1
|
Cantó-Santos J, Valls-Roca L, Tobías E, García-García FJ, Guitart-Mampel M, Andújar-Sánchez F, Vilaseca-Capel A, Esteve-Codina A, Martín-Mur B, Padrosa J, Peruga E, Madrigal I, Segalés P, García-Ruiz C, Fernández-Checa JC, Moreno-Lozano PJ, O'Callaghan AS, Sevilla A, Milisenda JC, Garrabou G. Human induced pluripotent stem cell-derived myotubes to model inclusion body myositis. Acta Neuropathol Commun 2025; 13:38. [PMID: 39985015 PMCID: PMC11844183 DOI: 10.1186/s40478-025-01933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
Inclusion body myositis (IBM) is an inflammatory myopathy that displays proximal and distal muscle weakness. At the histopathological level, the muscles of IBM patients show inflammatory infiltrates, rimmed vacuoles and mitochondrial changes. The etiology of IBM remains unknown, and there is a lack of validated disease models, biomarkers and effective treatments. To contribute to unveil disease underpins we developed a cell model based on myotubes derived from induced pluripotent stem cells (iPSC-myotubes) from IBM patients and compared the molecular phenotype vs. age and sex-paired controls (n = 3 IBM and 4 CTL). We evaluated protein histological findings and the gene expression profile by mRNA-seq, alongside functional analysis of inflammation, degeneration and mitochondrial function. Briefly, IBM iPSC-myotubes replicated relevant muscle histopathology features of IBM, including aberrant expression of HLA, TDP-43 and COX markers. mRNA seq analysis identified 1007 differentially expressed genes (DEGs) (p-value adj < 0.01; 789 upregulated and 218 downregulated), associated with myopathy, muscle structure and developmental changes. Among these, 1 DEG was related to inflammation, 28 to autophagy and 28 to mitochondria. At the functional level, inflammation was similar between the IBM and CTL groups under basal conditions (mean cytokine expression in IBM 4.6 ± 1.4 vs. 6.7 ± 3.4 in CTL), but increased in IBM iPSC-myotubes after lipopolysaccharide treatment (72.5 ± 21.8 in IBM vs. 13.0 ± 6.7 in CTL). Additionally, autophagy was disturbed, with 40.14% reduction in autophagy mediators. Mitochondrial dysfunction was strongly manifested, showing a conserved respiratory profile and antioxidant capacity, but a 56.33% lower cytochrome c oxidase/citrate synthase ratio and a 66.59% increase in lactate secretion. Overall, these findings support patient-derived iPSC-myotubes as a relevant model for IBM, reflecting the main muscle hallmarks, including inflammation, autophagy dysfunction and mitochondrial alterations at transcriptomic, protein and functional levels.
Collapse
Affiliation(s)
- Judith Cantó-Santos
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Laura Valls-Roca
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Ester Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Félix Andújar-Sánchez
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Adrià Vilaseca-Capel
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, CNAG, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Beatriz Martín-Mur
- Centro Nacional de Análisis Genómico, CNAG, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joan Padrosa
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Emma Peruga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Irene Madrigal
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Paula Segalés
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - José Carlos Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Pedro J Moreno-Lozano
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Albert Selva O'Callaghan
- Vall d'Hebrón Systemic Autoimmune Diseases Unit. Internal Medicine Service, Hospital Universitari Vall d'Hebrón (HVH), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ana Sevilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.
| | - José César Milisenda
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain.
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Notarnicola A, Hellstrom C, Horuluoglu B, Pin E, Preger C, Bonomi F, De Paepe B, De Bleecker JL, Van der Kooi AJ, De Visser M, Sacconi S, Machado P, Badrising UA, Rietveld A, Pruijn G, Rothwell S, Lilleker JB, Chinoy H, Benveniste O, Svenungsson E, Idborg H, Jakobsson PJ, Nilsson P, Lundberg IE. Autoantibodies against a subunit of mitochondrial respiratory chain complex I in inclusion body myositis. J Autoimmun 2024; 149:103332. [PMID: 39561568 DOI: 10.1016/j.jaut.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Autoantibodies are found in up to 80 % of patients with idiopathic inflammatory myopathies (IIM) and are associated with distinct clinical phenotypes. Autoantibodies targeting cytosolic 5'-nucleotidase 1A (anti-NT5C1A) are currently the only known serum biomarker for the subgroup inclusion body myositis (IBM), although detected even in other autoimmune diseases. The aim of the study was to identify new autoimmune targets in IIM. METHODS In a first cross-sectional exploratory study, samples from 219 IIM (108 Polymyositis (PM), 80 Dermatomyositis (DM) and 31 IBM) patients, 349 Systemic Lupus Erythematosus (SLE) patients and 306 population controls were screened for IgG reactivity against a panel of 357 proteins using an antigen bead array. All samples were identified in the local biobank of the Rheumatology clinic, Karolinska University Hospital. Positive hits for the IBM subgroup were then validated in an independent larger cohort of 287 patients with IBM followed at nine European rheumatological or neurological centers. IBM serum samples were explored by antigen bead array and results validated by Western blot. As controls, sera from 29 patients with PM and 30 with DM, HLA-matched with the Swedish IBM cohort, were included. Demographics, laboratory, clinical, and muscle biopsy data of the IBM cohort was retrieved. RESULTS In the exploratory study, IgG reactivity towards NADH dehydrogenase 1 α subcomplex 11 (NDUFA11), a subunit of the membrane-bound mitochondrial respiratory chain complex I, was discovered with higher frequency in the IBM (9.7 %) than PM (2.8 %) and DM samples (1.3 %), although the difference was not statistically significant. Anti-NDUFA11 IgG was also found in 1.4 % of SLE and 2.0 % of population control samples. In the validation study, anti-NDUFA11 autoantibodies were detected in 10/287 IBM patients (3.5 %), 0/29 p.m. and 0/30 DM patients. Reactivity against NDUFA11 could be confirmed by Western blot. No statistically significant differences were found between patients with and without anti-NDUFA11 antibodies when comparing clinical, laboratory and histological data. However, we observed a trend of higher frequency of distal lower extremity muscle weakness, ragged red fibers and higher CK levels at time of diagnosis in the anti-NDUFA11 positive group. Co-existence of anti-NDUFA11 and anti-NT5C1A antibodies was not observed in any IBM patient. CONCLUSION Our results reveal a new autoimmune target in the mitochondrial respiratory chain complex I that might be specifically associated with IBM. This is of particular interest as mitochondrial abnormalities are known histological findings in muscle biopsies of IBM patients.
Collapse
Affiliation(s)
- Antonella Notarnicola
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden.
| | - Ceke Hellstrom
- KTH Royal Institute of Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden
| | - Begum Horuluoglu
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Elisa Pin
- KTH Royal Institute of Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden
| | - Charlotta Preger
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden
| | - Francesco Bonomi
- University of Florence-University Hospital Careggi, Dept Experimental and Clinical Medicine, Division of Rheumatology, Florence, Italy
| | - Boel De Paepe
- Ghent University Hospital, Department of Neurology and Neuromuscular Reference Center, Ghent, Belgium
| | - Jan L De Bleecker
- Ghent University Hospital, Department of Neurology and Neuromuscular Reference Center, Ghent, Belgium
| | - Anneke J Van der Kooi
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Department of Neurology, Amsterdam, the Netherlands
| | - Marianne De Visser
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Department of Neurology, Amsterdam, the Netherlands
| | - Sabrina Sacconi
- Nice University Hospital/Institute of Research on Cancer and Aging of Nice, Research on Cancer and Aging, Nice, France
| | - Pedro Machado
- University College London, Centre for Rheumatology & Department of Neuromuscular Diseases, London, United Kingdom
| | - Umesh A Badrising
- Leiden University Medical Centre, Department of Neurology, Leiden, the Netherlands
| | - Anke Rietveld
- Radboud University Medical Center, Department of Neurology, Center for Neuroscience Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Ger Pruijn
- Radboud University, Department of Biomolecular Chemistry, Institute for Molecules and Materials, Nijmegen, the Netherlands
| | - Simon Rothwell
- The University of Manchester, Division of Musculoskeletal & Dermatological Sciences, Manchester, United Kingdom
| | - James B Lilleker
- The University of Manchester, Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Manchester, United Kingdom; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Department of Rheumatology, Manchester, United Kingdom
| | - Hector Chinoy
- The University of Manchester, Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Manchester, United Kingdom; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Department of Rheumatology, Manchester, United Kingdom
| | - Olivier Benveniste
- Pitié-Salpetriere Hospital, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Elisabet Svenungsson
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Peter Nilsson
- KTH Royal Institute of Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden
| | - Ingrid E Lundberg
- Karolinska Institutet, Division of Rheumatology, Department of Medicine, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
3
|
Suzuki N, Kanzaki M, Koide M, Izumi R, Fujita R, Takahashi T, Ogawa K, Yabe Y, Tsuchiya M, Suzuki M, Harada R, Ohno A, Ono H, Nakamura N, Ikeda K, Warita H, Osana S, Oikawa Y, Toyohara T, Abe T, Rui M, Ebihara S, Nagatomi R, Hagiwara Y, Aoki M. Sporadic inclusion body myositis-derived myotube culture revealed muscle cell-autonomous expression profiles. PLoS One 2024; 19:e0306021. [PMID: 39088432 PMCID: PMC11293708 DOI: 10.1371/journal.pone.0306021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masako Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Harada
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Iwate, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muliang Rui
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Acosta I, Hofer M, Hilton-Jones D, Squier W, Brady S. Treatment resistance in inclusion body myositis: the role of mast cells. Neuromuscul Disord 2024; 41:20-23. [PMID: 38865916 DOI: 10.1016/j.nmd.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Inclusion body myositis is the commonest acquired myopathy in those over 50 years of age. Although it is classified as an idiopathic inflammatory myopathy and the most frequent finding on muscle biopsy in inclusion body myositis is an endomysial inflammatory infiltrate, it is clinically distinct from other myositis, including a lack of response to immunosuppressive medication. Neurogenic changes are commonly reported in inclusion body myositis and inflammatory changes are observed in muscle following neurogenic injury. The objective of our study was to explore whether neurogenic inflammation plays a role in the pathogenesis of inclusion body myositis, possibly explaining its resistance to immunosuppression. The number of mast cells and presence of neuropeptides, substance P and calcitonin gene-related peptide, were assessed in 48 cases of inclusion body myositis, 11 cases of steroid responsive myositis, two cases of focal myositis associated with neurogenic injury, and ten normal controls. The number of mast cells in inclusion body myositis focal and myositis associated to neurogenic injury were significantly greater than that observed in steroid responsive myositis. Our findings suggest that neurogenic inflammation mediated through mast cells may play a role in the pathogenesis of inclusion body myositis, and focal myositis associated to neurogenic injury, and thus, explain in some part its lack of response to immunosuppressive treatments.
Collapse
Affiliation(s)
- I Acosta
- Neuropathology Department, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 9DU. United Kingdom; Translational neurology and neurophysiology laboratory (NODO lab), Advance clinical research centre (CICA). School of Medicine, Universidad de Chile, Providencia 7500787, Santiago Chile; Neurology and Psychiatry Department, Clínica Alemana Santiago, Vitacura, Santiago 7650568, Santiago Chile.
| | - M Hofer
- Neuropathology Department, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 9DU. United Kingdom
| | - D Hilton-Jones
- Oxford Muscle Service, Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 9DU, United Kingdom
| | - W Squier
- Neuropathology Department, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 9DU. United Kingdom
| | - S Brady
- Oxford Muscle Service, Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
5
|
Cantó-Santos J, Valls-Roca L, Tobías E, Oliva C, García-García FJ, Guitart-Mampel M, Andújar-Sánchez F, Esteve-Codina A, Martín-Mur B, Padrosa J, Aránega R, Moreno-Lozano PJ, Milisenda JC, Artuch R, Grau-Junyent JM, Garrabou G. Integrated Multi-Omics Analysis for Inferring Molecular Players in Inclusion Body Myositis. Antioxidants (Basel) 2023; 12:1639. [PMID: 37627634 PMCID: PMC10452026 DOI: 10.3390/antiox12081639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inclusion body myositis (IBM) is an acquired inflammatory myopathy affecting proximal and distal muscles that leads to weakness in patients over 50. It is diagnosed based on clinical and histological findings in muscle related to inflammation, degeneration, and mitochondria. In relation to IBM, a shortage of validated disease models and a lack of biomarkers and effective treatments constitute an unmet medical need. To overcome these hurdles, we performed an omics analysis of multiple samples from IBM patients (saliva, fibroblasts, urine, plasma, and muscle) to gain insight into the pathophysiology of IBM. Degeneration was evident due to the presence of amyloid β peptide 1-42 (Aβ1-42) in the saliva of the analyzed IBM patients. The presence of metabolic disarrangements in IBM was indicated by an imbalanced organic acid profile in fibroblasts and urine. Specifically, abnormal levels of L-pyroglutamic and orotic acid were supported by the abnormal expression of related metabolites in plasma and urine (glutathione and pyrimidines) and the aberrant expression of upstream gene regulators (L2HGDH, IDH2, OPLAH, and ASL) in muscle. Combined levels of L-pyroglutamic and orotic acid displayed an outstanding biomarker signature in urine with 100% sensitivity and specificity. The confirmation of systemic metabolic disarrangements in IBM and the identification of novel biomarkers reported herein unveil novel insights that require validation in larger cohorts.
Collapse
Affiliation(s)
- Judith Cantó-Santos
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Laura Valls-Roca
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Ester Tobías
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Clara Oliva
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.O.); (R.A.)
| | - Francesc Josep García-García
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Félix Andújar-Sánchez
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (A.E.-C.); (B.M.-M.)
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (A.E.-C.); (B.M.-M.)
| | - Joan Padrosa
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Raquel Aránega
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Pedro J. Moreno-Lozano
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - José César Milisenda
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.O.); (R.A.)
| | - Josep M. Grau-Junyent
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| | - Glòria Garrabou
- Inherited Metabolic Disorders and Muscular Diseases Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (J.C.-S.); (L.V.-R.); (E.T.); (F.J.G.-G.); (M.G.-M.); (F.A.-S.); (J.P.); (R.A.); (P.J.M.-L.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER—Spanish Biomedical Research Centre in Rare Diseases, 28029 Madrid, Spain
| |
Collapse
|
6
|
Cantó-Santos J, Valls-Roca L, Tobías E, García-García FJ, Guitart-Mampel M, Esteve-Codina A, Martín-Mur B, Casado M, Artuch R, Solsona-Vilarrasa E, Fernandez-Checa JC, García-Ruiz C, Rentero C, Enrich C, Moreno-Lozano PJ, Milisenda JC, Cardellach F, Grau-Junyent JM, Garrabou G. Unravelling inclusion body myositis using a patient-derived fibroblast model. J Cachexia Sarcopenia Muscle 2023; 14:964-977. [PMID: 36860172 PMCID: PMC10067507 DOI: 10.1002/jcsm.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models. METHODS We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls. RESULTS Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis. CONCLUSIONS These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.
Collapse
Affiliation(s)
- Judith Cantó-Santos
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Laura Valls-Roca
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Ester Tobías
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Francesc Josep García-García
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mercedes Casado
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - José Carlos Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carles Rentero
- Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro J Moreno-Lozano
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - José César Milisenda
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Josep M Grau-Junyent
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| |
Collapse
|
7
|
Khvan YI, Khelkovskaya-Sergeeva AN. Combination of sporadic inclusion body myositis and primary Sjцgren’s syndrome: clinical case and review of literature. MODERN RHEUMATOLOGY JOURNAL 2023. [DOI: 10.14412/1996-7012-2023-1-78-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The article presents a review of the literature and a clinical observation of a patient with long-term anamnesis of primary Sjцgren's syndrome (SS) in combination with sporadic inclusion body myositis (sIBM). The diagnosis of SS was confirmed in accordance with the Russian diagnostic criteria for SS 2001, as well as with the ACR 2012 and ACR/EULAR 2016 criteria. The diagnosis of sIBM was established on the basis of a characteristic clinical picture: the development of the disease in a woman after 50 years of age with slowly progressive asymmetric muscle weakness and a typical distribution, a moderate increase in the level of creatine phosphokinase (<10 norms for the entire observation period), the presence of a generalized primary muscle process according to needle electromyography, a typical picture of muscle involvement according to magnetic resonance imaging, and the ineffectiveness of high doses of glucocorticoids. The absence of histological confirmation does not contradict the diagnosis, since morphological examination of muscles in patients with a typical course of the disease fails to detect characteristic signs of sIBM in 20% of cases.Currently, there is no effective pathogenetic therapy for sIBM. Understanding the mechanisms of sIBM development will allow to develop effective methods of its treatment.
Collapse
Affiliation(s)
- Yu. I. Khvan
- V.A. Nasonova Research Institute of Rheumatology
| | | |
Collapse
|
8
|
Amlani A, Choi MY, Buhler KA, Hudson M, Tarnopolsky M, Brady L, Schmeling H, Swain MG, Stingl C, Reed A, Fritzler MJ. Anti-Valosin-Containing Protein (VCP/p97) Autoantibodies in Inclusion Body Myositis and Other Inflammatory Myopathies. ACR Open Rheumatol 2022; 5:10-14. [PMID: 36373433 PMCID: PMC9837394 DOI: 10.1002/acr2.11510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The rationale for this study was based on reports that valosin-containing protein (VCP) mutations are found in hereditary inclusion body myositis (IBM) and VCP was detected in rimmed vacuoles of sporadic IBM (sIBM) muscle biopsies. Autoantibodies to VCP have not been reported in sIBM or other inflammatory myopathies (IIMs). The aim of this study was to determine the frequency and clinical significance of anti-VCP antibodies in sIBM and other IIMs. METHODS Sera were collected from 73 patients with sIBM and 383 comparators or controls, including patients with IIM (n = 69), those with juvenile dermatomyositis (JDM) (n = 67), those with juvenile idiopathic arthritis (JIA) (n = 47), those with primary biliary cholangitis (PBC) (n = 105), controls that were age matched to patients with sIBM (similarly aged controls [SACs]) (n = 63), and healthy controls (HCs) (n = 32). Immunoglobulin G antibodies to VCP were detected by addressable laser bead immunoassay using a full-length recombinant human protein. RESULTS Among patients with sIBM, 26.0% (19/73) were positive for anti-VCP. The frequency in disease controls was 15.0% (48/320). Among SACs, the frequency was 1.6% (1/63), and in HCs 0% (0/32). Frequencies were 17.5% (11/63) for IIM, 25.7% (27/105) for PBC, 3.0% (2/67) for JDM, and 17.0% (8/47) for JIA. The sensitivity, specificity, positive predictive value, and negative predictive value of anti-VCP for sIBM were 26.0%, 87.2%, 28.4%, and 85.9%, respectively. Of patients with sIBM, 15.1% (11/73) were positive for both anti-VCP and anti-cytosolic 5'-nucleotidase 1A (NT5c1A). Eleven percent of patients (8/73) were positive for anti-VCP, but negative for anti-NT5c1A. CONCLUSION Anti-VCP has low sensitivity and moderate specificity for sIBM but may help fill the seronegative gap in sIBM. Further studies are needed to determine whether anti-VCP is a biomarker for a clinical phenotype that may have clinical value.
Collapse
Affiliation(s)
- Adam Amlani
- Cumming School of Medicine, University of CalgaryAlbertaCanada
| | - May Y. Choi
- Cumming School of Medicine, University of CalgaryAlbertaCanada
| | | | - Marie Hudson
- Jewish General Hospital and McGill UniversityMontrealQuebecCanada
| | | | - Lauren Brady
- McMaster University Medical CenterHamiltonOntarioCanada
| | | | - Mark G. Swain
- Cumming School of Medicine, University of CalgaryAlbertaCanada
| | - Cory Stingl
- Duke University School of MedicineDurhamNorth Carolina
| | - Ann Reed
- Duke University School of MedicineDurhamNorth Carolina
| | | |
Collapse
|
9
|
Winkler M, von Landenberg C, Kappes-Horn K, Neudecker S, Kornblum C, Reimann J. Diagnosis and Clinical Development of Sporadic Inclusion Body Myositis and Polymyositis With Mitochondrial Pathology: A Single-Center Retrospective Analysis. J Neuropathol Exp Neurol 2021; 80:1060–1067. [PMID: 34643702 DOI: 10.1093/jnen/nlab101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To review our diagnostic and treatment approaches concerning sporadic inclusion body myositis (sIBM) and polymyositis with mitochondrial pathology (PM-Mito), we conducted a retrospective analysis of clinical and histological data of 32 patients diagnosed as sIBM and 7 patients diagnosed as PM-Mito by muscle biopsy. Of 32 patients identified histologically as sIBM, 19 fulfilled the 2011 European Neuromuscular Center (ENMC) diagnostic criteria for "clinico-pathologically defined sIBM" at the time of biopsy. Among these, 2 patients developed sIBM after years of immunosuppressive treatment for organ transplantation. Of 11 patients fulfilling the histological but not the clinical criteria, including 3 cases with duration <12 months, 8 later fulfilled the criteria for clinico-pathologically defined sIBM. Of 7 PM-Mito patients, 4 received immunosuppression with clinical improvement in 3. One of these later developed clinico-pathologically defined sIBM; 1 untreated patient progressed to clinically defined sIBM. Thus, muscle histology remains important for this differential diagnosis to identify sIBM patients not matching the ENMC criteria and the PM-Mito group. In the latter, we report at least 50% positive, if occasionally transient, response to immunosuppressive treatments and progression to sIBM in a minority. The mitochondrial abnormalities defining PM-Mito do not seem to define the threshold to immunosuppression unresponsiveness.
Collapse
Affiliation(s)
- Maren Winkler
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Christina von Landenberg
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Karin Kappes-Horn
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Stephan Neudecker
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Cornelia Kornblum
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Jens Reimann
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| |
Collapse
|
10
|
Uruha A, Goebel HH, Stenzel W. Updates on the Immunopathology in Idiopathic Inflammatory Myopathies. Curr Rheumatol Rep 2021; 23:56. [PMID: 34212266 DOI: 10.1007/s11926-021-01017-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW To review recent advances in immunopathology for idiopathic inflammatory myopathies, focusing on widely available immunohistochemical analyses. RECENT FINDINGS Sarcoplasmic expression of myxovirus resistance protein A (MxA) is specifically observed in all types of dermatomyositis and informs that type I interferons are crucially involved in its pathogenesis. It is a more sensitive diagnostic marker than perifascicular atrophy. Diffuse tiny dots in the sarcoplasm highlighted by p62 immunostaining are characteristically seen in immune-mediated necrotizing myopathy. This feature is linked to a chaperone-assisted selective autophagy pathway. Myofiber invasion by highly differentiated T cells, a marker of which is KLRG1, is specific to inclusion body myositis and has a crucial role in its pathogenesis. The recent advances in immunopathology contribute to increased diagnostic accuracy and a better understanding of the underlying pathophysiology in different types of idiopathic inflammatory myopathies.
Collapse
Affiliation(s)
- Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Leibniz Science Campus Chronic Inflammation, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Güttsches AK, Rehmann R, Schreiner A, Rohm M, Forsting J, Froeling M, Tegenthoff M, Vorgerd M, Schlaffke L. Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J Neuromuscul Dis 2021; 8:669-678. [PMID: 33814461 DOI: 10.3233/jnd-210641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle biopsy is one of the gold standards in the diagnostic workup of muscle disorders. By histopathologic analysis, characteristic features like inflammatory cellular infiltrations, fat and collagen replacement of muscle tissue or structural defects of the myofibers can be detected. In the past years, novel quantitative MRI (qMRI) techniques have been developed to quantify tissue parameters, thus providing a non-invasive diagnostic tool in several myopathies. OBJECTIVE This proof-of-principle study was performed to validate the qMRI-techniques to skeletal muscle biopsy results. METHODS Ten patients who underwent skeletal muscle biopsy for diagnostic purposes were examined by qMRI. Fat fraction, water T2-time and diffusion parameters were measured in the muscle from which the biopsy was taken. The proportion of fat tissue, the severity of degenerative and inflammatory parameters and the amount of type 1- and type 2- muscle fibers were determined in all biopsy samples. The qMRI-data were then correlated to the histopathological findings. RESULTS The amount of fat tissue in skeletal muscle biopsy correlated significantly with the fat fraction derived from the Dixon sequence. The water T2-time, a parameter for tissue edema, correlated with the amount of vacuolar changes of myofibers and endomysial macrophages in the histopathologic analysis. No significant correlations were found for diffusion parameters. CONCLUSION In this proof-of-principle study, qMRI techniques were related to characteristic histopathologic features in neuromuscular disorders. The study provides the basis for further development of qMRI methods in the follow-up of patients with neuromuscular disorders, especially in the context of emerging treatment strategies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|