1
|
Zhang X, He XL, Jiang ZH, Qi J, Huang CC, Zhao JS, Gu N, Lu Y, Wang Q. The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT 2C Receptors. Neurosci Bull 2025:10.1007/s12264-025-01383-7. [PMID: 40089966 DOI: 10.1007/s12264-025-01383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 03/18/2025] Open
Abstract
Neuropathic pain, often featuring allodynia, imposes significant physical and psychological burdens on patients, with limited treatments due to unclear central mechanisms. Addressing this challenge remains a crucial unsolved issue in pain medicine. Our previous study, using protein kinase C gamma (PKCγ)-tdTomato mice, highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia. However, the regulatory mechanisms governing this circuit necessitate further elucidation. We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin (5-HT) facilitation system on spinal PKCγ neurons. Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT2C receptors, disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia. Inhibiting spinal 5-HT2C receptors restored the feedforward inhibitory circuit, effectively preventing neuropathic allodynia. These insights offer promising therapeutic targets for neuropathic allodynia management, emphasizing the potential of spinal 5-HT2C receptors as a novel avenue for intervention.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Lan He
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Hua Jiang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Qi
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Chen Huang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Shuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Gu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Lian YN, Cao XW, Wu C, Pei CY, Liu L, Zhang C, Li XY. Deconstruction the feedforward inhibition changes in the layer III of anterior cingulate cortex after peripheral nerve injury. Commun Biol 2024; 7:1237. [PMID: 39354145 PMCID: PMC11445484 DOI: 10.1038/s42003-024-06849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
The anterior cingulate cortex (ACC) is one of the critical brain areas for processing noxious information. Previous studies showed that peripheral nerve injury induced broad changes in the ACC, contributing to pain hypersensitivity. The neurons in layer 3 (L3) of the ACC receive the inputs from the mediodorsal thalamus (MD) and form the feedforward inhibition (FFI) microcircuits. The effects of peripheral nerve injury on the MD-driven FFI in L3 of ACC are unknown. In our study, we record the enhanced excitatory synaptic transmissions from the MD to L3 of the ACC in mice with common peroneal nerve ligation, affecting FFI. Chemogenetically activating the MD-to-ACC projections induces pain sensitivity and place aversion in naive mice. Furthermore, chemogenetically inactivating MD-to-ACC projections decreases pain sensitivity and promotes place preference in nerve-injured mice. Our results indicate that the peripheral nerve injury changes the MD-to-ACC projections, contributing to pain hypersensitivity and aversion.
Collapse
Affiliation(s)
- Yan-Na Lian
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cheng Wu
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China
| | - Chen-Yu Pei
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiang-Yao Li
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China.
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China.
| |
Collapse
|
3
|
Nelson TS, Allen HN, Basu P, Prasoon P, Nguyen E, Arokiaraj CM, Santos DF, Seal RP, Ross SE, Todd AJ, Taylor BK. Alleviation of neuropathic pain with neuropeptide Y requires spinal Npy1r interneurons that coexpress Grp. JCI Insight 2023; 8:e169554. [PMID: 37824208 PMCID: PMC10721324 DOI: 10.1172/jci.insight.169554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
| | - Heather N. Allen
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Paramita Basu
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Eileen Nguyen
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cynthia M. Arokiaraj
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diogo F.S. Santos
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Rebecca P. Seal
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Todd
- Spinal Cord Group, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Nelson TS, Sinha GP, Santos DFS, Jukkola P, Prasoon P, Winter MK, McCarson KE, Smith BN, Taylor BK. Spinal neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic target for the alleviation of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2204515119. [PMID: 36343228 PMCID: PMC9674229 DOI: 10.1073/pnas.2204515119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ghanshyam P. Sinha
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Diogo F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Peter Jukkola
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ken E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Combined-Acupoint Electroacupuncture Induces Better Analgesia via Activating the Endocannabinoid System in the Spinal Cord. Neural Plast 2022; 2022:7670629. [PMID: 36160326 PMCID: PMC9499800 DOI: 10.1155/2022/7670629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Electroacupuncture (EA) therapy has been widely reported to alleviate neuropathic pain with few side effects in both clinical practice and animal studies worldwide. However, little is known about the comparison of the therapeutic efficacy among the diverse EA schemes used for neuropathic pain. The present study is aimed at investigating the therapeutic efficacy discrepancy between the single and combined-acupoint EA and to reveal the difference of mechanisms behind them. Electroacupuncture was given at both Zusanli (ST36) and Huantiao (GB30) in the combined group or ST36 alone in the single group. Paw withdrawal mechanical threshold (PWMT) was measured to determine the pain level. Electrophysiology was performed to detect the effects of EA on synaptic transmission in the spinal dorsal horn of the vGlut2-tdTomato mice. Spinal contents of endogenous opioids, endocannabinoids, and their receptors were examined. Inhibitors of CBR (cannabinoid receptor) and opioid receptors were used to study the roles of opioid and endocannabinoid system (ECS) in EA analgesia. We found that combined-acupoint acupuncture provide stronger analgesia than the single group did, and the former inhibited the synaptic transmission at the spinal level to a greater extent than later. Besides, the high-intensity stimulation at ST36 or normal stimulation at two sham acupoints did not mimic the similar efficacy of analgesia in the combined group. Acupuncture stimulation in single and combined groups both activated the endogenous opioid system. The ECS was only activated in the combined group. Naloxone totally blocked the analgesic effect of single-acupoint EA; however, it did not attenuate that of combined-acupoint EA unless coadministered with CBR antagonists. Hence, in the CCI-induced neuropathic pain model, combined-acupoint EA at ST36 and GB30 is more effective in analgesia than the single-acupoint EA at ST36. EA stimulation at GB30 alone neither provided a superior analgesic effect to EA treatment at ST36 nor altered the content of AEA, 2-AG, CB1 receptor, or CB2 receptor compared with the CCI group. Activation of the ECS is the main contributor of the better analgesia by the combined acupoint stimulation than that induced by single acupoint stimulation.
Collapse
|
6
|
El Khoueiry C, Alba-Delgado C, Antri M, Gutierrez-Mecinas M, Todd AJ, Artola A, Dallel R. GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization. Cells 2022; 11:cells11081356. [PMID: 35456035 PMCID: PMC9033052 DOI: 10.3390/cells11081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanical allodynia (pain to normally innocuous tactile stimuli) is a widespread symptom of inflammatory and neuropathic pain. Spinal or medullary dorsal horn (SDH or MDH) circuits mediating tactile sensation and pain need to interact in order to evoke mechanical allodynia. PKCγ-expressing (PKCγ+) interneurons and inhibitory controls within SDH/MDH inner lamina II (IIi) are pivotal in connecting touch and pain circuits. However, the relative contribution of GABA and glycine to PKCγ+ interneuron inhibition remains unknown. We characterized inhibitory inputs onto PKCγ+ interneurons by combining electrophysiology to record spontaneous and miniature IPSCs (sIPSCs, mIPSCs) and immunohistochemical detection of GABAARα2 and GlyRα1 subunits in adult rat MDH. While GlyR-only- and GABAAR-only-mediated mIPSCs/sIPSCs are predominantly recorded from PKCγ+ interneurons, immunohistochemistry reveals that ~80% of their inhibitory synapses possess both GABAARα2 and GlyRα1. Moreover, nearly all inhibitory boutons at gephyrin-expressing synapses on these cells contain glutamate decarboxylase and are therefore GABAergic, with around half possessing the neuronal glycine transporter (GlyT2) and therefore being glycinergic. Thus, while GABA and glycine are presumably co-released and GABAARs and GlyRs are present at most inhibitory synapses on PKCγ+ interneurons, these interneurons exhibit almost exclusively GABAAR-only and GlyR-only quantal postsynaptic inhibitory currents, suggesting a pharmacological specialization of their inhibitory synapses.
Collapse
Affiliation(s)
- Corinne El Khoueiry
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Cristina Alba-Delgado
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Myriam Antri
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Andrew J. Todd
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Alain Artola
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| | - Radhouane Dallel
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| |
Collapse
|
7
|
Zhang X, Liu P, He X, Jiang Z, Wang Q, Gu N, Lu Y. The PKCγ neurons in anterior cingulate cortex contribute to the development of neuropathic allodynia and pain-related emotion. Mol Pain 2021; 17:17448069211061973. [PMID: 34898326 PMCID: PMC8679404 DOI: 10.1177/17448069211061973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background While the PKCγ neurons in spinal dorsal horn play an indispensable part in neuropathic
allodynia, the exact effect of PKCγ neurons of brain regions in neuropathic pain remains
elusive. Mounting research studies have depicted that the anterior cingulate cortex
(ACC) is closely linked with pain perception and behavior, the present study was
designed to investigate the contribution of PKCγ neurons in ACC to neuropathic allodynia
and pain-related emotion in newly developed Prkcg-P2A-Tdtomato mice. Methods The c-fos expression in response to innocuous stimulation was used to monitor the
activity of PKCγ in CCI (chronic constriction injury of the sciatic nerve) induced
neuropathic pain condition. Activating or silencing ACC PKCγ neurons by chemogenetics
was applied to observe the changes of pain behavior. The excitability of ACC PKCγ
neurons in normal and CCI mice was compared by patch-clamp whole-cell recordings. Results The PKCγ-Tdtomato neurons were mainly distributed in layer III-Vof ACC. The Tdtomato
was mainly expressed in ACC pyramidal neurons demonstrated by intracellular staining.
The c-fos expression in ACC PKCγ neurons in response to innocuous stimulation was
obviously elevated in CCI mice. The patch clamp recordings showed that ACC PKCγ-Tdtomato
neurons were largely activated in CCI mice. Chemogenetic activation of ACC PKCγ neurons
in Prkcg-icre mice induced mechanical allodynia and pain-related aversive behavior,
conversely, silencing them in CCI condition significantly reversed the mechanical
allodynia and pain-related place aversive behavior. Conclusion We conclude that the PKCγ neurons in ACC are closely linked with neuropathic allodynia
and pain-related emotional behaviors.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Peng Liu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Nan Gu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| |
Collapse
|
8
|
He X, Liu P, Zhang X, Jiang Z, Gu N, Wang Q, Lu Y. Molecular and Electrophysiological Characterization of Dorsal Horn Neurons in a GlyT2-iCre-tdTomato Mouse Line. J Pain Res 2021; 14:907-921. [PMID: 33854367 PMCID: PMC8039200 DOI: 10.2147/jpr.s296940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Spinal glycinergic neurons function as critical elements of a spinal gate for pain and itch. We have recently documented that spinal PKCγ+ neurons receive the feedforward inhibitory input driven by Aβ primary afferent. The glycinergic neurons control the excitability of PKCγ+ neurons and therefore gate mechanical allodynia. However, a dynamic or electrophysiological analysis of the synaptic drive on spinal glycinergic interneurons from primary afferent fibers is largely absent. The present study was aimed to analyze the synaptic dynamics between spinal glycinergic interneurons and primary afferents using a genetic labeled animal model. Materials and Methods The GlyT2-P2A-iCre mice were constructed by the CRISPR/Cas9 technology. The GlyT2-iCre-tdTomato mice were then generated by crossing the GlyT2-P2A-iCre mice with fluorescent reporter mice. Patch-clamp whole-cell recordings were used to analyze the dynamic synaptic inputs to glycinergic neurons in GlyT2-iCre-tdTomato mice. The distribution of GlyT2-tdTomato neurons in the spinal dorsal horn was examined by the immunohistochemistry method. The firing pattern and morphological features of GlyT2-tdTomato neurons were also examined by electrophysiological recordings and intracellular injection of biocitin. Results The GlyT2-P2A-iCre and GlyT2-tdTomato mice were successfully constructed. GlyT2-tdTomato fluorescence was colocalized extensively with immunoreactivity of glycine, GlyT2 and Pax2 in somata, confirming the selective expression of the transgene in glycinergic neurons. GlyT2-tdTomato neurons were mainly distributed in spinal lamina IIi through IV. The firing pattern and morphological properties of GlyT2-tdTomato neurons met the features of tonic central or islet type of spinal inhibitory interneurons. The majority (72.1%) of the recorded GlyT2-tdTomato neurons received primary inputs from Aβ fibers. Conclusion The present study indicated that spinal GlyT2-positive glycinergic neurons mainly received primary afferent Aβ fiber inputs; the GlyT2-P2A-iCre and GlyT2-tdTomato mice provided a useful animal model to further investigate the function of the GlyT2+-PKCγ+ feedforward inhibitory circuit in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaolan He
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Peng Liu
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Zhang
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhenhua Jiang
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Nan Gu
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qun Wang
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Lu
- Department of Pain Medicine.,Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
9
|
Liu P, Zhang X, He X, Jiang Z, Wang Q, Lu Y. Spinal GABAergic neurons are under feed-forward inhibitory control driven by A δ and C fibers in Gad2 td-Tomato mice. Mol Pain 2021; 17:1744806921992620. [PMID: 33586515 PMCID: PMC7890716 DOI: 10.1177/1744806921992620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal GABAergic neurons act as a critical modulator in sensory transmission like pain or itch. The monosynaptic or polysynaptic primary afferent inputs onto GABAergic neurons, along with other interneurons or projection neurons make up the direct and feed-forward inhibitory neural circuits. Previous research indicates that spinal GABAergic neurons mainly receive excitatory inputs from Aδ and C fibers. However, whether they are controlled by other inhibitory sending signals is not well understood. METHODS We applied a transgenic mouse line in which neurons co-expressed the GABA-synthesizing enzyme Gad65 and the enhanced red fluorescence (td-Tomato) to characterize the features of morphology and electrophysiology of GABAergic neurons. Patch-clamp whole cell recordings were used to record the evoked postsynaptic potentials of fluorescent neurons in spinal slices in response to dorsal root stimulation. RESULTS We demonstrated that GABAergic neurons not only received excitatory drive from peripheral Aβ, Aδ and C fibers, but also received inhibitory inputs driven by Aδ and C fibers. The evoked inhibitory postsynaptic potentials (eIPSPs) mediated by C fibers were mainly Glycinergic (66.7%) as well as GABAergic mixed with Glycinergic (33.3%), whereas the inhibition mediated by Aδ fibers was predominately both GABA and Glycine-dominant (57.1%), and the rest of which was purely Glycine-dominant (42.9%). CONCLUSION These results indicated that spinal GABAergic inhibitory neurons are under feedforward inhibitory control driven by primary C and Aδ fibers, suggesting that this feed-forward inhibitory pathway may play an important role in balancing the excitability of GABAergic neurons in spinal dorsal horn.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|