Does Not Affect Sleep Architecture and Minimally Alters Neuronal Beta Oscillations in Adolescent Rats. Front Behav Neurosci 2021; 15:703859. [PMID: 34790103 PMCID: PMC8591236 DOI: 10.3389/fnbeh.2021.703859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
General anesthetics are neurotoxic to the developing rodent and primate brains leading to neurocognitive and socio-affective impairment later in life. In addition, sleep patterns are important predictors of cognitive outcomes. Yet, little is known about how anesthetics affect sleep-wake behaviors and their corresponding oscillations. Here we examine how neonatal general anesthesia affects sleep and wake behavior and associated neuronal oscillations. We exposed male and female rat pups to either 6 h of continuous isoflurane or sham anesthesia (compressed air) at the peak of their brain development (postnatal day 7). One cohort of animals was used to examine neurotoxic insult 2 h post-anesthesia exposure. At weaning age, a second cohort of rats was implanted with cortical electroencephalogram electrodes and allowed to recover. During adolescence, we measured sleep architecture (divided into wake, non-rapid eye movement, and rapid eye movement sleep) and electroencephalogram power spectra over a 24 h period. We found that exposure to neonatal isoflurane caused extensive neurotoxicity but did not disrupt sleep architecture in adolescent rats. However, these animals had a small but significant reduction in beta oscillations, specifically in the 12-20 Hz beta 1 range, associated with wake behavior. Furthermore, beta oscillations play a critical role in cortical development, cognitive processing, and homeostatic sleep drive. We speculate that dysregulation of beta oscillations may be implicated in cognitive and socio-affective outcomes associated with neonatal anesthesia.
Collapse
Affiliation(s)
- Francesca M. Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bethany F. Gulvezan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yogendra H. Raol
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD, United States
| | - Srdjan M. Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Child Neurology, CHOP Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Zhou H, Xie Z, Brambrink AM, Yang G. Behavioural impairments after exposure of neonatal mice to propofol are accompanied by reductions in neuronal activity in cortical circuitry. Br J Anaesth 2021; 126:1141-1156. [PMID: 33641936 PMCID: PMC8216302 DOI: 10.1016/j.bja.2021.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Both animal and retrospective human studies have linked extended and repeated general anaesthesia during early development with cognitive and behavioural deficits later in life. However, the neuronal circuit mechanisms underlying this anaesthesia-induced behavioural impairment are poorly understood. METHODS Neonatal mice were administered one or three doses of propofol, a commonly used i.v. general anaesthetic, over Postnatal days 7-11. Control mice received Intralipid® vehicle injections. At 4 months of age, the mice were subjected to a series of behavioural tests, including motor learning. During the process of motor learning, calcium activity of pyramidal neurones and three classes of inhibitory interneurones in the primary motor cortex were examined in vivo using two-photon microscopy. RESULTS Repeated, but not a single, exposure of neonatal mice to propofol i.p. caused motor learning impairment in adulthood, which was accompanied by a reduction of pyramidal neurone number and activity in the motor cortex. The activity of local inhibitory interneurone networks was also altered: somatostatin-expressing and parvalbumin-expressing interneurones were hypoactive, whereas vasoactive intestinal peptide-expressing interneurones were hyperactive when the mice were performing a motor learning task. Administration of low-dose pentylenetetrazol to attenuate γ-aminobutyric acid A receptor-mediated inhibition or CX546 to potentiate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-subtype glutamate receptor function during emergence from anaesthesia ameliorated neuronal dysfunction in the cortex and prevented long-term behavioural deficits. CONCLUSIONS Repeated exposure of neonatal mice to propofol anaesthesia during early development causes cortical circuit dysfunction and behavioural impairments in later life. Potentiation of neuronal activity during recovery from anaesthesia reduces these adverse effects of early-life anaesthesia.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Jia X, Zhang L, Zhang W, Zhou Y, Song Y, Liu C, Yang N, Sun J, Sun Z, Li Z, Shi C, Han Y, Yuan Y, Shi J, Liu Y, Guo X. Melatonin ameliorates the sleep disorder induced by surgery under sevoflurane anaesthesia in aged mice. Basic Clin Pharmacol Toxicol 2021; 128:256-267. [PMID: 32975883 DOI: 10.1111/bcpt.13498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022]
Abstract
Post-operative sleep disorders induce adverse effects on patients, especially the elderly, which may be associated with surgery and inhalational anaesthetics. Melatonin is a neuroendocrine regulator of the sleep-wake cycle. In this study, we analysed the alterations of post-operative sleep in aged melatonin-deficient (C57BL/6J) mice, and investigated if exogenous melatonin could facilitate entrainment of circadian rhythm after laparotomy under sevoflurane anaesthesia. The results showed that laparotomy under sevoflurane anaesthesia had a greater influence on post-operative sleep than sevoflurane alone. Laparotomy under anaesthesia led to circadian rhythm shifting forward, altered EEG power density and delta power of NREM sleep, and lengthened REM and NREM sleep latencies. In the light phase, the number of waking episodes tended to decline, and wake episode duration elevated. However, these indicators presented the opposite tendency during the dark phase. Melatonin showed significant efficacy for ameliorating the sleep disorder and restoring physiological sleep, and most of the beneficial effect of melatonin was antagonized by luzindole, a melatonin receptor antagonist.
Collapse
Affiliation(s)
- Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Liqun Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chang Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jie Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhuonan Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Illendula M, Osuru HP, Ferrarese B, Atluri N, Dulko E, Zuo Z, Lunardi N. Surgery, Anesthesia and Intensive Care Environment Induce Delirium-Like Behaviors and Impairment of Synaptic Function-Related Gene Expression in Aged Mice. Front Aging Neurosci 2020; 12:542421. [PMID: 33088271 PMCID: PMC7544741 DOI: 10.3389/fnagi.2020.542421] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To establish a clinically relevant mouse model of perioperative delirium. METHODS Aged C57BL/6J mice were tested at baseline in the Y-maze novel arm preference, buried food, simple discrimination task of the attentional set-shifting test, and open field tests. They were subsequently randomized to insult (anesthesia, surgery, and Intensive Care Unit environment) or control group. Insult-exposed mice received laparotomy under sevoflurane anesthesia, propofol sedation and exposure to intermittent lights, sounds and cage shaking. Controls did not receive anesthesia, surgery, or intensive care environment. All mice were tested in the Y-maze novel arm preference, buried food, attentional, and open field tests at the end of intensive care environment (0 h) and every 6 h up to 24 h. Mouse hippocampi were collected at 24 h for gene expression analyses. RESULTS Surgery, anesthesia and Intensive Care environment decreased the entries in the Y-maze novel arm at 0 h (P = 0.001), 6 h (P < 0.001), 18 h (P = 0.002), and 24 h (P = 0.029). Insult exposure increased the latency to find a buried cereal reward at 18 h (P = 0.035) and 24 h (P = 0.027), and increased the trials to criterion in the reverse compound discrimination (P = 0.013) and extradimensional shift (P < 0.001) tasks of the attentional test. The overall incidence of delirium was 72% in A/S/I mice. Messenger RNA levels of synuclein alpha (-3.785 fold change relative to controls), Neurotrophic Receptor Tyrosine Kinase1 (-2.267), and syntaxin1a (-1.498) were decreased in the hippocampus of mice 24 h after insult exposure. Protein levels of syntaxin 1a (P = 0.012), Neurotrophic Receptor Tyrosine Kinase1 (P = 0.039), synuclein alpha (P = 0.017), phosphorylated synuclein alpha (P = 0.008), synaptophysin (P = 0.002), postsynaptic density protein 95 (P = 0.003), and microtubule-associated protein 2 (P = 0.013) were also decreased, relative to controls. CONCLUSION Surgery, anesthesia and Intensive Care environment impaired mouse behaviors that depend on attention, memory, and thought organization. The changes were acute in onset and fluctuating in time. Mice with delirium exhibited decreased expression of key synaptic function-related genes. The behavioral changes induced by anesthesia, surgery, and Intensive Care environment in aged mice are consistent with the clinical features of human delirium, and support the use of this animal model for future mechanistic studies of perioperative delirium.
Collapse
Affiliation(s)
- Meghana Illendula
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Bianca Ferrarese
- Department of Anesthesiology and Intensive Care Medicine, University of Padova, Padua, Italy
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elzbieta Dulko
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
11
|
Manzella FM, Joksimovic SM, Orfila JE, Fine BR, Dietz RM, Sampath D, Fiedler HK, Tesic V, Atluri N, Raol YH, Jevtovic-Todorovic V, Herson PS, Todorovic SM. Neonatal Ketamine Alters High-Frequency Oscillations and Synaptic Plasticity in the Subiculum But Does not Affect Sleep Macrostructure in Adolescent Rats. Front Syst Neurosci 2020; 14:26. [PMID: 32528257 PMCID: PMC7264261 DOI: 10.3389/fnsys.2020.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Exposure to sedative/hypnotic and anesthetic drugs, such as ketamine, during the critical period of synaptogenesis, causes profound neurotoxicity in the developing rodent and primate brains and is associated with poor cognitive outcomes later in life. The subiculum is especially vulnerable to acute neurotoxicity after neonatal exposure to sedative/hypnotic and anesthetic drugs. The subiculum acts as a relay center between the hippocampal complex and various cortical and subcortical brain regions and is also an independent generator of gamma oscillations. Gamma oscillations are vital in neuronal synchronization and play a role in learning and memory during wake and sleep. However, there has been little research examining long-term changes in subicular neurophysiology after neonatal exposure to ketamine. Here we explore the lasting effects of neonatal ketamine exposure on sleep macrostructure as well as subicular neuronal oscillations and synaptic plasticity in rats. During the peak of rodent synaptogenesis at postnatal day 7, rat pups were exposed to either 40 mg/kg of ketamine over 12 h or to volume matched saline vehicle. At weaning age, a subset of rats were implanted with a cortical and subicular electroencephalogram electrode, and at postnatal day 31, we performed in vivo experiments that included sleep macrostructure (divided into the wake, non-rapid eye movement, and rapid eye movement sleep) and electroencephalogram power spectra in cortex and subiculum. In a second subset of ketamine exposed animals, we conducted ex vivo studies of long-term potentiation (LTP) experiments in adolescent rats. Overall, we found that neonatal exposure to ketamine increased subicular gamma oscillations during non-rapid eye movement sleep but it did not alter sleep macrostructure. Also, we observed a significant decrease in subicular LTP. Gamma oscillations during non-rapid eye movement sleep are implicated in memory formation and consolidation, while LTP serves as a surrogate for learning and memory. Together these results suggest that lasting functional changes in subiculum circuitry may underlie neurocognitive impairments associated with neonatal exposure to anesthetic agents.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brier R Fine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dayalan Sampath
- Department of Neuroscience and Experimental Therapeutics, University of Texas A&M, College Station, TX, United States
| | - Hanna K Fiedler
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vesna Tesic
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Shukla A, Chowdhary V. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Acta Paediatr 2019; 108:2115-2116. [PMID: 31418482 DOI: 10.1111/apa.14943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ankita Shukla
- Arkansas Children’s Hospital University of Arkansas for Medical Sciences Little Rock AK USA
| | - Vikas Chowdhary
- Arkansas Children’s Hospital University of Arkansas for Medical Sciences Little Rock AK USA
| |
Collapse
|
13
|
Disruption of Rapid Eye Movement Sleep Homeostasis in Adolescent Rats after Neonatal Anesthesia: Erratum. Anesthesiology 2019; 130:1098. [DOI: 10.1097/aln.0000000000002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|