1
|
Torres DB, Lopes A, Rodrigues AJ, Lopes MG, Ventura-Silva AP, Sousa N, Gontijo JAR, Boer PA. Gestational protein restriction alters early amygdala neurochemistry in male offspring. Nutr Neurosci 2023; 26:1103-1119. [PMID: 36331123 DOI: 10.1080/1028415x.2022.2131064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gestational protein intake restriction-induced long-lasting harmful outcomes in the offspring's organs and systems. However, few studies have focused on this event's impact on the brain's structures and neurochemical compounds. AIM The present study investigated the effects on the amygdala neurochemical composition and neuronal structure in gestational protein-restricted male rats' offspring. METHODS Dams were maintained on isocaloric standard rodent laboratory chow with regular protein [NP, 17%] or low protein content [LP, 6%]. Total cells were quantified using the Isotropic fractionator method, Neuronal 3D reconstruction, and dendritic tree analysis using the Golgi-Cox technique. Western blot and high-performance liquid chromatography performed neurochemical studies. RESULTS The gestational low-protein feeding offspring showed a significant decrease in birth weight up to day 14, associated with unaltered brain weight in youth or adult progenies. The amygdala cell numbers were unchanged, and the dendrites length and dendritic ramifications 3D analysis in LP compared to age-matched NP progeny. However, the current study shows reduced amygdala content of norepinephrine, epinephrine, and dopamine in LP progeny. These offspring observed a significant reduction in the amygdala glucocorticoid (GR) and mineralocorticoid (MR) receptor protein levels. Also corticotrophin-releasing factor (CRF) amygdala protein content was reduced in 7 and 14-day-old LP rats. CONCLUSION The observed amygdala neurochemical changes may represent adaptation during embryonic development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition stress can alter the amygdala's neurochemical content and may contribute to known behavioral changes induced by gestational protein restriction.
Collapse
Affiliation(s)
- Daniele B Torres
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Agnes Lopes
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Ana J Rodrigues
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marcelo G Lopes
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Ana P Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - José A R Gontijo
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Patricia A Boer
- Fetal Programming and Hydro-electrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
2
|
Navalón P, Campos-Berga L, Buesa J, Lizarán M, Ghosn F, Almansa B, Moreno-Giménez A, Vento M, Diago V, García-Blanco A. Rescue doses of antenatal corticosteroids, children's neurodevelopment, and salivary cortisol after a threatened preterm labor: a 30-month follow-up study. Am J Obstet Gynecol MFM 2023; 5:100918. [PMID: 36882125 DOI: 10.1016/j.ajogmf.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Antenatal corticosteroids reduce neonatal complications when administered to women at risk for preterm birth. Moreover, antenatal corticosteroid rescue doses are recommended for women who remain at risk after the initial course. However, there is controversy about the most appropriate frequency and the exact timing of administering additional antenatal corticosteroid doses because there are potential long-term negative effects on infants' neurodevelopment and physiological stress functioning. OBJECTIVE This study aimed to (1) to assess the long-term neurodevelopmental effects of receiving antenatal corticosteroid rescue doses in comparison with receiving only the initial course; (2) to measure the cortisol levels of infants of mothers who received antenatal corticosteroid rescue doses; (3) to examine a potential dose-response effect of the number of antenatal corticosteroid rescue doses on children's neurodevelopment and salivary cortisol. STUDY DESIGN This study followed 110 mother-infant pairs who underwent a spontaneous episode of threatened preterm labor until the children were 30 months old, regardless of their gestational age at birth. Among the participants, 61 received only the initial course of corticosteroids (no rescue dose group), and 49 participants required at least one rescue dose of corticosteroids (rescue doses group). The follow-up was carried out at 3 different times, namely at threatened preterm labor diagnosis (T1), when the children were 6 months of age (T2), and when the children were 30 months of corrected age for prematurity (T3). Neurodevelopment was assessed using the Ages & Stages Questionnaires, Third Edition. Saliva samples were collected for cortisol level determination. RESULTS First, the rescue doses group showed lower problem-solving skills at 30 months of age than the no rescue doses group. Second, the rescue doses group demonstrated higher salivary cortisol levels at 30 months of age. Third, a dose-response effect was found that indicated that the more rescue doses the rescue doses group received, the lower the problem-solving skills and the higher the salivary cortisol levels at 30 months of age. CONCLUSION Our findings reinforce the hypothesis that additional antenatal corticosteroid doses provided after the initial course may have long-term effects on the neurodevelopment and glucocorticoid metabolism of the offspring. In this regard, the results raise concerns about the negative effects of repeated doses of antenatal corticosteroids in addition to a full course. Further studies are necessary to confirm this hypothesis to help physicians reassess the standard antenatal corticosteroid treatment regimens.
Collapse
Affiliation(s)
- Pablo Navalón
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Division of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain (Drs Navalón, Campos-Berga, Buesa, and García-Blanco)
| | - Laura Campos-Berga
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Division of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain (Drs Navalón, Campos-Berga, Buesa, and García-Blanco)
| | - Julia Buesa
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Division of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain (Drs Navalón, Campos-Berga, Buesa, and García-Blanco)
| | - Marta Lizarán
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Department of Personality, Evaluation, and Psychological Treatments, Faculty of Psychology, University of Valencia, Valencia, Spain (Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez and Dr García-Blanco)
| | - Farah Ghosn
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Department of Personality, Evaluation, and Psychological Treatments, Faculty of Psychology, University of Valencia, Valencia, Spain (Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez and Dr García-Blanco)
| | - Belén Almansa
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Department of Personality, Evaluation, and Psychological Treatments, Faculty of Psychology, University of Valencia, Valencia, Spain (Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez and Dr García-Blanco)
| | - Alba Moreno-Giménez
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Department of Personality, Evaluation, and Psychological Treatments, Faculty of Psychology, University of Valencia, Valencia, Spain (Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez and Dr García-Blanco)
| | - Máximo Vento
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Division of Neonatology, La Fe University and Polytechnic Hospital, Valencia, Spain (Dr Vento)
| | - Vicente Diago
- Division of Obstetrics and Gynecology, La Fe University and Polytechnic Hospital, Valencia, Spain (Dr Diago)
| | - Ana García-Blanco
- Neonatal Research Group, La Fe Health Research Institute, Valencia, Spain (Drs Navalón, Campos-Berga, and Buesa, Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez, and Drs Vento and García-Blanco); Division of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain (Drs Navalón, Campos-Berga, Buesa, and García-Blanco); Department of Personality, Evaluation, and Psychological Treatments, Faculty of Psychology, University of Valencia, Valencia, Spain (Mses Lizarán, Ghosn, Almansa, and Moreno-Giménez and Dr García-Blanco).
| |
Collapse
|
3
|
Gómez-Pinedo U, Matías-Guiu JA, Ojeda-Hernandez D, de la Fuente-Martin S, Kamal OMF, Benito-Martin MS, Selma-Calvo B, Montero-Escribano P, Matías-Guiu J. In Vitro Effects of Methylprednisolone over Oligodendroglial Cells: Foresight to Future Cell Therapies. Cells 2023; 12:1515. [PMID: 37296635 PMCID: PMC10252523 DOI: 10.3390/cells12111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established. There is controversy around whether these cells may be implanted simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This study assesses the influence of corticosteroids on the capacity for proliferation and differentiation and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of cell transplantation.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Denise Ojeda-Hernandez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Sarah de la Fuente-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Ola Mohamed-Fathy Kamal
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Maria Soledad Benito-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Belen Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| |
Collapse
|
4
|
Lauterbach R, Bachar G, Justman N, Siegler Y, Khatib N, Weiner Z, Vitner D. Is 25 mm the correct mid-trimester cut-off for cervical shortening among asymptomatic women? Int J Gynaecol Obstet 2023; 161:218-224. [PMID: 35962710 DOI: 10.1002/ijgo.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To evaluate the impact of asymptomatic cervical shortening (ACS) at mid-trimester on maternal and neonatal outcomes. METHODS This was a retrospective cohort study. Women with singleton gestations and an accidental finding of cervical length of 25 mm or less at mid-trimester were compared with women with symptomatic cervical shortening (SCS) and women with normal cervical length (NCL). Primary outcome was preterm birth (PTB) rate; secondary outcomes included total hospitalization length, betamethasone treatment rate, and a composite of PTB neonatal outcomes. RESULTS In all, 1483 women were diagnosed with ACS. There was no difference in early and late PTB rate between the ACS and NCL groups (4.9% versus 3.8%, P = 0.25), though there was a significantly higher rate of antenatal corticosteroids use in the ACS group (78.2% versus 7.4%, P < 0.001). A CL of 15 mm or less was significantly associated with both early and late PTB, compared with the NCL group (47.2% versus 3.6%, P < 0.001, and 35.8% versus 3.8%, P < 0.001). CONCLUSIONS An ACS of 15-25 mm is not associated with an increased risk of PTB. In contrast, women with a CL of 15 mm or less are more likely to delivery prematurely compared with women with a CL greater than 15 mm.
Collapse
Affiliation(s)
- Roy Lauterbach
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Gal Bachar
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Naphtali Justman
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Yoav Siegler
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana Vitner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Berry KJ, Chandran U, Mu F, Deochand DK, Lei T, Pagin M, Nicolis SK, Monaghan-Nichols AP, Rogatsky I, DeFranco DB. Genomic glucocorticoid action in embryonic mouse neural stem cells. Mol Cell Endocrinol 2023; 563:111864. [PMID: 36690169 PMCID: PMC10057471 DOI: 10.1016/j.mce.2023.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Prenatal exposure to synthetic glucocorticoids (sGCs) reprograms brain development and predisposes the developing fetus towards potential adverse neurodevelopmental outcomes. Using a mouse model of sGC administration, previous studies show that these changes are accompanied by sexually dimorphic alterations in the transcriptome of neural stem and progenitor cells (NSPCs) derived from the embryonic telencephalon. Because cell type-specific gene expression profiles tightly regulate cell fate decisions and are controlled by a flexible landscape of chromatin domains upon which transcription factors and enhancer elements act, we multiplexed data from four genome-wide assays: RNA-seq, ATAC-seq (assay for transposase accessible chromatin followed by genome wide sequencing), dual cross-linking ChIP-seq (chromatin immunoprecipitation followed by genome wide sequencing), and microarray gene expression to identify novel relationships between gene regulation, chromatin structure, and genomic glucocorticoid receptor (GR) action in NSPCs. These data reveal that GR binds preferentially to predetermined regions of accessible chromatin to influence gene programming and cell fate decisions. In addition, we identify SOX2 as a transcription factor that impacts the genomic response of select GR target genes to sGCs (i.e., dexamethasone) in NSPCs.
Collapse
Affiliation(s)
- Kimberly J Berry
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fangping Mu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, USA
| | - T Lei
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University Milano-Bicocca, 20126, Milano, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University Milano-Bicocca, 20126, Milano, Italy
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, USA
| | - Donald B DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Chawanpaiboon S, Pooliam J, Chuchotiros M. A case-control study on the effects of incomplete, one, and more than one dexamethasone course on acute respiratory problems in preterm neonates born between 28 0 and 36 6 weeks of gestation. BMC Pregnancy Childbirth 2022; 22:880. [PMID: 36443697 PMCID: PMC9703789 DOI: 10.1186/s12884-022-05209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To compare the effects of an incomplete course and more than 1 course of dexamethasone, relative to a control of a single complete course, on foetal respiratory problems and other adverse outcomes of preterm birth. METHODS This was a retrospective chart review of 1800 women with preterm delivery. Data were collected on newborns whose mothers administered 1 full course of dexamethasone (916/1800; 50.9%), a partial course (716/1800; 39.8%) and more than 1 course (168/1800; 9.3%). Demographic data and adverse maternal and neonatal outcomes were recorded. RESULTS Preterm singleton newborns whose mothers received several steroid hormone courses were significantly more likely to have adverse outcomes than newborns of mothers given 1 course. The negative outcomes were the need for positive pressure ventilation ([aOR] 1.831; 95% CI, (1.185,2.829); P = 0.019), ventilator support ([aOR] 1.843; 95% CI, (1.187,2.861); P = 0.011), and phototherapy ([aOR] 1.997; 95% CI, (1.378,2.895); P < 0.001), transient tachypnoea of the newborn ([aOR] 1.801; 95% CI, (1.261,2.571); P = 0.002), intraventricular haemorrhage ([aOR] 2.215; 95% CI, (1.159, 4.233); P = 0.027), sepsis ([aOR] 1.737; 95% CI, (1.086, 2.777); P = 0.007), and admission to neonatal intensive care ([aOR] 1.822; 95% CI, (1.275,2.604); P = 0.001). In the group of very preterm infants, newborns of mothers administered an incomplete course had developed respiratory distress syndrome (RDS) ([aOR] 3.177; 95% CI, (1.485, 6.795); P = 0.006) and used ventilatory support ([aOR] 3.565; 95% CI, (1.912, 6.650); P < 0.001) more than those of mothers receiving a single course. CONCLUSIONS Preterm singleton newborns whose mothers were given multiple courses of dexamethasone had an increased incidence of RDS and other adverse outcomes than those of mothers receiving a full course. However, very preterm newborns whose mothers were administered 1 full dexamethasone course had a significantly lower incidence of RDS than those whose mothers were given partial courses.
Collapse
Affiliation(s)
- Saifon Chawanpaiboon
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Julaporn Pooliam
- Clinical Epidemiological Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Monsak Chuchotiros
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
7
|
van der Merwe J, van der Veeken L, Inversetti A, Galgano A, Valenzuela I, Salaets T, Ferraris S, Vercauteren T, Toelen J, Deprest J. Neurocognitive sequelae of antenatal corticosteroids in a late preterm rabbit model. Am J Obstet Gynecol 2022; 226:850.e1-850.e21. [PMID: 34875248 DOI: 10.1016/j.ajog.2021.11.1370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Late preterm birth is associated with short-term respiratory and adaptive problems. Although antenatal corticosteroids seem to reduce the respiratory burden, this may come at the cost of adverse neuropsychological outcomes later in life. This impact has not been investigated. OBJECTIVE Herein, we investigate what the short- and long-term neurodevelopmental effects of a single course of betamethasone in simulated late preterm birth. STUDY DESIGN Time-mated pregnant does received 0.1 mg/kg betamethasone (n=8) or 1 mL saline intramuscular (n=6) at the postconceptional ages of 28 and 29 days. The antenatal corticosteroid dose and scheme were based on previous studies and were comparable with routine clinical use. Cesarean delivery was done on postconceptional age 30 days (term=31 days), and new-born rabbits were foster-cared for 28 days and were thereafter cared for in group housing. Neonatal lung function testing and short-term neurobehavioral testing was done. Open field, spontaneous alternation, and novel object recognition tests were subsequently performed at 4 and 8 weeks of age. On postnatal day 1 and at 8 weeks, a subgroup was euthanized and transcardially perfuse fixated. Ex vivo high-resolution Magnetic Resonance Imaging was used to calculate the Diffusion Tensor Imaging-derived fractional anisotropy and mean diffusivity. Fixated brains underwent processing and were serial sectioned, and a set of 3 coronal sections underwent anti-NeuN, Ki67, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS Antenatal corticosteroid exposure was associated with improved neonatal lung function, yet resulted in a long-term growth deficit that coincided with a persistent neurobehavioral deficit. We demonstrated lower neonatal motor scores; a persistent anxious behavior in the open field test with more displacements, running, and self-grooming episodes; persistent lower alternation scores in the T-Maze test; and lower discriminatory indexes in the novel object recognition. On neuropathological assessment, antenatal corticosteroid exposure was observed to result in a persistent lower neuron density and fewer Ki67+ cells, particularly in the hippocampus and the corpus callosum. This coincided with lower diffusion tensor imaging-derived fractional anisotropy scores in the same key regions. CONCLUSION Clinical equivalent antenatal corticosteroid exposure in this late preterm rabbit model resulted in improved neonatal lung function. However, it compromised neonatal and long-term neurocognition.
Collapse
Affiliation(s)
- Johannes van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Lennart van der Veeken
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Annalisa Inversetti
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium
| | - Angela Galgano
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium
| | - Ignacio Valenzuela
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium
| | - Thomas Salaets
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; Division Woman and Child, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sebastiano Ferraris
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tom Vercauteren
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; Division Woman and Child, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Belgium; Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Institute for Women's Health, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Kozik V, Schwab M, Thiel S, Hellwig K, Rakers F, Dreiling M. Protocol for a Cross-Sectional Study: Effects of a Multiple Sclerosis Relapse Therapy With Methylprednisolone on Offspring Neurocognitive Development and Behavior (MS-Children). Front Neurol 2022; 13:830057. [PMID: 35557615 PMCID: PMC9087857 DOI: 10.3389/fneur.2022.830057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Multiple Sclerosis (MS) is the most common neuroimmunological disease in women of childbearing age. Current MS therapy consists of immunomodulatory relapse prevention with disease-modifying therapies (DMTs) and acute relapse therapy with the synthetic glucocorticoid (GC) methylprednisolone (MP). As most DMTs are not approved for use during pregnancy, treatment is usually discontinued, increasing the risk for relapses. While MP therapy during pregnancy is considered relatively save for the fetus, it may be detrimental for later cognitive and neuropsychiatric function. The underlying mechanism is thought to be an epigenetically mediated desensitization of GC receptors, the subsequent increase in stress sensitivity, and a GC-mediated impairment of brain development. The aim of this study is to investigate the associations of fetal MP exposure in the context of MS relapse therapy with later cognitive function, brain development, stress sensitivity, and behavior. Methods and Analysis Eighty children aged 8–18 years of mothers with MS will be recruited. Forty children, exposed to GC in utero will be compared to 40 children without fetal GC exposure. The intelligence quotient will serve as primary outcome. Secondary outcomes will include attention, motor development, emotional excitability, Attention-Deficit Hyperactivity Disorder-related symptoms, and behavioral difficulties. The Trier Social Stress Test will test stress sensitivity, EEG and MRI will assess functional and structural brain development. To determine underlying mechanisms, DNA methylation of the GC receptor gene and the H19/IGF2 locus and changes in the microbiome and the metabolome will be investigated. Primary and secondary outcomes will be analyzed using linear regression models. Time-variant outcomes of the stress test will be analyzed in two mixed linear models exploring overall activity and change from baseline. Ethics and Dissemination This study was approved by the participating institutions' ethics committees and results will be presented in accordance with the STROBE 2007 Statement. Trial Registration https://clinicaltrials.gov/ct2/show/NCT04832269?id=ZKSJ0130
Collapse
Affiliation(s)
- Valeska Kozik
- Department of Neurology, Jena University Hospital, Jena, Germany
- *Correspondence: Valeska Kozik
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sandra Thiel
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Florian Rakers
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
9
|
Lengel D, Romm ZL, Bostwick AL, Huh JW, Snyder NW, Smith G, Raghupathi R. Glucocorticoid Receptor Overexpression in the Dorsal Hippocampus Attenuates Spatial Learning and Synaptic Plasticity Deficits Following Pediatric Traumatic Brain Injury. J Neurotrauma 2022; 39:979-998. [PMID: 35293260 DOI: 10.1089/neu.2022.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) in children younger than 4 years old leads to long-term deficits in cognitive and learning abilities that can persist or even worsen as children age into adolescence. In this study, the role of glucocorticoid receptor (GR) function in the dorsal hippocampus (DH) in hippocampal-dependent cognitive function and synaptic plasticity were assessed following injury to the 11-day-old rat. Brain injury produced significant impairments in spatial learning and memory in the Morris water maze in male and female rats at 1-month post-injury (adolescence) which was accompanied by impairments in induction and maintenance of long-term potentiation (LTP) in the CA1 region of the DH. Brain injury resulted in a significant decrease in the expression of the glucocorticoid-inducible gene, serum- and glucocorticoid-kinase 1 (sgk1), suggestive of an impairment in GR transcriptional activity within the hippocampus. Lentiviral transfection of the human GR (hGR) in the DH improved spatial learning and memory in the Morris water maze and attenuated LTP deficits following TBI. GR overexpression in the DH was also associated with a significant increase in the mRNA expression levels of sgk1, and the glutamate receptor subunits GluA1 and GluA2 within the hippocampus. Overall, these findings support an important role of dorsal hippocampal GR function in learning and memory deficits following pediatric TBI and suggest that these effects may be related to the regulation of glutamate receptor subunit expression in the DH.
Collapse
Affiliation(s)
- Dana Lengel
- Drexel University College of Medicine, 12312, Philadelphia, Pennsylvania, United States.,Mount Sinai School of Medicine, 5925, Neuroscience, New York, New York, United States;
| | - Zoe L Romm
- Drexel University College of Medicine, 12312, Neurobiology and Anatomy, Philadelphia, Pennsylvania, United States;
| | - Anna L Bostwick
- Temple University, 6558, Microbiology and Immunology, Philadelphia, Pennsylvania, United States;
| | - Jimmy W Huh
- Childrens Hospital of Philadelphia, Anesthesiology and Critical Care, Critical Care Office-7C26, 34th Street & Civic Center Blvd., Philadelphia, Pennsylvania, United States, 19104;
| | - Nathaniel W Snyder
- Temple University, 6558, Microbiology and Immunology, Philadelphia, Pennsylvania, United States;
| | - George Smith
- Temple University, 6558, Pediatric Research Center, Philadelphia, Pennsylvania, United States;
| | - Ramesh Raghupathi
- Drexel University, 6527, Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, Philadelphia, Pennsylvania, United States, 19104-2816;
| |
Collapse
|
10
|
Dennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, Haswell CC, Averill CL, Baugh LA, Bomyea J, Bruce SE, Cha J, Choi K, Davenport ND, Densmore M, du Plessis S, Forster GL, Frijling JL, Gonenc A, Gruber S, Grupe DW, Guenette JP, Hayes J, Hofmann D, Ipser J, Jovanovic T, Kelly S, Kennis M, Kinzel P, Koch SBJ, Koerte I, Koopowitz S, Korgaonkar M, Krystal J, Lebois LAM, Li G, Magnotta VA, Manthey A, May GJ, Menefee DS, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Doherty D, Peverill M, Ressler KJ, Roos A, Sheridan MA, Sierk A, Simmons A, Simons RM, Simons JS, Stevens J, Suarez-Jimenez B, Sullivan DR, Théberge J, Tran JK, van den Heuvel L, van der Werff SJA, van Rooij SJH, van Zuiden M, Velez C, Verfaellie M, Vermeiren RRJM, Wade BSC, Wager T, Walter H, Winternitz S, Wolff J, York G, Zhu Y, Zhu X, Abdallah CG, Bryant R, Daniels JK, Davidson RJ, Fercho KA, Franz C, Geuze E, Gordon EM, Kaufman ML, Kremen WS, Lagopoulos J, Lanius RA, Lyons MJ, McCauley SR, McGlinchey R, McLaughlin KA, Milberg W, Neria Y, Olff M, Seedat S, Shenton M, Sponheim SR, Stein DJ, Stein MB, Straube T, Tate DF, van der Wee NJA, Veltman DJ, Wang L, Wilde EA, Thompson PM, Kochunov P, Jahanshad N, Morey RA. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Mol Psychiatry 2021; 26:4315-4330. [PMID: 31857689 PMCID: PMC7302988 DOI: 10.1038/s41380-019-0631-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.
Collapse
Affiliation(s)
- Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
- Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, CA, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Mark Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emily K Clarke
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Christopher L Averill
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Jessica Bomyea
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kyle Choi
- Health Services Research Center, University of California, San Diego, CA, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Staci Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jasmeet Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Ipser
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sinead Kelly
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mitzy Kennis
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sheri Koopowitz
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - John Krystal
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gen Li
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Geoff J May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, Bryan, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Deleene S Menefee
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- South Central MIRECC, Houston, TX, USA
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Richard W J Neufeld
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychology, University of British Columbia, Okanagan, BC, Canada
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Annerine Roos
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Margaret A Sheridan
- Department of Psychology and Brain Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anika Sierk
- University Medical Centre Charite, Berlin, Germany
| | - Alan Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | | | - Steven J A van der Werff
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen Velez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Mieke Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | | | - Benjamin S C Wade
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Jonathan Wolff
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gerald York
- Joint Trauma System, 3698 Chambers Pass, Joint Base San Antonio, Fort Sam Houston, TX, USA
- Alaska Radiology Associates, Anchorage, AK, USA
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Chadi G Abdallah
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Carol Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - William S Kremen
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Jim Lagopoulos
- University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Stephen R McCauley
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Regina McGlinchey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | | | - William Milberg
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Soraya Seedat
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Martha Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Dan J Stein
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Nic J A van der Wee
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| |
Collapse
|
11
|
Bottari SA, Lamb DG, Murphy AJ, Porges EC, Rieke JD, Harciarek M, Datta S, Williamson JB. Hyperarousal symptoms and decreased right hemispheric frontolimbic white matter integrity predict poorer sleep quality in combat-exposed veterans. Brain Inj 2021; 35:922-933. [PMID: 34053386 DOI: 10.1080/02699052.2021.1927186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Disrupted sleep is common following combat deployment. Contributors to risk include posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI); however, the mechanisms linking PTSD, mTBI, and sleep are unclear. Both PTSD and mTBI affect frontolimbic white matter tracts, such as the uncinate fasciculus. The current study examined the relationship between PTSD symptom presentation, lateralized uncinate fasciculus integrity, and sleep quality. METHOD Participants include 42 combat veterans with and without PTSD and mTBI. Freesurfer and Tracula were used to establish specific white matter ROI integrity via 3-T MRI. The Pittsburgh Sleep Quality Index and PTSD Checklist were used to assess sleep quality and PTSD symptoms. RESULTS Decreased fractional anisotropy in the right uncinate fasciculus (β = -1.11, SE = 0.47, p < .05) and increased hyperarousal symptom severity (β = 3.50, SE = 0.86, p < .001) were associated with poorer sleep quality. CONCLUSION Both right uncinate integrity and hyperarousal symptom severity are associated withsleep quality in combat veterans. The right uncinate is a key regulator of limbic behavior and sympathetic nervous system reactivity, a core component of hyperarousal. Damage to this pathway may be one mechanism by which mTBI and/or PTSD could create vulnerability for sleep problems following combat deployment.
Collapse
Affiliation(s)
- Sarah A Bottari
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Damon G Lamb
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Aidan J Murphy
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake D Rieke
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Michał Harciarek
- Department of Social Sciences, Division of Clinical Psychology and Neuropsychology, Institute of Psychology, University of Gdansk, Gdansk, Poland
| | - Somnath Datta
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - John B Williamson
- Center for OCD, Anxiety, and Related Disorders, Department of Psychiatry, University of Florida, Gainesville, Florida, USA.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, USA.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Antenatal corticosteroids for impending late preterm (34-36+6 weeks) deliveries-A systematic review and meta-analysis of RCTs. PLoS One 2021; 16:e0248774. [PMID: 33750966 PMCID: PMC7984612 DOI: 10.1371/journal.pone.0248774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Background Administration of antenatal corticosteroids (ANC) for impending preterm delivery beyond 34 weeks of gestation continues to be a controversial issue despite various guidelines for obstetricians and gynaecologists. Objective To compare outcomes following exposure to ANC for infants born between 34–36+6 weeks’ gestation. Methods A systematic review of randomised controlled trials (RCT) reporting neonatal outcomes after ANC exposure between 34–36+6 weeks’ gestation using Cochrane methodology. Databases including PubMed, Embase, Emcare, Cochrane Central library and Google Scholar were searched in May 2020. Primary outcomes: (1) Need for respiratory support (Mechanical ventilation, CPAP, high flow) or oxygen (2) Hypoglycemia. Secondary outcomes included respiratory distress syndrome (RDS), transient tachypnoea of newborn (TTN), need for neonatal resuscitation at birth [only in the delivery room immediately after birth (not in neonatal intensive care unit (NICU)], admission to NICU, mortality and developmental follow up. Level of evidence (LOE) was summarised by GRADE guidelines. Main results Seven RCTs (N = 4144) with low to high risk of bias were included. Only one RCT was from high income countries, Meta-analysis (random-effects model) showed (1) reduced need for respiratory support [5 RCTs (N = 3844); RR = 0.68 (0.47–0.98), p = 0.04; I2 = 55%; LOE: Moderate] and (2) higher risk of neonatal hypoglycaemia [4 RCTs (N = 3604); RR = 1.61(1.38–1.87), p<0.00001; I2 = 0%; LOE: High] after ANC exposure. Neonates exposed to ANC had reduced need for resuscitation at birth. The incidence of RDS, TTN and surfactant therapy did not differ significantly. None of the included studies reported long-term developmental follow up. Conclusions Moderate quality evidence indicates that ANC exposure reduced need for respiratory support, and increased the risk of hypoglycaemia in late preterm neonates. Large definitive trials with adequate follow up for neurodevelopmental outcomes are required to assess benefits and risks of ANC in this population.
Collapse
|
13
|
Mancino DN, Leicaj ML, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF, Garay LI. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J Steroid Biochem Mol Biol 2021; 207:105820. [PMID: 33465418 DOI: 10.1016/j.jsbmb.2021.105820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3β-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRβ, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.
Collapse
Affiliation(s)
- Dalila Nj Mancino
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - María Luz Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
14
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
15
|
Hutcheon JA, Harper S, Liauw J, Skoll MA, Srour M, Strumpf EC. Antenatal corticosteroid administration and early school age child development: A regression discontinuity study in British Columbia, Canada. PLoS Med 2020; 17:e1003435. [PMID: 33284805 PMCID: PMC7721186 DOI: 10.1371/journal.pmed.1003435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/23/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There are growing concerns that antenatal corticosteroid administration may harm children's neurodevelopment. We investigated the safety of antenatal corticosteroid administration practices for children's overall developmental health (skills and behaviors) at early school age. METHODS AND FINDINGS We linked population health and education databases from British Columbia (BC), Canada to identify a cohort of births admitted to hospital between 31 weeks, 0 days gestation (31+0 weeks), and 36+6 weeks, 2000 to 2013, with routine early school age child development testing. We used a regression discontinuity design to compare outcomes of infants admitted just before and just after the clinical threshold for corticosteroid administration of 34+0 weeks. We estimated the median difference in the overall Early Development Instrument (EDI) score and EDI subdomain scores, as well as risk differences (RDs) for special needs designation and developmental vulnerability (<10th percentile on 2 or more subdomains). The cohort included 5,562 births admitted between 31+0 and 36+6 weeks, with a median EDI score of 40/50. We found no evidence that antenatal corticosteroid administration practices were linked with altered child development at early school age: median EDI score difference of -0.5 [95% CI: -2.2 to 1.7] (p = 0.65), RD per 100 births for special needs designation -0.5 [-4.2 to 3.1] (p = 0.96) and for developmental vulnerability of 3.9 [95% CI:-2.2 to 10.0] (p = 0.24). A limitation of our study is that the regression discontinuity design estimates the effect of antenatal corticosteroid administration at the gestational age of the discontinuity, 34 + 0 weeks, so our results may become less generalisable as gestational age moves further away from this point. CONCLUSIONS Our study did not find that that antenatal corticosteroid administration practices were associated with child development at early school age. Our findings may be useful for supporting clinical counseling about antenatal corticosteroids administration at late preterm gestation, when the balance of harms and benefits is less clear.
Collapse
Affiliation(s)
- Jennifer A. Hutcheon
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Sam Harper
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Jessica Liauw
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | - M. Amanda Skoll
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | - Myriam Srour
- Departments of Pediatrics and of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Erin C. Strumpf
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
- Department of Economics, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Sutherland AE, Yawno T, Castillo-Melendez M, Allison BJ, Malhotra A, Polglase GR, Cooper LJ, Jenkin G, Miller SL. Does Antenatal Betamethasone Alter White Matter Brain Development in Growth Restricted Fetal Sheep? Front Cell Neurosci 2020; 14:100. [PMID: 32425758 PMCID: PMC7203345 DOI: 10.3389/fncel.2020.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy often associated with neurological impairments. Currently, there is no treatment for FGR, hence it is likely these babies will be delivered prematurely, thus being exposed to antenatal glucocorticoids. While there is no doubt that antenatal glucocorticoids reduce neonatal mortality and morbidities, their effects on the fetal brain, particularly in FGR babies, are less well recognized. We investigated the effects of both short- and long-term exposure to antenatal betamethasone treatment in both FGR and appropriately grown fetal sheep brains. Surgery was performed on pregnant Border-Leicester Merino crossbred ewes at 105-110 days gestation (term ~150 days) to induce FGR by single umbilical artery ligation (SUAL) or sham surgery. Ewes were then treated with a clinical dose of betamethasone (11.4 mg intramuscularly) or saline at 113 and 114 days gestation. Animals were euthanized at 115 days (48 h following the initial betamethasone administration) or 125 days (10 days following the initial dose of betamethasone) and fetal brains collected for analysis. FGR fetuses were significantly smaller than controls (115 days: 1.68 ± 0.11 kg vs. 1.99 ± 0.11 kg, 125 days: 2.70 ± 0.15 kg vs. 3.31 ± 0.20 kg, P < 0.001) and betamethasone treatment reduced body weight in both control (115 days: 1.64 ± 0.10 kg, 125 days: 2.53 ± 0.10 kg) and FGR fetuses (115 days: 1.41 ± 0.10 kg, 125 days: 2.16 ± 0.17 kg, P < 0.001). Brain: body weight ratios were significantly increased with FGR (P < 0.001) and betamethasone treatment (P = 0.002). Within the fetal brain, FGR reduced CNPase-positive myelin staining in the subcortical white matter (SCWM; P = 0.01) and corpus callosum (CC; P = 0.01), increased GFAP staining in the SCWM (P = 0.02) and reduced the number of Olig2 cells in the periventricular white matter (PVWM; P = 0.04). Betamethasone treatment significantly increased CNPase staining in the external capsule (EC; P = 0.02), reduced GFAP staining in the CC (P = 0.03) and increased Olig2 staining in the SCWM (P = 0.04). Here we show that FGR has progressive adverse effects on the fetal brain, particularly within the white matter. Betamethasone exacerbated growth restriction in the FGR offspring, but betamethasone did not worsen white matter brain injury.
Collapse
Affiliation(s)
- Amy E Sutherland
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Tamara Yawno
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Leo J Cooper
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Hermes M, Antonow-Schlorke I, Hollstein D, Kuehnel S, Rakers F, Frauendorf V, Dreiling M, Rupprecht S, Schubert H, Witte OW, Schwab M. Maternal psychosocial stress during early gestation impairs fetal structural brain development in sheep. Stress 2020; 23:233-242. [PMID: 31469022 DOI: 10.1080/10253890.2019.1652266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal stress, especially during early pregnancy, predisposes offspring to neuropsychiatric disorders. We hypothesized that maternal psychosocial stress (MPS) during pregnancy affects fetal structural neurodevelopment depending on the gestational age of exposure. Fetal sheep brains were harvested at 130 days gestation (dG, term 150 dG) from ewes frequently isolated from flock-mates during early gestation (first and second trimester; n = 10) or late gestation (third trimester; n = 10), or from control flock-mates (n = 8). Immunohistochemistry for formation of neuronal processes, myelination, synaptic density, cell proliferation and programed cell death was performed on brain tissue sections. Sections of the cortical gray matter, the hippocampal CA3 region and the superficial, subcortical and deep white matter were examined morphometrically. Stress effects depended on the brain region and time of exposure. Stress during early gestation but not during late gestation reduced the amount of neuronal processes in the cerebral cortex and hippocampus by 36.9 ± 10.1% (p < 0.05, mean ± SEM) and 36.9 ± 15.8% (p < 0.05), respectively, accompanied by a decrease in synaptic density in the cerebral cortex and hippocampus by 39.8 ± 23.1% (p < 0.05) and 32.9 ± 13.4% (p < 0.01). Myelination was decreased in white matter layers on average by 44.8 ± 11.7% (p < 0.05) accompanied by reduced (glial) cell proliferation in the deep white matter by 83.6 ± 12.4% (p < 0.05). In contrast, stress during the third trimester had no effect in any brain region. Chronic MPS during the first and second trimester induced prolonged effects on neuronal network and myelin formation which might contribute to disturbed neurobehavioral, cognitive and motor development in offspring of stressed mothers.Lay summaryMany women are exposed to stressful events during pregnancy. Maternal stress especially during early pregnancy predisposes for offspring's neuropsychiatric disorders. In our sheep study, we show that disturbance of fetal brain development is a potential mechanism and is worst during 1st and 2nd trimester.
Collapse
Affiliation(s)
- Markus Hermes
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Dorothea Hollstein
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sarah Kuehnel
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vilmar Frauendorf
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Else Kröner-Forschungskolleg AntiAge, Bad Homburg, Germany
| | - Harald Schubert
- Institute of Lab Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Franks AL, Berry KJ, DeFranco DB. Prenatal drug exposure and neurodevelopmental programming of glucocorticoid signalling. J Neuroendocrinol 2020; 32:e12786. [PMID: 31469457 PMCID: PMC6982551 DOI: 10.1111/jne.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Prenatal neurodevelopment is dependent on precise functioning of multiple signalling pathways in the brain, including those mobilised by glucocorticoids (GC) and endocannabinoids (eCBs). Prenatal exposure to drugs of abuse, including opioids, alcohol, cocaine and cannabis, has been shown to not only impact GC signalling, but also alter functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Such exposures can have long-lasting neurobehavioural consequences, including alterations in the stress response in the offspring. Furthermore, cannabis contains cannabinoids that signal via the eCB pathway, which is linked to some components of GC signalling in the adult brain. Given that GCs are frequently used in pregnancy to prevent complications of prematurity, and also that rates of cannabis use in pregnancy are increasing, the likelihood of foetal co-exposure to these compounds is high and may have additional implications for long-term neurodevelopment. Here, we present a discussion of GC signalling and the HPA axis, as well as the effects of prenatal drug exposure on these pathways and the stress response, and we explore the interactions between GC and EC signalling in the developing brain and potential for neurodevelopmental consequences.
Collapse
Affiliation(s)
- Alexis L Franks
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kimberly J Berry
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald B DeFranco
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology and Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Hwang JH, Lee BS, Kim CY, Jung E, Kim EAR, Kim KS. Basal serum cortisol concentration in very low birth weight infants. Pediatr Neonatol 2019; 60:648-653. [PMID: 30962158 DOI: 10.1016/j.pedneo.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The aim of our study was to measure the basal serum cortisol concentration immediately after birth and to determine its association with perinatal factors and clinical outcomes in very low birth weight (VLBW) infants. METHODS Basal serum cortisol level was obtained within one hour after birth in inborn VLBW infants. The association between the basal serum cortisol level and perinatal and clinical outcomes was analyzed by comparing the groups with high versus low cortisol levels. RESULTS In total, 80 infants were included. The median concentration of basal serum cortisol was 167 nmol/L with an interquartile range of 98-298 nmol/L. The basal serum cortisol concentration positively correlated with elapsed time from the last betamethasone dose. Low serum cortisol concentration was associated with antenatal corticosteroid therapy, low lactic acid level, and low leukocyte count at birth. Basal serum cortisol level was not associated with mortality and neonatal morbidities including hypotension and severe grade intraventricular hemorrhage. CONCLUSION Both maternal corticosteroid therapy and perinatal distress may affect the basal serum cortisol concentration in VLBW infants early after birth.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, South Korea
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chae Young Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ellen Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Soo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Cardiovascular effects of prenatal stress-Are there implications for cerebrovascular, cognitive and mental health outcome? Neurosci Biobehav Rev 2019; 117:78-97. [PMID: 31708264 DOI: 10.1016/j.neubiorev.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/17/2023]
Abstract
Prenatal stress programs offspring cognitive and mental health outcome. We reviewed whether prenatal stress also programs cardiovascular dysfunction which potentially modulates cerebrovascular, cognitive and mental health disorders. We focused on maternal stress and prenatal glucocorticoid (GC) exposure which have different programming effects. While maternal stress induced cortisol is mostly inactivated by the placenta, synthetic GCs freely cross the placenta and have different receptor-binding characteristics. Maternal stress, particularly anxiety, but not GC exposure, has adverse effects on maternal-fetal circulation throughout pregnancy, probably by co-activation of the maternal sympathetic nervous system, and by raising fetal catecholamines. Both effects may impair neurodevelopment. Experimental data also suggest that severe maternal stress and GC exposure during early and mid-gestation may increase the risk for cardiovascular disorders. Human data are scarce and especially lacking for older age. Programming mechanisms include aberrations in cardiac and kidney development, and functional changes in the renin-angiotensin-aldosterone-system, stress axis and peripheral and coronary vasculature. Adequate experimental or human studies examining the consequences for cerebrovascular, cognitive and mental disorders are unavailable.
Collapse
|
21
|
Garrud TAC, Giussani DA. Combined Antioxidant and Glucocorticoid Therapy for Safer Treatment of Preterm Birth. Trends Endocrinol Metab 2019; 30:258-269. [PMID: 30850263 DOI: 10.1016/j.tem.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Ante- and postnatal glucocorticoid therapy reduces morbidity and mortality in the preterm infant, and it is therefore one of the best examples of the successful translation of basic experimental science into human clinical practice. However, accruing evidence derived from human clinical studies and from experimental studies in animal models raise serious concerns about potential long-term adverse effects of treatment on growth and neurological and cardiovascular function in the offspring. This review explores whether combined antioxidant and glucocorticoid therapy may be safer than glucocorticoid therapy alone for the treatment of preterm birth.
Collapse
Affiliation(s)
- Tessa A C Garrud
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK; Cambridge Strategic Research Initiative on Reproduction, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK; Cambridge Strategic Research Initiative on Reproduction, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Schmitz T, Alberti C, Ursino M, Baud O, Aupiais C. Full versus half dose of antenatal betamethasone to prevent severe neonatal respiratory distress syndrome associated with preterm birth: study protocol for a randomised, multicenter, double blind, placebo-controlled, non-inferiority trial (BETADOSE). BMC Pregnancy Childbirth 2019; 19:67. [PMID: 30755164 PMCID: PMC6373166 DOI: 10.1186/s12884-019-2206-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although antenatal betamethasone is recommended worldwide for women at risk of preterm delivery, concerns persist regarding the long-term effects associated with this treatment. Indeed, adverse events, mainly dose-related, have been reported. The current recommended dose of antenatal betamethasone directly derives from sheep experiments performed in the late 60's and has not been challenged in 45 years. Therefore, randomized trials evaluating novel dose regimens are urgently needed. METHODS A randomised, double blind, placebo-controlled, non-inferiority trial will be performed in 37 French level 3 maternity units. Women with a singleton pregnancy at risk of preterm delivery before 32 weeks of gestation having already received a first 11.4 mg injection of betamethasone will be randomised to receive either a second injection of 11.4 mg betamethasone (full dose arm) or placebo (half dose arm) administered intramuscularly 24 h after the first injection. The primary binary outcome will be the occurrence of severe respiratory distress syndrome (RDS), defined as the need for exogenous intra-tracheal surfactant in the first 48 h of life. Considering that 20% of the pregnant women receiving the full dose regimen would have a neonate with severe RDS, 1571 patients in each treatment group are required to show that the half dose regimen is not inferior to the full dose, that is the difference in severe RDS rate do not exceed 4% (corresponding to a Relative Risk of 20%), with a 1-sided 2.5% type-1 error and a 80% power. Interim analyses will be done after every 300 neonates who reach the primary outcome on the basis of intention-to-treat, using a group-sequential non-inferiority design. DISCUSSION If the 50% reduced antenatal betamethasone dose is shown to be non-inferior to the full dose to prevent severe RDS associated with preterm birth, then it should be used consistently in women at risk of preterm delivery and would be of great importance to their children. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT 02897076 (registration date 09/13/2016).
Collapse
Affiliation(s)
- Thomas Schmitz
- Service de Gynécologie Obstétrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris Diderot, Site Villemin, 10 avenue de Verdun, 75010 Paris, France
- Inserm, U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Center, Obstetrical, Perinatal and Pediatric Epidemiology Team, 53 avenue de l’observatoire, 75014 Paris, France
| | - Corinne Alberti
- Université Paris Diderot, Site Villemin, 10 avenue de Verdun, 75010 Paris, France
- Unité d’épidémiologie clinique, CIC-EC 1426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Inserm, U1123, ECEVE, 10 avenue de Verdun, 75010 Paris, France
| | - Moreno Ursino
- Inserm, U1138, Equipe 22, Sorbonne Université, Université Paris Descartes, 75006 Paris, France
| | - Olivier Baud
- Service de néonatalogie, Hôpitaux universitaires de Genève, 32 boulevard de la Cluse, 1205 Genève, Switzerland
- Inserm, U1141, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Camille Aupiais
- Université Paris Diderot, Site Villemin, 10 avenue de Verdun, 75010 Paris, France
- Inserm, U1123, ECEVE, 10 avenue de Verdun, 75010 Paris, France
- Inserm, U1138, Equipe 22, Sorbonne Université, Université Paris Descartes, 75006 Paris, France
- Service d’Accueil des Urgences Pédiatriques, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - for the BETADOSE study group and the GROG (Groupe de Recherche en Gynécologie Obstétrique)
- Service de Gynécologie Obstétrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris Diderot, Site Villemin, 10 avenue de Verdun, 75010 Paris, France
- Inserm, U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Center, Obstetrical, Perinatal and Pediatric Epidemiology Team, 53 avenue de l’observatoire, 75014 Paris, France
- Unité d’épidémiologie clinique, CIC-EC 1426, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Inserm, U1123, ECEVE, 10 avenue de Verdun, 75010 Paris, France
- Inserm, U1138, Equipe 22, Sorbonne Université, Université Paris Descartes, 75006 Paris, France
- Service de néonatalogie, Hôpitaux universitaires de Genève, 32 boulevard de la Cluse, 1205 Genève, Switzerland
- Inserm, U1141, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Service d’Accueil des Urgences Pédiatriques, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
23
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
24
|
Frasch MG, Lobmaier SM, Stampalija T, Desplats P, Pallarés ME, Pastor V, Brocco MA, Wu HT, Schulkin J, Herry CL, Seely AJE, Metz GAS, Louzoun Y, Antonelli MC. Non-invasive biomarkers of fetal brain development reflecting prenatal stress: An integrative multi-scale multi-species perspective on data collection and analysis. Neurosci Biobehav Rev 2018; 117:165-183. [PMID: 29859198 DOI: 10.1016/j.neubiorev.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA.
| | - Silvia M Lobmaier
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Mother and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Paula Desplats
- University of California, Departments of Neurosciences and Pathology, San Diego, USA
| | - María Eugenia Pallarés
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Hau-Tieng Wu
- Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | | | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yoram Louzoun
- Bar-Ilan University, Department of Applied Mathematics, Israel
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
25
|
Zhai ZW, Yip SW, Morie KP, Sinha R, Mayes LC, Potenza MN. Substance-use initiation moderates the effect of stress on white-matter microstructure in adolescents. Am J Addict 2018; 27:217-224. [PMID: 29569312 DOI: 10.1111/ajad.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/29/2018] [Accepted: 03/03/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. OBJECTIVES This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. METHODS Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. RESULTS Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224).
Collapse
Affiliation(s)
- Zu Wei Zhai
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Kristen P Morie
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut.,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Linda C Mayes
- Child Study Center, Yale School of Medicine, New Haven, Connecticut.,Departments of Epidemiology, Pediatrics, and Psychology, Yale School of Medicine, New Haven, Connecticut
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut.,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| |
Collapse
|
26
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
27
|
Kutuk MS, Sahin M, Gorkem SB, Doganay S, Ozturk A. Relationship between Doppler findings and fetal brain apparent diffusion coefficient in early-onset intra-uterine growth restriction. J Matern Fetal Neonatal Med 2017; 31:3201-3208. [DOI: 10.1080/14767058.2017.1369519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Serdar Kutuk
- Department of Obstetrics and Gynecology, Erciyes Üniversitesi, Faculty of Medicine, Kayseri, Turkey
| | - Murside Sahin
- Department of Obstetrics and Gynecology, Erciyes Üniversitesi, Faculty of Medicine, Kayseri, Turkey
| | - Sureyya Burcu Gorkem
- Department of Radiology, Erciyes Üniversitesi, Faculty of Medicine, Pediatric Radiology Division, Kayseri, Turkey
| | - Selim Doganay
- Department of Radiology, Erciyes Üniversitesi, Faculty of Medicine, Pediatric Radiology Division, Kayseri, Turkey
| | - Ahmet Ozturk
- Department of Biostatistics, Faculty of Medicine, Erciyes Üniversitesi, Kayseri, Turkey
| |
Collapse
|
28
|
Anegroaie P, Frasch MG, Rupprecht S, Antonow-Schlorke I, Müller T, Schubert H, Witte OW, Schwab M. Development of somatosensory-evoked potentials in foetal sheep: effects of betamethasone. Acta Physiol (Oxf) 2017; 220:137-149. [PMID: 27580709 DOI: 10.1111/apha.12795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/15/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
AIM Antenatal glucocorticoids are used to accelerate foetal lung maturation in babies threatened with premature labour. We examined the influence of glucocorticoids on functional and structural maturation of the central somatosensory pathway in foetal sheep. Somatosensory-evoked potentials (SEP) reflect processing of somatosensory stimuli. SEP latencies are determined by afferent stimuli transmission while SEP amplitudes reveal cerebral processing. METHODS After chronic instrumentation of foetal sheep, mothers received saline (n = 9) or three courses of betamethasone (human equivalent dose of 2 × 110 μg kg-1 betamethasone i.m. 24 h apart, n = 12) at 0.7, 0.75 and 0.8 of gestational age. Trigeminal SEP were evoked prior to, 4 and 24 h after each injection and at 0.8 of gestational age before brains were histologically processed. RESULTS Somatosensory-evoked potentials were already detectable at 0.7 of gestation age. The early and late responses N20 and N200 were the only reproducible peaks over the entire study period. With advancing gestational age, SEP latencies decreased but amplitudes remained unchanged. Acutely, betamethasone did not affect SEP latencies and amplitudes 4 and 24 h following administration. Chronically, betamethasone delayed developmental decrease in the N200 but not N20 latency by 2 weeks without affecting amplitudes. In parallel, betamethasone decreased subcortical white matter myelination but did not affect network formation and synaptic density in the somatosensory cortex. CONCLUSION Somatosensory stimuli are already processed by the foetal cerebral cortex at the beginning of the third trimester. Subsequent developmental decrease in SEP latencies suggests ongoing maturation of afferent sensory transmission. Antenatal glucocorticoids affect structural and functional development of the somatosensory system with specific effects at subcortical level.
Collapse
Affiliation(s)
- P. Anegroaie
- Department of Neurology; Jena University Hospital; Jena Germany
- Department of Pediatric Surgery; Jena University Hospital; Jena Germany
| | - M. G. Frasch
- Department of Obstetrics and Gynecology; University of Washington; Seattle WA USA
| | - S. Rupprecht
- Department of Neurology; Jena University Hospital; Jena Germany
| | | | - T. Müller
- Institute of Laboratory Animal Science; Jena University Hospital; Jena Germany
| | - H. Schubert
- Institute of Laboratory Animal Science; Jena University Hospital; Jena Germany
| | - O. W. Witte
- Department of Neurology; Jena University Hospital; Jena Germany
| | - M. Schwab
- Department of Neurology; Jena University Hospital; Jena Germany
| |
Collapse
|
29
|
Chou MY, Huang LT, Tain YL, Kuo HC, Tiao MM, Sheen JM, Chen CC, Hung PL, Hsieh KS, Yu HR. Age-Dependent Effects of Prenatal Dexamethasone Exposure on Immune Responses in Male Rats. TOHOKU J EXP MED 2017; 241:225-237. [DOI: 10.1620/tjem.241.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ming-Yi Chou
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Pi-Lien Hung
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
| | - Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center
- Graduate Insititute of Clinical Medical Science, Chang Gung University College of Medicine
| |
Collapse
|
30
|
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatr Res 2017; 81:214-226. [PMID: 27673421 PMCID: PMC5313513 DOI: 10.1038/pr.2016.197] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut,Department of Child Study, Yale School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Cross
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut,Department of Neurology, Yale School of Medicine, New Haven, Connecticut,()
| |
Collapse
|
31
|
Davis EP, Head K, Buss C, Sandman CA. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology 2017; 75:56-63. [PMID: 27771566 PMCID: PMC5505265 DOI: 10.1016/j.psyneuen.2016.10.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (cortisol in humans) are the end product of the hypothalamic-pituitary-adrenocortical (HPA) axis and are proposed as a key mechanism for programming fetal brain development. The present prospective longitudinal study evaluates the association between prenatal maternal cortisol concentrations and child neurodevelopment. Participants included a low risk sample of 91 mother-child pairs. Prenatal maternal plasma cortisol concentrations were measured at 19 and 31 gestational weeks. Brain development and cognitive functioning were assessed when children were 6-9 years of age. Structural magnetic resonance imaging scans were acquired and cortical thickness was determined. Child cognitive functioning was evaluated using standardized measures (Wechsler Intelligence Scale for Children IV and Expressive Vocabulary Test, Second Edition). Higher maternal cortisol concentrations during the third trimester were associated with greater child cortical thickness primarily in frontal regions. No significant associations were observed between prenatal maternal cortisol concentrations and child cortical thinning. Elevated third trimester maternal cortisol additionally was associated with enhanced child cognitive performance. Findings in this normative sample of typically developing children suggest that elevated maternal cortisol during late gestation exert lasting benefits for brain development and cognitive functioning 6-9 years later. The benefits of fetal exposure to higher maternal cortisol during the third trimester for child neurodevelopment are consistent with the role cortisol plays in maturation of the human fetus. It is plausible that more extreme elevations in maternal cortisol concentrations late in gestation, as well as exposure to pharmacological levels of synthetic glucocorticoids, may have neurotoxic effects on the developing fetal brain.
Collapse
Affiliation(s)
- Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, 80210, United States; Women and Children's Health and Well-Being Project, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, 92868, United States.
| | - Kevin Head
- Department of Psychology, University of Denver, Denver, CO, 80210, United States
| | - Claudia Buss
- Department of Medical Psychology, Charité Universitätsmedizin Berlin, Germany
| | - Curt A. Sandman
- Women and Children’s Health and Well-Being Project, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, 92868, United States
| |
Collapse
|
32
|
Schmitz T. Prévention des complications de la prématurité par l’administration anténatale de corticoïdes. ACTA ACUST UNITED AC 2016; 45:1399-1417. [DOI: 10.1016/j.jgyn.2016.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
|
33
|
Kemp MW, Saito M, Usuda H, Molloy TJ, Miura Y, Sato S, Watanabe S, Clarke M, Fossler M, Scmidt A, Kallapur SG, Kramer BW, Newnham JP, Jobe AH. Maternofetal pharmacokinetics and fetal lung responses in chronically catheterized sheep receiving constant, low-dose infusions of betamethasone phosphate. Am J Obstet Gynecol 2016; 215:775.e1-775.e12. [PMID: 27555319 DOI: 10.1016/j.ajog.2016.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/24/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Antenatal steroids are standard of care for cases of anticipated preterm labor to improve neonatal outcomes. However, steroids are potent drugs, and their use in pregnancy remains largely unoptimized. OBJECTIVE The objective of the study was to measure the maternofetal pharmacokinetics of constant, low-dose intravenous betamethasone phosphate infusions and correlate these data with the transcriptional effect exerted by subclinical betamethasone exposures on the ovine fetal lung. STUDY DESIGN Thirty-two ewes carrying a single fetus had surgery to catheterize fetal and maternal jugular veins at 116 days of gestation (term, 150 days). Animals were recovered for 2 days and then were randomized to receive 2 sequential maternal intravenous infusions of either (n = 4/group) of the following: 1) saline, 0.125, 0.04, or 0.0125 mg/kg betamethasone phosphate over 3 hours; or 2) saline, 0.25, 0.08, or 0.025 mg/kg betamethasone phosphate over 12 hours. Each infusion was separated by 2 days. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction and an ovine-specific microarray. Plasma betamethasone levels from time-course catheter samples were determined by mass spectrometry. Data were assessed for distribution, variance, and tested by an analysis of variance. RESULTS Betamethasone was detectable (>1 ng/mL) in fetal plasma only in animals randomized to 0.125 mg/kg 3 hour or 0.250 mg/kg 12 hour infusions. Fetal betamethasone half-lives were 1.7-2.8 times greater than maternal values. At maximum concentration, fetal plasma betamethasone levels were approximately 10% of maternal levels. Compared with saline control, all animals, other than those receiving 0.0125 mg/kg 3 hour betamethasone phosphate infusions, had evidence of dose-dependent glucocorticoid transcriptional responses in the fetal lung. CONCLUSION Constant maternal betamethasone infusions delivering substantially lower fetal and maternal betamethasone maximal concentrations than those achieved with current clinical treatment protocols were associated with dose-dependent changes in glucocorticoid-response markers in the fetal lung. Further studies to determine the minimally efficacious dose of steroids for improving outcomes in preterm infants should be viewed as a priority.
Collapse
|
34
|
Maturana CJ, Aguirre A, Sáez JC. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 2016; 77:625-642. [PMID: 27314460 DOI: 10.1002/dneu.22409] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017.
Collapse
Affiliation(s)
- Carola J Maturana
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| | - Adam Aguirre
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| |
Collapse
|
35
|
Rash JA, Thomas JC, Campbell TS, Letourneau N, Granger DA, Giesbrecht GF. Developmental origins of infant stress reactivity profiles: A multi-system approach. Dev Psychobiol 2016; 58:578-99. [DOI: 10.1002/dev.21403] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/19/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Joshua A. Rash
- Department of Psychology; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| | - Jenna C. Thomas
- Department of Psychology; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| | - Tavis S. Campbell
- Department of Psychology; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| | - Nicole Letourneau
- Faculty of Nursing and Cumming School of Medicine (Pediatrics and Psychiatry); University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
- Alberta Children's Hospital Research Institute; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| | - Douglas A. Granger
- Institute for Interdisciplinary Saliva Bioscience Research; Arizona State University; Tempe AZ 85287
- Bloomberg School of Public Health and School of Medicine; The John Hopkins University School of Nursing; Baltimore MD 21205
| | - Gerald F. Giesbrecht
- Alberta Children's Hospital Research Institute; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
- Department of Pediatrics, Cumming School of Medicine; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| | | |
Collapse
|
36
|
Chao LL, Tosun D, Woodward SH, Kaufer D, Neylan TC. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Front Behav Neurosci 2015; 9:333. [PMID: 26696852 PMCID: PMC4667092 DOI: 10.3389/fnbeh.2015.00333] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Recent findings suggest the formation of myelin in the central nervous system by oligodendrocytes is a continuous process that can be modified with experience. For example, a recent study showed that immobilization stress increased oligodendrogensis in the dentate gyrus of adult rat hippocampus. Because changes in myelination represents an adaptive form of brain plasticity that has a greater reach in the adult brain than other forms of plasticity (e.g., neurogenesis), the objective of this “proof of concept” study was to examine whether there are differences in myelination in the hippocampi of humans with and without post-traumatic stress disorder (PTSD). We used the ratio of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that veterans with PTSD had significantly more hippocampal myelin than trauma-exposed controls. There was also found a positive correlation between estimates of hippocampal myelination and PTSD and depressive symptom severity. To our knowledge, this is the first study to examine hippocampal myelination in humans with PTSD. These results provide preliminary evidence for stress-induced hippocampal myelin formation as a potential mechanism underlying the brain abnormalities associated with vulnerability to stress.
Collapse
Affiliation(s)
- Linda L Chao
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Center San Francisco, CA, USA ; Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA ; Department of Psychiatry, University of California San Francisco, CA, USA
| | - Duygu Tosun
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Center San Francisco, CA, USA ; Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Steven H Woodward
- Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System CA, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA ; Department of Integrative Biology, University of California Berkeley, CA, USA ; Canadian Institute for Advanced Research (CIFAR) Toronto, ON, Canada
| | - Thomas C Neylan
- Department of Psychiatry, University of California San Francisco, CA, USA ; Mental Health Services, Veterans Affairs Medical Center San Francisco, CA, USA
| |
Collapse
|
37
|
Victoria NC, Murphy AZ. The long-term impact of early life pain on adult responses to anxiety and stress: Historical perspectives and empirical evidence. Exp Neurol 2015. [PMID: 26210872 DOI: 10.1016/j.expneurol.2015.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 25% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of insult, remains unclear. Work in our lab using a rodent model of early life pain suggests that inflammatory pain experienced on the day of birth blunts adult responses to stress- and pain-provoking stimuli, and dysregulates the hypothalamic pituitary adrenal (HPA) axis in part through a permanent upregulation in central endogenous opioid tone. This review focuses on the long-term impact of neonatal inflammatory pain on adult anxiety- and stress-related responses, and underlying neuroanatomical changes in the context of endogenous pain control and the HPA axis. These two systems are in a state of exaggerated developmental plasticity early in postnatal life, and work in concert to respond to noxious or aversive stimuli. We present empirical evidence from animal and clinical studies, and discuss historical perspectives underlying the lack of analgesia/anesthetic use for early life pain in the modern NICU.
Collapse
Affiliation(s)
- Nicole C Victoria
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303, USA.
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303, USA.
| |
Collapse
|
38
|
Rash JA, Campbell TS, Letourneau N, Giesbrecht GF. Maternal cortisol during pregnancy is related to infant cardiac vagal control. Psychoneuroendocrinology 2015; 54:78-89. [PMID: 25686804 DOI: 10.1016/j.psyneuen.2015.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prenatal exposure to maternal psychological distress and glucocorticoids result in neurobiological adaptations within the fetus that increase risk for developing exaggerated emotional, behavioral, and stress responses to novelty and challenges in childhood. The current study investigated the influence of maternal depressed mood and cortisol during pregnancy on infant cardiac vagal control (CVC) to standardized laboratory challenge tasks. METHODS The sample comprised 194 women and their infants. Maternal reports of depressed mood and salivary cortisol were assessed at 14 and 32 weeks gestational age. Linear regression was used to examine associations between maternal measures during early and late pregnancy, and infant CVC indexed via respiratory sinus arrhythmia (RSA) at rest and in response to laboratory tasks designed to elicit frustration when infants were 6 months of age. It was hypothesized that maternal depressed mood and cortisol would be associated with lower basal RSA and smaller decreases in RSA from baseline to challenge. RESULTS A significant decrease in infant RSA from baseline to frustration tasks indicated that laboratory tasks elicited a reliable decrease in RSA from baseline to frustration among infants which is characterized by reduction in vagal efferent activity on the heart in response to challenge. Higher maternal cortisol, but not depressed mood, was associated with lower basal RSA and greater decrease in RSA from baseline to frustration. Associations between maternal cortisol and infant basal RSA were observed for both early and late pregnancy whereas the associations between prenatal cortisol and decrease in RSA from baseline to frustration were observed for early, but not late, pregnancy. CONCLUSIONS Maternal cortisol during pregnancy was associated with infant CVC at 6-months of age. Such influences may have enduring impacts on the child and important implications for the development of physical and mental health outcomes.
Collapse
Affiliation(s)
- Joshua A Rash
- Department of Psychology, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Tavis S Campbell
- Department of Psychology, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Nicole Letourneau
- Faculties of Nursing & Medicine (Pediatrics & Psychiatry), University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4; Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4; Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4.
| |
Collapse
|
39
|
Metz GAS, Ng JWY, Kovalchuk I, Olson DM. Ancestral experience as a game changer in stress vulnerability and disease outcomes. Bioessays 2015; 37:602-11. [PMID: 25759985 DOI: 10.1002/bies.201400217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Stress is one of the most powerful experiences to influence health and disease. Through epigenetic mechanisms, stress may generate a footprint that propagates to subsequent generations. Programming by prenatal stress or adverse experience in parents, grandparents, or earlier generations may thus be a critical determinant of lifetime health trajectories. Changes in regulation of microRNAs (miRNAs) by stress may enhance the vulnerability to certain pathogenic factors. This review explores the hypothesis that miRNAs represent stress-responsive elements in epigenetic regulation that are potentially heritable. Recent findings suggest that miRNAs are key players linking adverse early environments or ancestral stress with disease risk, thus they represent useful predictive disease biomarkers. Since miRNA signatures of disease are potentially heritable, big data management platforms will be vital to harness multi-generational information and capture succinct yet potent biomarkers capable of directing preventative treatments. This feature would offer a unique window of opportunity to advance personalized medicine.
Collapse
Affiliation(s)
- Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jane W Y Ng
- Department of Pediatrics, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Abstract
Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.
Collapse
|
41
|
Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry 2014; 19:1275-1283. [PMID: 24514565 PMCID: PMC4128957 DOI: 10.1038/mp.2013.190] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023]
Abstract
Stress can exert long-lasting changes on the brain that contribute to vulnerability to mental illness, yet mechanisms underlying this long-term vulnerability are not well understood. We hypothesized that stress may alter the production of oligodendrocytes in the adult brain, providing a cellular and structural basis for stress-related disorders. We found that immobilization stress decreased neurogenesis and increased oligodendrogenesis in the dentate gyrus (DG) of the adult rat hippocampus and that injections of the rat glucocorticoid stress hormone corticosterone (cort) were sufficient to replicate this effect. The DG contains a unique population of multipotent neural stem cells (NSCs) that give rise to adult newborn neurons, but oligodendrogenic potential has not been demonstrated in vivo. We used a nestin-CreER/YFP transgenic mouse line for lineage tracing and found that cort induces oligodendrogenesis from nestin-expressing NSCs in vivo. Using hippocampal NSCs cultured in vitro, we further showed that exposure to cort induced a pro-oligodendrogenic transcriptional program and resulted in an increase in oligodendrogenesis and decrease in neurogenesis, which was prevented by genetic blockade of glucocorticoid receptor (GR). Together, these results suggest a novel model in which stress may alter hippocampal function by promoting oligodendrogenesis, thereby altering the cellular composition and white matter structure.
Collapse
|
42
|
Yawno T, Mortale M, Sutherland AE, Jenkin G, Wallace EM, Walker DW, Miller SL. The effects of betamethasone on allopregnanolone concentrations and brain development in preterm fetal sheep. Neuropharmacology 2014; 85:342-8. [DOI: 10.1016/j.neuropharm.2014.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
43
|
Chari DM. How do corticosteroids influence myelin genesis in the central nervous system? Neural Regen Res 2014; 9:909-11. [PMID: 25206910 PMCID: PMC4146217 DOI: 10.4103/1673-5374.133131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
44
|
Salpietro V, Polizzi A, Di Rosa G, Romeo AC, Dipasquale V, Morabito P, Chirico V, Arrigo T, Ruggieri M. Adrenal disorders and the paediatric brain: pathophysiological considerations and clinical implications. Int J Endocrinol 2014; 2014:282489. [PMID: 25276129 PMCID: PMC4167812 DOI: 10.1155/2014/282489] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 01/27/2023] Open
Abstract
Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency) has been reported with neurological and magnetic resonance imaging (MRI) abnormalities (e.g., delayed myelination and brain atrophy) due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH), a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF) pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS) through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric) CNS seems to be particularly vulnerable to alterations induced by adrenal disorders and/or supraphysiological doses of corticosteroids. Physicians should be aware of potential neurological manifestations in children with adrenal dysfunction to achieve better prevention and timely diagnosis and treatment of these disorders. Further studies are needed to explore the potential neurological, cognitive, and psychiatric long-term consequences of high doses of prolonged corticosteroid administration in childhood.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Pediatric Neurology, Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
- Unit of Genetics and Paediatric Immunology, Department of Pediatrics, University of Messina, Italy
| | - Agata Polizzi
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Gabriella Di Rosa
- Infantile Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Italy
| | - Anna Claudia Romeo
- Unit of Genetics and Paediatric Immunology, Department of Pediatrics, University of Messina, Italy
| | - Valeria Dipasquale
- Unit of Genetics and Paediatric Immunology, Department of Pediatrics, University of Messina, Italy
| | - Paolo Morabito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Italy
| | - Valeria Chirico
- Unit of Genetics and Paediatric Immunology, Department of Pediatrics, University of Messina, Italy
| | - Teresa Arrigo
- Unit of Genetics and Paediatric Immunology, Department of Pediatrics, University of Messina, Italy
| | - Martino Ruggieri
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Italy
| |
Collapse
|
45
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Chang YP. Evidence for adverse effect of perinatal glucocorticoid use on the developing brain. KOREAN JOURNAL OF PEDIATRICS 2014; 57:101-9. [PMID: 24778691 PMCID: PMC4000755 DOI: 10.3345/kjp.2014.57.3.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/04/2014] [Indexed: 11/27/2022]
Abstract
The use of glucocorticoids (GCs) in the perinatal period is suspected of being associated with adverse effects on long-term neurodevelopmental outcomes for preterm infants. Repeated administration of antenatal GCs to mothers at risk of preterm birth may adversely affect fetal growth and head circumference. Fetal exposure to excess GCs during critical periods of brain development may profoundly modify the limbic system (primarily the hippocampus), resulting in long-term effects on cognition, behavior, memory, co-ordination of the autonomic nervous system, and regulation of the endocrine system later in adult life. Postnatal GC treatment for chronic lung disease in premature infants, particularly involving the use of dexamethasone, has been shown to induce neurodevelopmental impairment and increases the risk of cerebral palsy. In contrast to studies involving postnatal dexamethasone, long-term follow-up studies for hydrocortisone therapy have not revealed adverse effects on neurodevelopmental outcomes. In experimental studies on animals, GCs has been shown to impair neurogenesis, and induce neuronal apoptosis in the immature brains of newborn animals. A recent study has demonstrated that dexamethasone-induced hypomyelination may result from the apoptotic degeneration of oligodendrocyte progenitors in the immature brain. Thus, based on clinical and experimental studies, there is enough evidence to advice caution regarding the use of GCs in the perinatal period; and moreover, the potential long-term effects of GCs on brain development need to be determined.
Collapse
Affiliation(s)
- Young Pyo Chang
- Department of Pediatrics, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
47
|
Malaeb SN, Stonestreet BS. Steroids and injury to the developing brain: net harm or net benefit? Clin Perinatol 2014; 41:191-208. [PMID: 24524455 PMCID: PMC5083968 DOI: 10.1016/j.clp.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deleterious effects result from both glucocorticoid insufficiency and excess glucocorticoid tissue exposure in the developing brain. Accumulating evidence suggests a net benefit of postnatal glucocorticoid therapy when administered shortly after the first week of life to premature infants with early and persistent pulmonary dysfunction, particularly in those with evidence of relative adrenal insufficiency. The decision to treat with steroids should ensure maximum respiratory benefit at the lowest possible neurologic risk, while avoiding serious systemic complications. Ongoing clinical trials must validate this approach.
Collapse
Affiliation(s)
- Shadi N. Malaeb
- Department of Pediatrics, St. Christopher’s Hospital for Children, Drexel University College of Medicine, 245 North 15th Street, NewCollege Building, Room7410, Mail Stop 1029, Philadelphia, PA 19102, USA,Corresponding author.
| | - Barbara S. Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
48
|
Jenkins SI, Pickard MR, Khong M, Smith HL, Mann CL, Emes RD, Chari DM. Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS Chem Neurosci 2014; 5:51-63. [PMID: 24147833 PMCID: PMC3894723 DOI: 10.1021/cn400167n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Indexed: 12/11/2022] Open
Abstract
Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits.
Collapse
Affiliation(s)
- Stuart I. Jenkins
- Institute for Science
and Technology in Medicine, School of Medicine, Keele University, David Weatherall building, Keele, Staffordshire ST5
5BG, United Kingdom
| | - Mark R. Pickard
- Institute for Science
and Technology in Medicine, School of Medicine, Keele University, David Weatherall building, Keele, Staffordshire ST5
5BG, United Kingdom
| | - Melinda Khong
- School of Veterinary
Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Heather L. Smith
- School of Veterinary
Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Carl L.A. Mann
- Neurology Department, University Hospital of North Staffordshire NHS Trust, City General, Newcastle Road, Stoke-on-Trent, Staffordshire ST4 6QG, United Kingdom
| | - Richard D. Emes
- School of Veterinary
Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Divya M. Chari
- Institute for Science
and Technology in Medicine, School of Medicine, Keele University, David Weatherall building, Keele, Staffordshire ST5
5BG, United Kingdom
| |
Collapse
|
49
|
Howell BR, McCormack KM, Grand AP, Sawyer NT, Zhang X, Maestripieri D, Hu X, Sanchez MM. Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: associations with high cortisol during infancy. BIOLOGY OF MOOD & ANXIETY DISORDERS 2013; 3:21. [PMID: 24289263 PMCID: PMC3880213 DOI: 10.1186/2045-5380-3-21] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early adverse experiences, especially those involving disruption of the mother-infant relationship, are detrimental for proper socioemotional development in primates. Humans with histories of childhood maltreatment are at high risk for developing psychopathologies including depression, anxiety, substance abuse, and behavioral disorders. However, the underlying neurodevelopmental alterations are not well understood. Here we used a nonhuman primate animal model of infant maltreatment to study the long-term effects of this early life stress on brain white matter integrity during adolescence, its behavioral correlates, and the relationship with early levels of stress hormones. METHODS Diffusion tensor imaging and tract based spatial statistics were used to investigate white matter integrity in 9 maltreated and 10 control animals during adolescence. Basal plasma cortisol levels collected at one month of age (when abuse rates were highest) were correlated with white matter integrity in regions with group differences. Total aggression was also measured and correlated with white matter integrity. RESULTS We found significant reductions in white matter structural integrity (measured as fractional anisotropy) in the corpus callosum, occipital white matter, external medullary lamina, as well as in the brainstem of adolescent rhesus monkeys that experienced maternal infant maltreatment. In most regions showing fractional anisotropy reductions, opposite effects were detected in radial diffusivity, without changes in axial diffusivity, suggesting that the alterations in tract integrity likely involve reduced myelin. Moreover, in most regions showing reduced white matter integrity, this was associated with elevated plasma cortisol levels early in life, which was significantly higher in maltreated than in control infants. Reduced fractional anisotropy in occipital white matter was also associated with increased social aggression. CONCLUSIONS These findings highlight the long-term impact of infant maltreatment on brain white matter structural integrity, particularly in tracts involved in visual processing, emotional regulation, and somatosensory and motor integration. They also suggest a relationship between elevations in stress hormones detected in maltreated animals during infancy and long-term brain white matter structural effects.
Collapse
Affiliation(s)
- Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, 101 Woodruff Circle, WMB Suite 4000, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Braun T, Challis JR, Newnham JP, Sloboda DM. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev 2013; 34:885-916. [PMID: 23970762 DOI: 10.1210/er.2013-1012] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An adverse early-life environment is associated with long-term disease consequences. Adversity early in life is hypothesized to elicit developmental adaptations that serve to improve fetal and postnatal survival and prepare the organism for a particular range of postnatal environments. These processes, although adaptive in their nature, may later prove to be maladaptive or disadvantageous if the prenatal and postnatal environments are widely discrepant. The exposure of the fetus to elevated levels of either endogenous or synthetic glucocorticoids is one model of early-life adversity that contributes substantially to the propensity of developing disease. Moreover, early-life glucocorticoid exposure has direct clinical relevance because synthetic glucocorticoids are routinely used in the management of women at risk of early preterm birth. In this regard, reports of adverse events in human newborns have raised concerns about the safety of glucocorticoid treatment; synthetic glucocorticoids have detrimental effects on fetal growth and development, childhood cognition, and long-term behavioral outcomes. Experimental evidence supports a link between prenatal exposure to synthetic glucocorticoids and alterations in fetal development and changes in placental function, and many of these alterations appear to be permanent. Because the placenta is the conduit between the maternal and fetal environments, it is likely that placental function plays a key role in mediating effects of fetal glucocorticoid exposure on hypothalamic-pituitary-adrenal axis development and long-term disease risk. Here we review recent insights into how the placenta responds to changes in the intrauterine glucocorticoid environment and discuss possible mechanisms by which the placenta mediates fetal hypothalamic-pituitary-adrenal development, metabolism, cardiovascular function, and reproduction.
Collapse
Affiliation(s)
- Thorsten Braun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 1280 Main Street West, HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|