1
|
Zorrilla-Vaca A, Arevalo JJ, Grant MC. Protective mechanical ventilation in critically ill patients after surgery. Curr Opin Crit Care 2024; 30:679-683. [PMID: 39503212 DOI: 10.1097/mcc.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an updated overview of lung protective strategies in critically ill patients after surgery, focusing on the utility of postoperative open-lung ventilation during the transition from the operating room to the intensive care unit. RECENT FINDINGS Mechanically ventilated patients after surgery represent a challenge in the intensive care unit. Different protective strategies have been proposed to minimize the risk of ventilator-induced lung injury (VILI) and facilitate adequate weaning from mechanical ventilation. Fast-track extubation protocols, increasingly standard in the care of critically ill patients postsurgery, have demonstrated improvements in recovery and reductions in acute lung injury, primarily based on retrospective studies. Open-lung ventilation strategies, such as individualization of positive-end expiratory pressure based on driving pressure and postoperative noninvasive ventilation support with high-flow nasal cannula, are becoming standard of care in high-risk surgical patients after major abdominal or thoracic surgeries. SUMMARY Mechanical ventilation in surgical patients should adhere to lung protective strategies (i.e., individualizing positive end expiratory pressure and prioritize alveolar recruitment) during the transition from the operating room to the intensive care unit.
Collapse
Affiliation(s)
- Andres Zorrilla-Vaca
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jimmy J Arevalo
- Department of Anesthesiology, Leiden University Medical Center, The Netherlands
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Covotta M, Claroni C, Torregiani G, Menga LS, Venti E, Gazzè G, Anzellotti GM, Ceccarelli V, Gaglioti P, Orlando S, Rosà T, Forastiere E, Antonelli M, Grieco DL. Recruitment-to-inflation ratio to assess response to PEEP during laparoscopic surgery: A physiologic study. J Clin Anesth 2024; 98:111569. [PMID: 39106592 DOI: 10.1016/j.jclinane.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
STUDY OBJECTIVE During laparoscopic surgery, the role of PEEP to improve outcome is controversial. Mechanistically, PEEP benefits depend on the extent of alveolar recruitment, which prevents ventilator-induced lung injury by reducing lung dynamic strain. The hypotheses of this study were that pneumoperitoneum-induced aeration loss and PEEP-induced recruitment are inter-individually variable, and that the recruitment-to-inflation ratio (R/I) can identify patients who benefit from PEEP in terms of strain reduction. DESIGN Sequential study. SETTING Operating room. PATIENTS Seventeen ASA I-III patients receiving robot-assisted prostatectomy during Trendelenburg pneumoperitoneum. INTERVENTIONS AND MEASUREMENTS Patients underwent end-expiratory lung volume (EELV) and respiratory/lung/chest wall mechanics (esophageal manometry and inspiratory/expiratory occlusions) assessment at PEEP = 0 cmH2O before and after pneumoperitoneum, at PEEP = 4 and 12 cmH2O during pneumoperitoneum. Pneumoperitoneum-induced derecruitment and PEEP-induced recruitment were assessed through a simplified method based on multiple pressure-volume curve. Dynamic and static strain changes were evaluated. R/I between 12 and 4 cmH2O was assessed from EELV. Inter-individual variability was rated with the ratio of standard deviation to mean (CoV). MAIN RESULTS Pneumoperitoneum reduced EELV by (median [IqR]) 410 mL [80-770] (p < 0.001) and increased dynamic strain by 0.04 [0.01-0.07] (p < 0.001), with high inter-individual variability (CoV = 70% and 88%, respectively). Compared to PEEP = 4 cmH2O, PEEP = 12 cmH2O yielded variable amount of recruitment (139 mL [96-366] CoV = 101%), causing different extent of dynamic strain reduction (median decrease 0.02 [0.01-0.04], p = 0.002; CoV = 86%) and static strain increases (median increase 0.05 [0.04-0.07], p = 0.01, CoV = 33%). R/I (1.73 [0.58-3.35]) estimated the decrease in dynamic strain (p ≤0.001, r = -0.90) and the increase in static strain (p = 0.009, r = -0.73) induced by PEEP, while PEEP-induced changes in respiratory and lung mechanics did not. CONCLUSIONS Trendelenburg pneumoperitoneum yields variable derecruitment: PEEP capability to revert these phenomena varies significantly among individuals. High R/I identifies patients in whom higher PEEP mostly reduces dynamic strain with limited static strain increases, potentially allowing individualized settings.
Collapse
Affiliation(s)
- Marco Covotta
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Claroni
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Torregiani
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luca S Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Emanuela Venti
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gaetano Gazzè
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Valentina Ceccarelli
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Pierpaolo Gaglioti
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Sara Orlando
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Tommaso Rosà
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ester Forastiere
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico L Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Mo J, Wang D, Xiao J, Chen Q, An R, Liu HL. Effects of lung protection ventilation strategies on postoperative pulmonary complications after noncardiac surgery: a network meta-analysis of randomized controlled trials. BMC Anesthesiol 2024; 24:346. [PMID: 39342110 PMCID: PMC11437922 DOI: 10.1186/s12871-024-02737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The purpose of this network meta-analysis was to assess the impact of different protective ventilatory strategies on postoperative pulmonary complications (PPCs). METHODS Several databases were searched for randomized controlled trials (RCTs) that were published before October 2023 in a network meta-analysis. We assessed the effect of different lung-protective ventilation strategies on the incidence of PPCs using Bayesian network meta-analysis. RESULTS We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low tidal volumes (LTVs) combined with iPEEP and recruitment manoeuvres (RM) was associated with significantly lower incidence of PPCs [HTVs: OR = 0.38, 95%CrI (0.19, 0.75), LTVs: OR = 0.33, 95%CrI (0.12, 0.82)], postoperative atelectasis[HTVs: OR = 0.2, 95%CrI (0.08, 0.48), LTVs: OR = 0.47, 95%CrI (0.11, 0.93)], and pneumonia[HTVs: OR = 0.22, 95%CrI (0.09, 0.48), LTVs: OR = 0.27, 95%CrI (0.08,0.89)] than was High tidal volumes (HTVs) or LTVs. LTVs combined with medium-to-high PEEP and RM were associated with significantly lower incidence of postoperative atelectasis, and pneumonia. CONCLUSION LTVs combined with iPEEP and RM decreased the incidence of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. Individual PEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence is moderate. TRIAL REGISTRATION PROSPERO identifier CRD42023399485.
Collapse
Affiliation(s)
- Jun Mo
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Dan Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital-Chongqing, Chongqing, 40030, China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qi Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ran An
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Hong Liang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
4
|
Mancilla-Galindo J, Ortiz-Gomez JE, Pérez-Nieto OR, De Jong A, Escarramán-Martínez D, Kammar-García A, Ramírez Mata LC, Díaz AM, Guerrero-Gutiérrez MA. Preoperative Atelectasis in Patients with Obesity Undergoing Bariatric Surgery: A Cross-Sectional Study. Anesth Analg 2024:00000539-990000000-00918. [PMID: 39178161 DOI: 10.1213/ane.0000000000007166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
BACKGROUND Pulmonary atelectasis is present even before surgery in patients with obesity. We aimed to estimate the prevalence and extension of preoperative atelectasis in patients with obesity undergoing bariatric surgery and to determine if variation in preoperative Spo2 values in the seated position at room air is explained by the extent of atelectasis coverage in the supine position. METHODS This was a cross-sectional study in a single center specialized in laparoscopic bariatric surgery. Preoperative chest computed tomographies were reassessed by a senior radiologist to quantify the extent of atelectasis coverage as a percentage of total lung volume. Patients were classified as having atelectasis when the affection was ≥2.5%, to estimate the prevalence of atelectasis. Crude and adjusted prevalence ratios (aPRs) and odds ratios (aORs) were obtained to assess the relative prevalence of atelectasis and percentage coverage, respectively, with increasing obesity category. Inverse probability weighting was used to assess the total, direct (not mediated), and indirect (mediated through atelectasis) effects of body mass index (BMI) on preoperative Spo2, and to quantify the magnitude of mediation (proportion mediated). E-values were calculated, to represent the minimum magnitude of association that an unmeasured confounder with the same directionality of the effect should have to drive the observed point estimates or lower confidence intervals (CIs) to 1, respectively. RESULTS In 236 patients with a median BMI of 40.3 kg/m2 (interquartile range [IQR], 34.6-46.0, range: 30.0-77.3), the overall prevalence of atelectasis was 32.6% (95% CI, 27.0-38.9) and by BMI category: 30 to 35 kg/m2, 12.7% (95% CI, 6.1-24.4); 35 to 40 kg/m2, 28.3% (95% CI, 17.2-42.6); 40 to 45 kg/m2, 12.3% (95% CI, 5.5-24.3); 45 to 50 kg/m2, 48.4% (95% CI, 30.6-66.6); and ≥50 units, 100% (95% CI, 86.7-100). Compared to the 30 to 35 kg/m2 group, only the categories with BMI ≥45 kg/m2 had significantly higher relative prevalence of atelectasis-45 to 50 kg/m2, aPR = 3.52 (95% CI, 1.63-7.61, E-value lower bound: 2.64) and ≥50 kg/m2, aPR = 8.0 (95% CI, 4.22-15.2, E-value lower bound: 7.91)-and higher odds of greater atelectasis percentage coverage: 45-50 kg/m2, aOR = 7.5 (95% CI, 2.7-20.9) and ≥50 kg/m2, aOR = 91.5 (95% CI, 30.0-279.3). Atelectasis percent alone explained 70.2% of the variation in preoperative Spo2. The proportion of the effect of BMI on preoperative Spo2 values <96% mediated through atelectasis was 81.5% (95% CI, 56.0-100). CONCLUSIONS The prevalence and extension of atelectasis increased with higher BMI, being significantly higher at BMI ≥45 kg/m2. Preoperative atelectasis mediated the effect of BMI on Spo2 at room air in the seated position.
Collapse
Affiliation(s)
| | | | | | - Audrey De Jong
- Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, University of Montpellier, Montpellier, France
| | | | - Ashuin Kammar-García
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | - Adriana Mendez Díaz
- Department of Bariatric Anesthesia, Baja Hospital and Medical Center, Tijuana, Mexico
| | | |
Collapse
|
5
|
Lagier D, Zeng C, Kaczka DW, Zhu M, Grogg K, Gerard SE, Reinhardt JM, Ribeiro GCM, Rashid A, Winkler T, Vidal Melo MF. Mechanical ventilation guided by driving pressure optimizes local pulmonary biomechanics in an ovine model. Sci Transl Med 2024; 16:eado1097. [PMID: 39141699 DOI: 10.1126/scitranslmed.ado1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.
Collapse
Affiliation(s)
- David Lagier
- Experimental Interventional Imaging Laboratory (LIIE), European Center for Research in Medical Imaging (CERIMED), Aix Marseille University, Marseille 13005, France
- Department of Anesthesia and Critical Care, University Hospital La Timone, APHM, Marseille 13005, France
| | - Congli Zeng
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - David W Kaczka
- Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Min Zhu
- Guizhou University South Campus, Guiyang City 550025, China
| | - Kira Grogg
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Gabriel C Motta Ribeiro
- Biomedical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-594, Brazil
| | - Azman Rashid
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marcos F Vidal Melo
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
6
|
Chen C, Shang P, Yao Y. Positive end-expiratory pressure and postoperative pulmonary complications in laparoscopic bariatric surgery: systematic review and meta-analysis. BMC Anesthesiol 2024; 24:282. [PMID: 39123102 PMCID: PMC11311921 DOI: 10.1186/s12871-024-02658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND This study compares the effect of positive end-expiratory pressure (PEEP) on postoperative pulmonary complications (PPCs) in patients with obesity undergoing laparoscopic bariatric surgery (LBS) under general anesthesia with mechanical ventilation. METHODS A comprehensive search was conducted in PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Internet, Wanfang database, and Google Scholar for studies published up to July 29, 2023, without time or language restrictions. The search terms included "PEEP," "laparoscopic," and "bariatric surgery." Randomized controlled trials comparing different levels of PEEP or PEEP with zero-PEEP (ZEEP) in patients with obesity undergoing LBS were included. The primary outcome was a composite of PPCs, and the secondary outcomes were intraoperative oxygenation, respiratory compliance, and mean arterial pressure (MAP). A fixed-effect or random-effect model was selected for meta-analysis based on the heterogeneity of the included studies. RESULTS Thirteen randomized controlled trials with a total of 708 participants were included for analysis. No statistically significant difference in PPCs was found between the PEEP and ZEEP groups (risk ratio = 0.27, 95% CI: 0.05-1.60; p = 0.15). However, high PEEP ≥ 10 cm H2O significantly decreased PPCs compared with low PEEP < 10 cm H2O (risk ratio = 0.20, 95% CI: 0.05-0.89; p = 0.03). The included studies showed no significant heterogeneity (I2 = 20% & 0%). Compared with ZEEP, PEEP significantly increased intraoperative oxygenation and respiratory compliance (WMD = 74.97 mm Hg, 95% CI: 41.74-108.21; p < 0.001 & WMD = 9.40 ml cm H2O- 1, 95% CI: 0.65-18.16; p = 0.04). High PEEP significantly improved intraoperative oxygenation and respiratory compliance during pneumoperitoneum compared with low PEEP (WMD = 66.81 mm Hg, 95% CI: 25.85-107.78; p = 0.001 & WMD = 8.03 ml cm H2O- 1, 95% CI: 4.70-11.36; p < 0.001). Importantly, PEEP did not impair hemodynamic status in LBS. CONCLUSIONS In patients with obesity undergoing LBS, high PEEP ≥ 10 cm H2O could decrease PPCs compared with low PEEP < 10 cm H2O, while there was a similar incidence of PPCs between PEEP (8-10 cm H2O) and the ZEEP group. The application of PEEP in ventilation strategies increased intraoperative oxygenation and respiratory compliance without affecting intraoperative MAP. A PEEP of at least 10 cm H2O is recommended to reduce PPCs in patients with obesity undergoing LBS. REGISTRATION NUMBER CRD42023391178 in PROSPERO.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Pingping Shang
- Department of Anesthesiology, the First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Yuntai Yao
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10032, China.
| |
Collapse
|
7
|
Arora L, Sharma S, Carillo JF. Obesity and anesthesia. Curr Opin Anaesthesiol 2024; 37:299-307. [PMID: 38573180 DOI: 10.1097/aco.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Surgical procedures on obese patients are dramatically increasing worldwide over the past few years. In this review, we discuss the physiopathology of predominantly respiratory system in obese patients, the importance of preoperative evaluation, preoxygenation and intraoperative positive end expiratory pressure (PEEP) titration to prevent pulmonary complications and the optimization of airway management and oxygenation to reduce or prevent postoperative respiratory complications. RECENT FINDINGS Many patients are coming to preoperative clinic with medication history of glucagon-like-peptide 1 agonists ( GLP-1) agonists and it has raised many questions regarding Nil Per Os (NPO)/perioperative fasting guidelines due to delayed gastric emptying caused by these medications. American Society of Anesthesiologists (ASA) has come up with guiding document to help with such situations. Ambulatory surgery centers are doing more obesity cases in a safe manner which were deemed unsafe at one point . Quantitative train of four (TOF) monitoring, better neuromuscular reversal agents and gastric ultrasounds seemed to have made a significant impact in the care of obese patients in the perioperative period. SUMMARY Obese patients are at higher risk of perioperative complications, mainly associated with those related to the respiratory function. An appropriate preoperative evaluation, intraoperative management, and postoperative support and monitoring is essential to improve outcome and increase the safety of the surgical procedure.
Collapse
Affiliation(s)
- Lovkesh Arora
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | | |
Collapse
|
8
|
Xavier TB, Coelho LV, Ferreira DAL, Cota y Raposeiras JM, Duran MS, Silva LA, da Motta-Ribeiro GC, Camilo LM, Carvalho ARS, Silva PL. Individualized positive end-expiratory pressure reduces driving pressure in obese patients during laparoscopic surgery under pneumoperitoneum: a randomized clinical trial. Front Physiol 2024; 15:1383167. [PMID: 38645690 PMCID: PMC11026699 DOI: 10.3389/fphys.2024.1383167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction During pneumoperitoneum (PNP), airway driving pressure (ΔPRS) increases due to the stiffness of the chest wall and cephalic shift of the diaphragm, which favors atelectasis. In addition, depending on the mechanical power (MP) formulas, they may lead to different interpretations. Methods Patients >18 years of age with body mass index >35 kg/m2 were included in a single-center randomized controlled trial during their admission for bariatric surgery by abdominal laparoscopy. Intra-abdominal pressure was set at 15 mmHg at the pneumoperitoneum time point (PNP). After the recruitment maneuver, the lowest respiratory system elastance (ERS) was detected during the positive end-expiratory pressure (PEEP) step-wise decrement. Patients were randomized to the 1) CTRL group: ventilated with PEEP of 5 cmH2O and 2) PEEPIND group: ventilated with PEEP value associated with ERS that is 5% higher than its lowest level. Respiratory system mechanics and mean arterial pressure (MAP) were assessed at the PNP, 5 min after randomization (T1), and at the end of the ventilation protocol (T2); arterial blood gas was assessed at PNP and T2. ΔPRS was the primary outcome. Three MP formulas were used: MPA, which computes static PEEP × volume, elastic, and resistive components; MPB, which computes only the elastic component; and MPC, which computes static PEEP × volume, elastic, and resistive components without inspiratory holds. Results Twenty-eight patients were assessed for eligibility: eight were not included and 20 patients were randomized and allocated to CTRL and PEEPIND groups (n = 10/group). The PEEPIND ventilator strategy reduced ΔPRS when compared with the CTRL group (PEEPIND, 13 ± 2 cmH2O; CTRL, 22 ± 4 cmH2O; p < 0.001). Oxygenation improved in the PEEPIND group when compared with the CTRL group (p = 0.029), whereas MAP was comparable between the PEEPIND and CTRL groups. At the end of surgery, MPA and MPB were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). At the end of the surgery, MPA and MPC were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). Conclusion Individualized PEEP was associated with a reduction in ΔPRS and an improvement in oxygenation with comparable MAP. The MP, which solely computes the elastic component, better reflected the improvement in ΔPRS observed in the individualized PEEP group. Clinical Trial Registration The protocol was registered at the Brazilian Registry of Clinical Trials (U1111-1220-7296).
Collapse
Affiliation(s)
- Tiago Batista Xavier
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Leticia Almeida Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luciana Moisés Camilo
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Menga LS, Subirà C, Wong A, Sousa M, Brochard LJ. Setting positive end-expiratory pressure: does the 'best compliance' concept really work? Curr Opin Crit Care 2024; 30:20-27. [PMID: 38085857 DOI: 10.1097/mcc.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Determining the optimal positive end-expiratory pressure (PEEP) setting remains a central yet debated issue in the management of acute respiratory distress syndrome (ARDS).The 'best compliance' strategy set the PEEP to coincide with the peak respiratory system compliance (or 2 cmH 2 O higher) during a decremental PEEP trial, but evidence is conflicting. RECENT FINDINGS The physiological rationale that best compliance is always representative of functional residual capacity and recruitment has raised serious concerns about its efficacy and safety, due to its association with increased 28-day all-cause mortality in a randomized clinical trial in ARDS patients.Moreover, compliance measurement was shown to underestimate the effects of overdistension, and neglect intra-tidal recruitment, airway closure, and the interaction between lung and chest wall mechanics, especially in obese patients. In response to these concerns, alternative approaches such as recruitment-to-inflation ratio, the nitrogen wash-in/wash-out technique, and electrical impedance tomography (EIT) are gaining attention to assess recruitment and overdistention more reliably and precisely. SUMMARY The traditional 'best compliance' strategy for determining optimal PEEP settings in ARDS carries risks and overlooks some key physiological aspects. The advent of new technologies and methods presents more reliable strategies to assess recruitment and overdistention, facilitating personalized approaches to PEEP optimization.
Collapse
Affiliation(s)
- Luca S Menga
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Anesthesiology and Intensive Care Medicine
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Anesthesia, Emergency and Intensive Care Medicine, Roma, Italy
| | - Carles Subirà
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid
- Critical Care Department, Althaia Xarxa Assistencial Universitària de Manresa, IRIS Research Institute, Manresa, Spain
- Grup de Recerca de Malalt Crític (GMC). Institut de Recerca Biomèdica Catalunya Central IRIS-CC
| | - Alfred Wong
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Mayson Sousa
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Laurent J Brochard
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Esposito T, Fregonese M, Morettini G, Carboni P, Tardioli C, Messina A, Vaschetto R, Della Corte F, Vetrugno L, Navalesi P, De Robertis E, Azzolina D, Piriyapatsom A, Tucci MR, Wrigge H, Simon P, Bignami E, Maggiore SM, Simonte R, Cammarota G. Intraoperative individualization of positive-end-expiratory pressure through electrical impedance tomography or esophageal pressure assessment: a systematic review and meta-analysis of randomized controlled trials. J Clin Monit Comput 2024; 38:89-100. [PMID: 37863862 DOI: 10.1007/s10877-023-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER CRD 42021218306, 30/01/2023.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Martina Fregonese
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Giulio Morettini
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paloma Carboni
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Cecilia Tardioli
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Department of Medicine, Università degli Studi Di Padova, Padova, Italy
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Danila Azzolina
- Department of Ambiental Science and Prevention, Università degli Studi di Ferrara, Ferrara, Italy
| | - Annop Piriyapatsom
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mauro R Tucci
- Service of Pneumology, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hermann Wrigge
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital, Halle, Germany
- Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Simon
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Anesthesiology and Operative Intensive Care, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Rachele Simonte
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Gianmaria Cammarota
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.
- Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|