1
|
da Silva AL, Bessa CM, Rocha NN, Carvalho EB, Magalhaes RF, Capelozzi VL, Robba C, Pelosi P, Samary CS, Rocco PRM, Silva PL. Pressure-support compared with pressure-controlled ventilation mitigates lung and brain injury in experimental acute ischemic stroke in rats. Intensive Care Med Exp 2023; 11:93. [PMID: 38102452 PMCID: PMC10724101 DOI: 10.1186/s40635-023-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS). METHODS In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with VT = 6 mL/kg and PEEP = 2 cmH2O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers. RESULTS In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1β was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1β was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036). CONCLUSION In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH2O.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Camila M Bessa
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Eduardo B Carvalho
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raquel F Magalhaes
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vera L Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Cardiorespiratory and Musculoskeletal Physiotherapy, Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Silva PL, Scharffenberg M, Rocco PRM. Understanding the mechanisms of ventilator-induced lung injury using animal models. Intensive Care Med Exp 2023; 11:82. [PMID: 38010595 PMCID: PMC10682329 DOI: 10.1186/s40635-023-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Mechanical ventilation is a life-saving therapy in several clinical situations, promoting gas exchange and providing rest to the respiratory muscles. However, mechanical ventilation may cause hemodynamic instability and pulmonary structural damage, which is known as ventilator-induced lung injury (VILI). The four main injury mechanisms associated with VILI are as follows: barotrauma/volutrauma caused by overstretching the lung tissues; atelectrauma, caused by repeated opening and closing of the alveoli resulting in shear stress; and biotrauma, the resulting biological response to tissue damage, which leads to lung and multi-organ failure. This narrative review elucidates the mechanisms underlying the pathogenesis, progression, and resolution of VILI and discusses the strategies that can mitigate VILI. Different static variables (peak, plateau, and driving pressures, positive end-expiratory pressure, and tidal volume) and dynamic variables (respiratory rate, airflow amplitude, and inspiratory time fraction) can contribute to VILI. Moreover, the potential for lung injury depends on tissue vulnerability, mechanical power (energy applied per unit of time), and the duration of that exposure. According to the current evidence based on models of acute respiratory distress syndrome and VILI, the following strategies are proposed to provide lung protection: keep the lungs partially collapsed (SaO2 > 88%), avoid opening and closing of collapsed alveoli, and gently ventilate aerated regions while keeping collapsed and consolidated areas at rest. Additional mechanisms, such as subject-ventilator asynchrony, cumulative power, and intensity, as well as the damaging threshold (stress-strain level at which tidal damage is initiated), are under experimental investigation and may enhance the understanding of VILI.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
3
|
de Carvalho EB, Battaglini D, Robba C, Malbrain MLNG, Pelosi P, Rocco PRM, Silva PL. Fluid management strategies and their interaction with mechanical ventilation: from experimental studies to clinical practice. Intensive Care Med Exp 2023; 11:44. [PMID: 37474816 PMCID: PMC10359242 DOI: 10.1186/s40635-023-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Patients on mechanical ventilation may receive intravenous fluids via restrictive or liberal fluid management. A clear and objective differentiation between restrictive and liberal fluid management strategies is lacking in the literature. The liberal approach has been described as involving fluid rates ranging from 1.2 to 12 times higher than the restrictive approach. A restrictive fluid management may lead to hypoperfusion and distal organ damage, and a liberal fluid strategy may result in endothelial shear stress and glycocalyx damage, cardiovascular complications, lung edema, and distal organ dysfunction. The association between fluid and mechanical ventilation strategies and how they interact toward ventilator-induced lung injury (VILI) could potentiate the damage. For instance, the combination of a liberal fluids and pressure-support ventilation, but not pressure control ventilation, may lead to further lung damage in experimental models of acute lung injury. Moreover, under liberal fluid management, the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the translational aspects of these findings are scarce. The aim of this narrative review is to provide better understanding of the interaction between different fluid and ventilation strategies and how these interactions may affect lung and distal organs. The weaning phase of mechanical ventilation and the deresuscitation phase are not explored in this review.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- University of Vassouras, Rio de Janeiro, Brazil
| | | | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Manu L. N. G. Malbrain
- First Department of Anesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- International Fluid Academy, Lovenjoel, Belgium
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Battaglini D, Iavarone IG, Robba C, Ball L, Silva PL, Rocco PRM. Mechanical ventilation in patients with acute respiratory distress syndrome: current status and future perspectives. Expert Rev Med Devices 2023; 20:905-917. [PMID: 37668146 DOI: 10.1080/17434440.2023.2255521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Although there has been extensive research on mechanical ventilation for acute respiratory distress syndrome (ARDS), treatment remains mainly supportive. Recent studies and new ventilatory modes have been proposed to manage patients with ARDS; however, the clinical impact of these strategies remains uncertain and not clearly supported by guidelines. The aim of this narrative review is to provide an overview and update on ventilatory management for patients with ARDS. AREAS COVERED This article reviews the literature regarding mechanical ventilation in ARDS. A comprehensive overview of the principal settings for the ventilator parameters involved is provided as well as a report on the differences between controlled and assisted ventilation. Additionally, new modes of assisted ventilation are presented and discussed. The evidence concerning rescue strategies, including recruitment maneuvers and extracorporeal membrane oxygenation support, is analyzed. PubMed, EBSCO, and the Cochrane Library were searched up until June 2023, for relevant literature. EXPERT OPINION Available evidence for mechanical ventilation in cases of ARDS suggests the use of a personalized mechanical ventilation strategy. Although promising, new modes of assisted mechanical ventilation are still under investigation and guidelines do not recommend rescue strategies as the standard of care. Further research on this topic is required.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
de Carvalho EB, Fonseca ACF, Magalhães R, Pinto EF, Samary CDS, Antunes MA, Baldavira CM, da Silveira LKR, Teodoro WR, de Abreu MG, Capelozzi VL, Felix NS, Pelosi P, Rocco PRM, Silva PL. Effects of different fluid management on lung and kidney during pressure-controlled and pressure-support ventilation in experimental acute lung injury. Physiol Rep 2022; 10:e15429. [PMID: 36065867 PMCID: PMC9446390 DOI: 10.14814/phy2.15429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 04/24/2023] Open
Abstract
Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
- University of VassourasVassourasRJBrazil
| | - Ana Carolina Fernandes Fonseca
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Raquel Ferreira Magalhães
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Eliete Ferreira Pinto
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Cynthia dos Santos Samary
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | | | | | | | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anaesthesiology and Intensive Care Therapy, Technische Universität DresdenUniversity Hospital Carl Gustav CarusDresdenGermany
- Department of Intensive Care and Resuscitation, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
- Department of Outcomes Research, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
| | - Vera Luiza Capelozzi
- Department of Pathology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
- Anesthesia and Critical Care, San Martino Policlinico HospitalIRCCS for Oncology and NeurosciencesGenoaItaly
| | - Patrícia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| |
Collapse
|
6
|
Silva PL, Ball L, Rocco PRM, Pelosi P. Physiological and Pathophysiological Consequences of Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:321-334. [PMID: 35439832 DOI: 10.1055/s-0042-1744447] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. First, hemodynamic changes can affect cardiovascular performance, cerebral perfusion pressure (CPP), and drainage of renal veins. Second, the negative effect of mechanical ventilation (compression stress) on the alveolar-capillary membrane and extracellular matrix may cause local and systemic inflammation, promoting lung and peripheral-organ injury. Third, intra-abdominal hypertension may further impair lung and peripheral-organ function during controlled and assisted ventilation. Mechanical ventilation should be optimized and personalized in each patient according to individual clinical needs. Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| |
Collapse
|
7
|
Fernandes MVS, Rocha NN, Felix NS, Rodrigues GC, Silva LHA, Coelho MS, Fonseca ACF, Teixeira ACGM, Capelozzi VL, Pelosi P, Silva PL, Marini JJ, Rocco PRM. A more gradual positive end-expiratory pressure increase reduces lung damage and improves cardiac function in experimental acute respiratory distress syndrome. J Appl Physiol (1985) 2022; 132:375-387. [PMID: 34941443 DOI: 10.1152/japplphysiol.00613.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Increases in positive end-expiratory pressure (PEEP) or recruitment maneuvers may increase stress in lung parenchyma, extracellular matrix, and lung vessels; however, adaptative responses may occur. We evaluated the effects of PEEP on lung damage and cardiac function when increased abruptly, gradually, or more gradually in experimental mild/moderate acute respiratory distress syndrome (ARDS) induced by Escherichia coli lipopolysaccharide intratracheally. After 24 h, Wistar rats (n = 48) were randomly assigned to four mechanical ventilation strategies according to PEEP levels: 1) 3 cmH2O for 2 h (control); 2) 3 cmH2O for 1 h followed by an abrupt increase to 9 cmH2O for 1 h (no adaptation time); 3) 3 cmH2O for 30 min followed by a gradual increase to 9 cmH2O over 30 min then kept constant for 1 h (shorter adaptation time); and 4) more gradual increase in PEEP from 3 cmH2O to 9 cmH2O over 1 h and kept constant thereafter (longer adaptation time). At the end of the experiment, oxygenation improved in the shorter and longer adaptation time groups compared with the no-adaptation and control groups. Diffuse alveolar damage and expressions of interleukin-6, club cell protein-16, vascular cell adhesion molecule-1, amphiregulin, decorin, and syndecan were higher in no adaptation time compared with other groups. Pulmonary arterial pressure was lower in longer adaptation time than in no adaptation (P = 0.002) and shorter adaptation time (P = 0.025) groups. In this model, gradually increasing PEEP limited lung damage and release of biomarkers associated with lung epithelial/endothelial cell and extracellular matrix damage, as well as the PEEP-associated increase in pulmonary arterial pressure.NEW & NOTEWORTHY In a rat model of Escherichia coli lipopolysaccharide-induced mild/moderate acute respiratory distress syndrome, a gradual PEEP increase (shorter adaptation time) effectively mitigated histological lung injury and biomarker release associated with lung inflammation, damage to epithelial cells, endothelial cells, and the extracellular matrix compared with an abrupt increase in PEEP. A more gradual PEEP increase (longer adaptation time) decreased lung damage, pulmonary vessel compression, and pulmonary arterial pressure.
Collapse
Affiliation(s)
- Marcos V S Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, Brazil
| | - Nathane S Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele C Rodrigues
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luísa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Coelho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina F Fonseca
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina G M Teixeira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - John J Marini
- Regions Hospital and University of Minnesota, Minneapolis/Saint Paul, Minnesota
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Bianchi I, Grassi A, Pham T, Telias I, Teggia Droghi M, Vieira F, Jonkman A, Brochard L, Bellani G. Reliability of plateau pressure during patient-triggered assisted ventilation. Analysis of a multicentre database. J Crit Care 2021; 68:96-103. [PMID: 34952477 DOI: 10.1016/j.jcrc.2021.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE An inspiratory hold during patient-triggered assisted ventilation potentially allows to measure driving pressure and inspiratory effort. However, muscular activity can make this measurement unreliable. We aim to define the criteria for inspiratory holds reliability during patient-triggered breaths. MATERIAL AND METHODS Flow, airway and esophageal pressure recordings during patient-triggered breaths from a multicentre observational study (BEARDS, NCT03447288) were evaluated by six independent raters, to determine plateau pressure readability. Features of "readable" and "unreadable" holds were compared. Muscle pressure estimate from the hold was validated against other measures of inspiratory effort. RESULTS Ninety-two percent of the recordings were consistently judged as readable or unreadable by at least four raters. Plateau measurement showed a high consistency among raters. A short time from airway peak to plateau pressure and a stable and longer plateau characterized readable holds. Unreadable plateaus were associated with higher indexes of inspiratory effort. Muscular pressure computed from the hold showed a strong correlation with independent indexes of inspiratory effort. CONCLUSION The definition of objective parameters of plateau reliability during assisted-breath provides the clinician with a tool to target a safer assisted-ventilation and to detect the presence of high inspiratory effort.
Collapse
Affiliation(s)
- Isabella Bianchi
- Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Clinical-Surgical, diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Alice Grassi
- Department of Anesthesia and Pain Medicine, University of Toronto, Ontario, Canada; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Le Kremlin-Bicêtre, France.
| | - Irene Telias
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada.
| | - Maddalena Teggia Droghi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| | - Fernando Vieira
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Annemijn Jonkman
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Intensive Care Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands.
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
9
|
Battaglini D, Robba C, Ball L, Silva PL, Cruz FF, Pelosi P, Rocco PRM. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021; 127:353-364. [PMID: 34217468 PMCID: PMC8173496 DOI: 10.1016/j.bja.2021.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil.
| |
Collapse
|
10
|
Thompson AF, Moraes L, Rocha NN, Fernandes MVS, Antunes MA, Abreu SC, Santos CL, Capelozzi VL, Samary CS, de Abreu MG, Saddy F, Pelosi P, Silva PL, Rocco PRM. Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome. PLoS One 2021; 16:e0256021. [PMID: 34415935 PMCID: PMC8378704 DOI: 10.1371/journal.pone.0256021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. RESULTS BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. CONCLUSION In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.
Collapse
Affiliation(s)
- Alessandra F. Thompson
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Copa D’Or Hospital, Rio de Janeiro, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nazareth N. Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Marcos V. S. Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana A. Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Soraia C. Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cintia L. Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vera L. Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cynthia S. Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Physical Therapy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo G. de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Outcomes Research Consortium, Cleveland, OH, United States of America
| | - Felipe Saddy
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Copa D’Or Hospital, Rio de Janeiro, Brazil
- Pró-Cardíaco Hospital, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
11
|
Procollagen I and III as Prognostic Markers in Patients Treated with Extracorporeal Membrane Oxygenation: A Prospective Observational Study. J Clin Med 2021; 10:jcm10163686. [PMID: 34441982 PMCID: PMC8397027 DOI: 10.3390/jcm10163686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Procollagen peptides have been associated with lung fibroproliferation and poor outcomes in patients with acute respiratory distress syndrome (ARDS). Therefore, serum procollagen concentrations might have prognostic value in ARDS patients treated with extracorporeal membrane oxygenation (ECMO). Methods: In a prospective cohort study, serum N-terminal procollagen I-peptide (PINP) and N-terminal procollagen III-peptide (PIIINP) concentrations in twenty-three consecutive patients with severe ARDS treated with ECMO were measured at the time of ECMO initiation and during the course of treatment. The predictive value of PINP and PIIINP at the time of ECMO initiation was tested with a univariable logistic regression and a receiver operating characteristic (ROC) curve analysis. Results: Thirteen patients survived to intensive care unit (ICU) discharge. Non-survivors had higher serum PINP and PIIINP concentrations at all points in time during the course of treatment. Serum PIIINP at the day of ECMO initiation showed an odds ratio of 1.37 (95% CI 1.10–1.89, p = 0.017) with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.87 (95% CI 0.69–1.00, p = 0.0029) for death during the course of treatment. Conclusions: PINP and PIIINP concentrations differ between survivors and non-survivors in ARDS treated with ECMO. This exploratory hypothesis generating study suggests an association between PIIINP serum concentrations at ECMO initiation and an unfavorable clinical outcome.
Collapse
|
12
|
Scaramuzzo G, Spadaro S, Spinelli E, Waldmann AD, Bohm SH, Ottaviani I, Montanaro F, Gamberini L, Marangoni E, Mauri T, Volta CA. Calculation of Transpulmonary Pressure From Regional Ventilation Displayed by Electrical Impedance Tomography in Acute Respiratory Distress Syndrome. Front Physiol 2021; 12:693736. [PMID: 34349666 PMCID: PMC8327175 DOI: 10.3389/fphys.2021.693736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023] Open
Abstract
Transpulmonary driving pressure (DPL) corresponds to the cyclical stress imposed on the lung parenchyma during tidal breathing and, therefore, can be used to assess the risk of ventilator-induced lung injury (VILI). Its measurement at the bedside requires the use of esophageal pressure (Peso), which is sometimes technically challenging. Recently, it has been demonstrated how in an animal model of ARDS, the transpulmonary pressure (PL) measured with Peso calculated with the absolute values method (PL = Paw—Peso) is equivalent to the transpulmonary pressure directly measured using pleural sensors in the central-dependent part of the lung. We hypothesized that, since the PL derived from Peso reflects the regional behavior of the lung, it could exist a relationship between regional parameters measured by electrical impedance tomography (EIT) and driving PL (DPL). Moreover, we explored if, by integrating airways pressure data and EIT data, it could be possible to estimate non-invasively DPL and consequently lung elastance (EL) and elastance-derived inspiratory PL (PI). We analyzed 59 measurements from 20 patients with ARDS. There was a significant intra-patient correlation between EIT derived regional compliance in regions of interest (ROI1) (r = 0.5, p = 0.001), ROI2 (r = −0.68, p < 0.001), and ROI3 (r = −0.4, p = 0.002), and DPL. A multiple linear regression successfully predicted DPL based on respiratory system elastance (Ers), ideal body weight (IBW), roi1%, roi2%, and roi3% (R2 = 0.84, p < 0.001). The corresponding Bland-Altmann analysis showed a bias of −1.4e-007 cmH2O and limits of agreement (LoA) of −2.4–2.4 cmH2O. EL and PI calculated using EIT showed good agreement (R2 = 0.89, p < 0.001 and R2 = 0.75, p < 0.001) with the esophageal derived correspondent variables. In conclusion, DPL has a good correlation with EIT-derived parameters in the central lung. DPL, PI, and EL can be estimated with good accuracy non-invasively combining information coming from EIT and airway pressure.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Bohm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Irene Ottaviani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Lorenzo Gamberini
- Department of Anaesthesia, Intensive Care and Prehospital Emergency, Ospedale Maggiore Carlo Alberto Pizzardi, Bologna, Italy
| | - Elisabetta Marangoni
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplant, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Time-Controlled Adaptive Ventilation Versus Volume-Controlled Ventilation in Experimental Pneumonia. Crit Care Med 2021; 49:140-150. [PMID: 33060501 DOI: 10.1097/ccm.0000000000004675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We hypothesized that a time-controlled adaptive ventilation strategy would open and stabilize alveoli by controlling inspiratory and expiratory duration. Time-controlled adaptive ventilation was compared with volume-controlled ventilation at the same levels of mean airway pressure and positive end-release pressure (time-controlled adaptive ventilation)/positive end-expiratory pressure (volume-controlled ventilation) in a Pseudomonas aeruginosa-induced pneumonia model. DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS Twenty-one Wistar rats. INTERVENTIONS Twenty-four hours after pneumonia induction, Wistar rats (n = 7) were ventilated with time-controlled adaptive ventilation (tidal volume = 8 mL/kg, airway pressure release ventilation for a Thigh = 0.75-0.85 s, release pressure (Plow) set at 0 cm H2O, and generating a positive end-release pressure = 1.6 cm H2O applied for Tlow = 0.11-0.14 s). The expiratory flow was terminated at 75% of the expiratory flow peak. An additional 14 animals were ventilated using volume-controlled ventilation, maintaining similar time-controlled adaptive ventilation levels of positive end-release pressure (positive end-expiratory pressure=1.6 cm H2O) and mean airway pressure = 10 cm H2O. Additional nonventilated animals (n = 7) were used for analysis of molecular biology markers. MEASUREMENTS AND MAIN RESULTS After 1 hour of mechanical ventilation, the heterogeneity score, the expression of pro-inflammatory biomarkers interleukin-6 and cytokine-induced neutrophil chemoattractant-1 in lung tissue were significantly lower in the time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure groups (p = 0.008, p = 0.011, and p = 0.011, respectively). Epithelial cell integrity, measured by E-cadherin tissue expression, was higher in time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure (p = 0.004). Time-controlled adaptive ventilation animals had bacteremia counts lower than volume-controlled ventilation with similar mean airway pressure animals, while time-controlled adaptive ventilation and volume-controlled ventilation with similar positive end-release pressure animals had similar colony-forming unit counts. In addition, lung edema and cytokine-induced neutrophil chemoattractant-1 gene expression were more reduced in time-controlled adaptive ventilation than volume-controlled ventilation with similar positive end-release pressure groups. CONCLUSIONS In the model of pneumonia used herein, at the same tidal volume and mean airway pressure, time-controlled adaptive ventilation, compared with volume-controlled ventilation, was associated with less lung damage and bacteremia and reduced gene expression of mediators associated with inflammation.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Assess the most recent studies using driving pressure (DP) as a monitoring technique under mechanical ventilation and describe the technical challenges associated with its measurement. RECENT FINDINGS DP is consistently associated with survival in acute respiratory failure and acute respiratory distress syndrome (ARDS) and can detect patients at higher risk of ventilator-induced lung injury. Its measurement can be challenged by leaks and ventilator dyssynchrony, but is also feasible under pressure support ventilation. Interestingly, an aggregated summary of published results suggests that its level is on average slightly lower in patients with coronavirus disease-19 induced ARDS than in classical ARDS. SUMMARY The DP is easy to obtain and should be incorporated as a minimal monitoring technique under mechanical ventilation.
Collapse
|
15
|
da Cruz DG, de Magalhães RF, Padilha GA, da Silva MC, Braga CL, Silva AR, Gonçalves de Albuquerque CF, Capelozzi VL, Samary CS, Pelosi P, Rocco PRM, Silva PL. Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia. PLoS One 2021; 16:e0246891. [PMID: 33577592 PMCID: PMC7880436 DOI: 10.1371/journal.pone.0246891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND During pneumonia, normal alveolar areas coexist adjacently with consolidated areas, and high inspiratory efforts may predispose to lung damage. To date, no study has evaluated different degrees of effort during Biphasic positive airway pressure (BIVENT) on lung and diaphragm damage in experimental pneumonia, though largely used in clinical setting. We aimed to evaluate lung damage, genes associated with ventilator-induced lung injury (VILI) and diaphragmatic injury, and blood bacteria in pressure-support ventilation (PSV), BIVENT with low and high inspiratory efforts in experimental pneumonia. MATERIAL AND METHODS Twenty-eight male Wistar rats (mean ± SD weight, 333±78g) were submitted Pseudomonas aeruginosa-induced pneumonia. After 24-h, animals were ventilated for 1h in: 1) PSV; 2) BIVENT with low (BIVENTLow-Effort); and 3) BIVENT with high inspiratory effort (BIVENTHigh-Effort). BIVENT was set at Phigh to achieve VT = 6 ml/kg and Plow at 5 cmH2O (n = 7/group). High- and low-effort conditions were obtained through anaesthetic infusion modulation based on neuromuscular drive (P0.1). Lung mechanics, histological damage score, blood bacteria, and expression of genes related to VILI in lung tissue, and inflammation in diaphragm tissue. RESULTS Transpulmonary peak pressure and histological damage score were higher in BIVENTHigh-Effort compared to BIVENTLow-Effort and PSV [16.1 ± 1.9cmH2O vs 12.8 ± 1.5cmH2O and 12.5 ± 1.6cmH2O, p = 0.015, and p = 0.010; median (interquartile range) 11 (9-13) vs 7 (6-9) and 7 (6-9), p = 0.021, and p = 0.029, respectively]. BIVENTHigh-Effort increased interleukin-6 expression compared to BIVENTLow-Effort (p = 0.035) as well as expressions of cytokine-induced neutrophil chemoattractant-1, amphiregulin, and type III procollagen compared to PSV (p = 0.001, p = 0.001, p = 0.004, respectively). Tumour necrosis factor-α expression in diaphragm tissue and blood bacteria were higher in BIVENTHigh-Effort than BIVENTLow-Effort (p = 0.002, p = 0.009, respectively). CONCLUSION BIVENT requires careful control of inspiratory effort to avoid lung and diaphragm damage, as well as blood bacteria. P0.1 might be considered a helpful parameter to optimize inspiratory effort.
Collapse
Affiliation(s)
- Daniela G. da Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel F. de Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele A. Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C. da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassia L. Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana R. Silva
- Laboratory of Immunopharmacology, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Vera L. Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cynthia S. Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Dong SA, Gong LR, Yu JB, Kan YX. The Role of Melatonin in Electroacupuncture Alleviating Lung Injury Induced by Limb Ischemia-Reperfusion in Rabbits. Med Sci Monit 2020; 26:e922525. [PMID: 32427819 PMCID: PMC7251961 DOI: 10.12659/msm.922525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Our previous studies have shown that electroacupuncture (EA) can alleviate lung injury induced by limb ischemia-reperfusion, but the specific mechanism is still unclear. Material/Methods The animals were randomly divided into sham operation group (Sham), model group (IR), electroacupuncture group (EA), sham electroacupuncture group (SEA), and EA+luzindole group (EA+luzindole). The limb ischemia-reperfusion model was established according to previously described, the rabbits in the EA and EA+luzindole groups were given EA at ST36 and BL13 for 7 days before the model preparation and during the model implementation, however, sham EA was mainly used to stimulate the rabbits in the SEA group with shallow needling at the points 0.5 cm near ST36 and BL13. Then, 30 mg/kg of luzindole was intraperitoneally injected 30 minutes before the model preparation in the EA+luzindole group. Results The wet weight/dry weight (W/D) ratio, lung injury score, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) contents in the EA group at 4 hours after reperfusion were significantly lower than those in the IR, SEA, and EA+luzindole groups. The levels of serum melatonin at T0 in the EA and EA+luzindole groups were significantly higher than those in the Sham group. The levels of serum melatonin at T1 and T2 in the IR group were significantly lower than those in the Sham group. There was no significant difference in the expression levels of melatonin receptor 1 (MR-1) and MR-2 in lung tissues among the 5 groups. Conclusions EA could alleviate the lung injury induced by limb ischemia-reperfusion by promoting the secretion of melatonin, while having no effect on the expression of melatonin receptor in lung tissues.
Collapse
Affiliation(s)
- Shu-An Dong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Li-Rong Gong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Yong-Xing Kan
- Department of Anesthesiology, Dagang Hospital of Tianjin Binhai New Area, Tianjin, China (mainland)
| |
Collapse
|