1
|
Poulsen R, Williams Z, Dwyer P, Pellicano E, Sowman PF, McAlpine D. How auditory processing influences the autistic profile: A review. Autism Res 2024; 17:2452-2470. [PMID: 39552096 PMCID: PMC11638897 DOI: 10.1002/aur.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
We need to combine sensory data from various sources to make sense of the world around us. This sensory data helps us understand our surroundings, influencing our experiences and interactions within our everyday environments. Recent interest in sensory-focused approaches to supporting autistic people has fixed on auditory processing-the sense of hearing and the act of listening-and its crucial role in language, communications, and social domains, as well as non-social autism-specific attributes, to understand better how sensory processing might differ in autistic people. In this narrative review, we synthesize published research into auditory processing in autistic people and the relationship between auditory processing and autistic attributes in a contextually novel way. The purpose is to understand the relationship between these domains more fully, drawing on evidence gleaned from experiential perspectives through to neurological investigations. We also examine the relationship between auditory processing and diagnosable auditory conditions, such as hyperacusis, misophonia, phonophobia, and intolerance to loud sounds, as well as its relation to sleep, anxiety, and sensory overload. Through reviewing experiential, behavioral and neurological literature, we demonstrate that auditory processes interact with and shape the broader autistic profile-something not previously considered. Through a better understanding of the potential impact of auditory experiences, our review aims to inform future research on investigating the relationship between auditory processing and autistic traits through quantitative measures or using qualitative experiential inquiry to examine this relationship more holistically.
Collapse
Affiliation(s)
- R. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Z. Williams
- Medical Scientist Training Program, Vanderbilt University School of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Frist Center for Autism and InnovationVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - P. Dwyer
- Center for the Mind and BrainDepartment of PsychologyMIND InstituteUniversity of CaliforniaDavisCaliforniaUSA
- Olga Tennison Autism Research Centre, School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - E. Pellicano
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - P. F. Sowman
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of Clinical SciencesAuckland University of TechnologyAucklandNew Zealand
| | - D. McAlpine
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Thibodeau LM, Leach V, Sivaswami A, Qi S. Benefits of speech recognition in noise using remote microphones for people with typical hearing. JOURNAL OF COMMUNICATION DISORDERS 2024; 112:106467. [PMID: 39362063 DOI: 10.1016/j.jcomdis.2024.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Remote microphone (RM) systems are designed to enhance speech recognition in noisy environments by improving the signal-to-noise ratio (SNR) for individuals with typical hearing (TH) and hearing impairment (HI). The aim of this investigation was to evaluate the advantages of speech recognition in noise for individuals with TH in a simulated group setting using two different remote microphones. METHODS A quasi-experimental, repeated-measures design was employed, involving ten participants with TH, ages 20 to 63 years. Each were fit with Roger Focus receivers bilaterally to listen to three RM conditions: Roger Select, Roger Pen, and no technology. Participants were instructed to transcribe sentences that were presented randomly at varying signal-to-noise ratios (SNRs: 0, -5, and -10 dB) from five speakers positioned equidistant around a circular table to simulate a group dining scenario. RESULTS Significant main effects of the technology condition and noise level (p < .05) were found. Participants exhibited superior performance with Roger Select compared to Roger Pen. As expected, recognition rates decreased with lower SNRs across all three technology conditions. CONCLUSIONS To enhance speech recognition in group settings for individuals with TH, the utilization of the Roger Select microphone in conjunction with bilateral Roger Focus receivers is recommended over the Roger Pen.
Collapse
Affiliation(s)
- Linda M Thibodeau
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA.
| | | | | | - Shuang Qi
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
3
|
Dunham-Carr K, Mailapur N, Keçeli-Kaysili B, Feldman JI, Thompson E, Davis H, Tharpe AM, Picou E, Woynaroski TG. Remote Microphone Systems for Autistic and Nonautistic Youth: Effects on Audiovisual Task Engagement. Ear Hear 2024:00003446-990000000-00351. [PMID: 39307937 DOI: 10.1097/aud.0000000000001581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
OBJECTIVES A recent study has provided empirical support for the use of remote microphone (RM) systems to improve listening-in-noise performance of autistic youth. It has been proposed that RM system effects might be achieved by boosting engagement in this population. The present study used behavioral coding to test this hypothesis in autistic and nonautistic youth listening in an ecologically valid, noisy environment. DESIGN We drew on extant data from a recent experimental study in which 56 youth (32 autistic, 24 nonautistic) matched at the group level on age and biological sex completed listening-in-noise tasks wherein they reported their perception of audiovisual syllables, words, sentences, and passages with and without an RM system; conditions were counter-balanced across participants. As previously reported, perceptual accuracy varied with stimulus complexity and overall improved with the RM system, with improvements not significantly different between groups. Video recordings of participants completing listening-in-noise tasks in both conditions were coded via a 5-second, partial-interval coding system by naive coders for (a) engagement in the task (indexed via proportion of intervals in which participants displayed on-task behaviors) and (b) verbal, stimulus-specific protesting in the task (indexed via proportion of intervals in which participants displayed verbal, stimulus-specific protesting behaviors). Examples of on-task behaviors included attending to the screen and completing task activities. Examples of protesting behaviors included complaining about stimuli volume or the inability to hear. Chronological age, autism features, language ability, audiovisual speech integration as measured by psychophysical tasks, tactile responsiveness, and nonverbal intelligence quotient were evaluated as putative predictors and/or moderators of effects on behaviors of interest. RESULTS In general, participants were highly engaged in the task, and there were few protests, reflecting more than 90% and fewer than 0.5% of coded intervals, respectively. We did not detect any statistically significant effects of group or RM system use on task engagement. Nonautistic youth were engaged in the listening-in-noise task for an average of 97.45% of intervals, whereas autistic youth were engaged in the listening-in-noise task for an average of 94.25% of intervals. In contrast, verbal, stimulus-specific protesting in the listening-in-noise task was significantly reduced, on average, in the RM (0.04% of intervals) versus the No RM (0.2% of intervals) conditions. There were no effects related to group for this behaviorally coded outcome. In addition, select participant characteristics predicted engagement within conditions across participants. Greater language ability and nonverbal intelligence quotient predicted increased engagement when not using an RM system. Increased features of autism and wider temporal binding windows for audiovisual speech predicted reduced engagement while using an RM system, and greater audiovisual integration predicted increased engagement while using an RM system. CONCLUSIONS The results of this study suggest that RM system use reduces verbal, stimulus-specific protesting, which likely reflects difficulty engaging when listening in noise. The present study extends our previous study to provide additional empirical support for RM system use in autistic and nonautistic youth.
Collapse
Affiliation(s)
- Kacie Dunham-Carr
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- These authors contributed equally to this work
| | - Nisha Mailapur
- The SyBBURE Searle Undergraduate Research Program, Vanderbilt University, Nashville, Tennessee, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- These authors contributed equally to this work
| | - Bahar Keçeli-Kaysili
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob I Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, Tennessee, USA; and
| | - Emily Thompson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Hilary Davis
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne Marie Tharpe
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- These authors contributed equally to this work
| | - Erin Picou
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- These authors contributed equally to this work
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, Tennessee, USA; and
- Vanderbilt Kennedy Center, Nashville, Tennessee, USA
- These authors contributed equally to this work
| |
Collapse
|
4
|
Zanin J, Tomlin D, Rance G. Effectiveness of Noise Cancelling Earbuds in Reducing Hearing and Auditory Attention Deficits in Children with Autism. J Clin Med 2024; 13:4786. [PMID: 39200929 PMCID: PMC11355770 DOI: 10.3390/jcm13164786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterised by impairments in social communication, sensory abnormalities, and attentional deficits. Children with ASD often face significant challenges with speech perception and auditory attention, particularly in noisy environments. This study aimed to assess the effectiveness of noise cancelling Bluetooth earbuds (Nuheara IQbuds Boost) in improving speech perception and auditory attention in children with ASD. Methods: Thirteen children aged 6-13 years diagnosed with ASD participated. Pure tone audiometry confirmed normal hearing levels. Speech perception in noise was measured using the Consonant-Nucleus-Consonant-Word test, and auditory/visual attention was evaluated via the Integrated Visual and Auditory Continuous Performance Task. Participants completed these assessments both with and without the IQbuds in situ. A two-week device trial evaluated classroom listening and communication improvements using the Listening Inventory for Education-Revised (teacher version) questionnaire. Results: Speech perception in noise was significantly poorer for the ASD group compared to typically developing peers and did not change with the IQbuds. Auditory attention, however, significantly improved when the children were using the earbuds. Additionally, classroom listening and communication improved significantly after the two-week device trial. Conclusions: While the noise cancelling earbuds did not enhance speech perception in noise for children with ASD, they significantly improved auditory attention and classroom listening behaviours. These findings suggest that Bluetooth earbuds could be a viable alternative to remote microphone systems for enhancing auditory attention in children with ASD, offering benefits in classroom settings and potentially minimising the stigma associated with traditional assistive listening devices.
Collapse
Affiliation(s)
| | | | - Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston St Carlton, Melbourne, VIC 3053, Australia; (J.Z.); (D.T.)
| |
Collapse
|
5
|
Xu S, Zhang H, Fan J, Jiang X, Zhang M, Guan J, Ding H, Zhang Y. Auditory Challenges and Listening Effort in School-Age Children With Autism: Insights From Pupillary Dynamics During Speech-in-Noise Perception. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2410-2453. [PMID: 38861391 DOI: 10.1044/2024_jslhr-23-00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
PURPOSE This study aimed to investigate challenges in speech-in-noise (SiN) processing faced by school-age children with autism spectrum conditions (ASCs) and their impact on listening effort. METHOD Participants, including 23 Mandarin-speaking children with ASCs and 19 age-matched neurotypical (NT) peers, underwent sentence recognition tests in both quiet and noisy conditions, with a speech-shaped steady-state noise masker presented at 0-dB signal-to-noise ratio in the noisy condition. Recognition accuracy rates and task-evoked pupil responses were compared to assess behavioral performance and listening effort during auditory tasks. RESULTS No main effect of group was found on accuracy rates. Instead, significant effects emerged for autistic trait scores, listening conditions, and their interaction, indicating that higher trait scores were associated with poorer performance in noise. Pupillometric data revealed significantly larger and earlier peak dilations, along with more varied pupillary dynamics in the ASC group relative to the NT group, especially under noisy conditions. Importantly, the ASC group's peak dilation in quiet mirrored that of the NT group in noise. However, the ASC group consistently exhibited reduced mean dilations than the NT group. CONCLUSIONS Pupillary responses suggest a different resource allocation pattern in ASCs: An initial sharper and larger dilation may signal an intense, narrowed resource allocation, likely linked to heightened arousal, engagement, and cognitive load, whereas a subsequent faster tail-off may indicate a greater decrease in resource availability and engagement, or a quicker release of arousal and cognitive load. The presence of noise further accentuates this pattern. This highlights the unique SiN processing challenges children with ASCs may face, underscoring the importance of a nuanced, individual-centric approach for interventions and support.
Collapse
Affiliation(s)
- Suyun Xu
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Hua Zhang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Juan Fan
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, China
| | - Minyue Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | | | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis
| |
Collapse
|
6
|
Klein KE, Harris LA, Humphrey EL, Noss EC, Sanderson AM, Yeager KR. Predictors of Listening-Related Fatigue in Adolescents With Hearing Loss. Lang Speech Hear Serv Sch 2024; 55:724-740. [PMID: 38501931 DOI: 10.1044/2024_lshss-23-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Self-reported listening-related fatigue in adolescents with hearing loss (HL) was investigated. Specifically, the extent to which listening-related fatigue is associated with school accommodations, audiologic characteristics, and listening breaks was examined. METHOD Participants were 144 adolescents with HL ages 12-19 years. Data were collected online via Qualtrics. The Vanderbilt Fatigue Scale-Child was used to measure listening-related fatigue. Participants also reported on their use of listening breaks and school accommodations, including an Individualized Education Program (IEP) or 504 plan, remote microphone systems, closed captioning, preferential seating, sign language interpreters, live transcriptions, and notetakers. RESULTS After controlling for age, HL laterality, and self-perceived listening difficulty, adolescents with an IEP or a 504 plan reported lower listening-related fatigue compared to adolescents without an IEP or a 504 plan. Adolescents who more frequently used remote microphone systems or notetakers reported higher listening-related fatigue compared to adolescents who used these accommodations less frequently, whereas increased use of a sign language interpreter was associated with decreased listening-related fatigue. Among adolescents with unilateral HL, higher age was associated with lower listening-related fatigue; no effect of age was found among adolescents with bilateral HL. Listening-related fatigue did not differ based on hearing device configuration. CONCLUSIONS Adolescents with HL should be considered at risk for listening-related fatigue regardless of the type of hearing devices used or the degree of HL. The individualized support provided by an IEP or 504 plan may help alleviate listening-related fatigue, especially by empowering adolescents with HL to be self-advocates in terms of their listening needs and accommodations in school. Additional research is needed to better understand the role of specific school accommodations and listening breaks in addressing listening-related fatigue.
Collapse
Affiliation(s)
- Kelsey E Klein
- Center for Pediatric Hearing Health Research, The House Institute Foundation, Los Angeles, CA
| | - Lauren A Harris
- Department of Otolaryngology - Head and Neck Surgery, University of Kentucky, Lexington
| | - Elizabeth L Humphrey
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Emily C Noss
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Autumn M Sanderson
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Kelly R Yeager
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| |
Collapse
|
7
|
Key AP, Thompson EC, Benítez-Barrera C, Feldman JI, Woynaroski T, Picou E, Tharpe AM. Electrophysiological Measures of Listening-in-Noise With and Without Remote Microphone System Use in Autistic and Non-Autistic Youth. Ear Hear 2024; 45:710-720. [PMID: 38273435 PMCID: PMC11014766 DOI: 10.1097/aud.0000000000001465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES This study examined the neural mechanisms by which remote microphone (RM) systems might lead to improved behavioral performance on listening-in-noise tasks in autistic and non-autistic youth. DESIGN Cortical auditory evoked potentials (CAEPs) were recorded in autistic (n = 25) and non-autistic (n = 22) youth who were matched at the group level on chronological age ( M = 14.21 ± 3.39 years) and biological sex. Potentials were recorded during an active syllable identification task completed in quiet and in multi-talker babble noise with and without the use of an RM system. The effects of noise and RM system use on speech-sound-evoked P1-N1-P2 responses and the associations between the cortical responses and behavioral performance on syllable identification were examined. RESULTS No group differences were observed for behavioral or CAEP measures of speech processing in quiet or in noise. In the combined sample, syllable identification in noise was less accurate and slower than in the quiet condition. The addition of the RM system to the noise condition restored accuracy, but not the response speed, to the levels observed in quiet. The CAEP analyses noted amplitude reductions and latency delays in the noise compared with the quiet condition. The RM system use increased the N1 amplitude as well as reduced and delayed the P2 response relative to the quiet and noise conditions. Exploratory brain-behavior correlations revealed that larger N1 amplitudes in the RM condition were associated with greater behavioral accuracy of syllable identification. Reduced N1 amplitude and accelerated P2 response were associated with shorter syllable identification response times when listening with the RM system. CONCLUSIONS Findings suggest that although listening-in-noise with an RM system might remain effortful, the improved signal to noise ratio facilitates attention to the sensory features of the stimuli and increases speech sound identification accuracy.
Collapse
Affiliation(s)
- Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Emily C. Thompson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | | | - Jacob I. Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
| | - Tiffany Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Erin Picou
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Anne Marie Tharpe
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
8
|
Thompson E, Feldman JI, Valle A, Davis H, Keceli-Kaysili B, Dunham K, Woynaroski T, Tharpe AM, Picou EM. A Comparison of Listening Skills of Autistic and Non-Autistic Youth While Using and Not Using Remote Microphone Systems. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4618-4634. [PMID: 37870877 PMCID: PMC10721240 DOI: 10.1044/2023_jslhr-22-00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES The purposes of this study were to compare (a) listening-in-noise (accuracy and effort) and (b) remote microphone (RM) system benefits between autistic and non-autistic youth. DESIGN Groups of autistic and non-autistic youth that were matched on chronological age and biological sex completed listening-in-noise testing when wearing and not wearing an RM system. Listening-in-noise accuracy and listening effort were evaluated simultaneously using a dual-task paradigm for stimuli varying in type (syllables, words, sentences, and passages). Several putative moderators of RM system effects on outcomes of interest were also evaluated. RESULTS Autistic youth outperformed non-autistic youth in some conditions on listening-in-noise accuracy; listening effort between the two groups was not significantly different. RM system use resulted in listening-in-noise accuracy improvements that were nonsignificantly different across groups. Benefits of listening-in-noise accuracy were all large in magnitude. RM system use did not have an effect on listening effort for either group. None of the putative moderators yielded effects of the RM system on listening-in-noise accuracy or effort for non-autistic youth that were significant and interpretable, indicating that RM system benefits did not vary according to any of the participant characteristics assessed. CONCLUSIONS Contrary to expectations, autistic youth did not demonstrate listening-in-noise deficits compared to non-autistic youth. Both autistic and non-autistic youth appear to experience RM system benefits marked by large gains in listening-in-noise performance. Thus, the use of this technology in educational and other noisy settings where speech perception needs enhancement might be beneficial for both groups of children.
Collapse
Affiliation(s)
- Emily Thompson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Jacob I. Feldman
- Frist Center for Autism and Innovation, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Annalise Valle
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Hilary Davis
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Bahar Keceli-Kaysili
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Kacie Dunham
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Nashville, TN
| | - Tiffany Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | - Anne Marie Tharpe
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | - Erin M. Picou
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Ruiz Callejo D, Boets B. A systematic review on speech-in-noise perception in autism. Neurosci Biobehav Rev 2023; 154:105406. [PMID: 37797728 DOI: 10.1016/j.neubiorev.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Individuals with autism spectrum disorder (ASD) exhibit atypical speech-in-noise (SiN) perception, but the scope of these impairments has not been clearly defined. We conducted a systematic review of the behavioural research on SiN perception in ASD, using a comprehensive search strategy across databases (Embase, Pubmed, Web of Science, APA PsycArticles, LLBA, clinicaltrials.gov and PsyArXiv). We withheld 20 studies that generally revealed intact speech perception in stationary noise, while impairments in speech discrimination were found in temporally modulated noise, concurrent speech, and audiovisual speech perception. An association with auditory temporal processing deficits, exacerbated by suboptimal language skills, is shown. Speech-in-speech perception might be further impaired due to deficient top-down processing of speech. Further research is needed to address remaining challenges and gaps in our understanding of these impairments, including the developmental aspects of SiN processing in ASD, and the impact of gender and social attentional orienting on this ability. Our findings have important implications for improving communication in ASD, both in daily interactions and in clinical and educational settings.
Collapse
Affiliation(s)
- Diego Ruiz Callejo
- University Psychiatric Center KU Leuven, Leuven, Belgium; Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Bart Boets
- University Psychiatric Center KU Leuven, Leuven, Belgium; Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Autism Research (LauRes), KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Xu S, Fan J, Zhang H, Zhang M, Zhao H, Jiang X, Ding H, Zhang Y. Hearing Assistive Technology Facilitates Sentence-in-Noise Recognition in Chinese Children With Autism Spectrum Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023:1-21. [PMID: 37418749 DOI: 10.1044/2023_jslhr-22-00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
PURPOSE Hearing assistive technology (HAT) has been shown to be a viable solution to the speech-in-noise perception (SPIN) issue in children with autism spectrum disorder (ASD); however, little is known about its efficacy in tonal language speakers. This study compared sentence-level SPIN performance between Chinese children with ASD and neurotypical (NT) children and evaluated HAT use in improving SPIN performance and easing SPIN difficulty. METHOD Children with ASD (n = 26) and NT children (n = 19) aged 6-12 years performed two adaptive tests in steady-state noise and three fixed-level tests in quiet and steady-state noise with and without using HAT. Speech recognition thresholds (SRTs) and accuracy rates were assessed using adaptive and fixed-level tests, respectively. Parents or teachers of the ASD group completed a questionnaire regarding children's listening difficulty under six circumstances before and after a 10-day trial period of HAT use. RESULTS Although the two groups of children had comparable SRTs, the ASD group showed a significantly lower SPIN accuracy rate than the NT group. Also, a significant impact of noise was found in the ASD group's accuracy rate but not in that of the NT group. There was a general improvement in the ASD group's SPIN performance with HAT and a decrease in their listening difficulty ratings across all conditions after the device trial. CONCLUSIONS The findings indicated inadequate SPIN in the ASD group using a relatively sensitive measure to gauge SPIN performance among children. The markedly increased accuracy rate in noise during HAT-on sessions for the ASD group confirmed the feasibility of HAT for improving SPIN performance in controlled laboratory settings, and the reduced post-use ratings of listening difficulty further confirmed the benefits of HAT use in daily scenarios.
Collapse
Affiliation(s)
- Suyun Xu
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Juan Fan
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Hua Zhang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Minyue Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Hang Zhao
- Faculty of Education, East China Normal University, Shanghai
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, China
| | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis
| |
Collapse
|