1
|
Momenzadeh K, Yeritsyan D, Abbasian M, Kheir N, Hanna P, Wang J, Dosta P, Papaioannou G, Goldfarb S, Tang CC, Amar-Lewis E, Nicole Prado Larrea M, Martinez Lozano E, Yousef M, Wixted J, Wein M, Artzi N, Nazarian A. Stimulation of fracture mineralization by salt-inducible kinase inhibitors. Front Bioeng Biotechnol 2024; 12:1450611. [PMID: 39359266 PMCID: PMC11445660 DOI: 10.3389/fbioe.2024.1450611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Over 6.8 million fractures occur annually in the US, with 10% experiencing delayed- or non-union. Anabolic therapeutics like PTH analogs stimulate fracture repair, and small molecule salt inducible kinase (SIK) inhibitors mimic PTH action. This study tests whether the SIK inhibitor YKL-05-099 accelerates fracture callus osteogenesis. Methods 126 female mice underwent femoral shaft pinning and midshaft fracture, receiving daily injections of PBS, YKL-05-099, or PTH. Callus tissues were analyzed via RT-qPCR, histology, single-cell RNA-seq, and μCT imaging. Biomechanical testing evaluated tissue rigidity. A hydrogel-based delivery system for PTH and siRNAs targeting SIK2/SIK3 was developed and tested. Results YKL-05-099 and PTH-treated mice showed higher mineralized callus volume fraction and improved structural rigidity. RNA-seq indicated YKL-05-099 increased osteoblast subsets and reduced chondrocyte precursors. Hydrogel-released siRNAs maintained target knockdown, accelerating callus mineralization. Discussion YKL-05-099 enhances fracture repair, supporting selective SIK inhibitors' development for clinical use. Hydrogel-based siRNA delivery offers targeted localized treatment at fracture sites.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Hanna
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jialiang Wang
- The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Goldfarb
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eliz Amar-Lewis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michaela Nicole Prado Larrea
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edith Martinez Lozano
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohamed Yousef
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John Wixted
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marc Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
2
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Rundle CH, Gomez GA, Pourteymoor S, Mohan S. Sequential application of small molecule therapy enhances chondrogenesis and angiogenesis in murine segmental defect bone repair. J Orthop Res 2023; 41:1471-1481. [PMID: 36448182 PMCID: PMC10506518 DOI: 10.1002/jor.25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The increasing incidence of physiologic/pathologic conditions that impair the otherwise routine healing of endochondral bone fractures and the occurrence of severe bone injuries necessitate novel approaches to enhance clinically challenging bone fracture repair. To promote the healing of nonunion fractures, we tested an approach that used two small molecules to sequentially enhance cartilage development and conversion to the bone in the callus of a murine femoral segmental defect nonunion model of bone injury. Systemic injections of smoothened agonist 21k (SAG21k) were used to stimulate chondrogenesis through the activation of the sonic hedgehog (SHH) pathway early in bone repair, while injections of the prolyl hydroxylase domain (PHD)2 inhibitor, IOX2, were used to stimulate hypoxia signaling-mediated endochondral bone formation. The expression of SHH pathway genes and Phd2 target genes was increased in chondrocyte cell lines in response to SAG21k and IOX2 treatment, respectively. The segmental defect responded to sequential systemic administration of these small molecules with increased chondrocyte expression of PTCH1, GLI1, and SOX9 in response to SAG and increased expression of hypoxia-induced factor-1α and vascular endothelial growth factor-A in the defect tissues in response to IOX2. At 6 weeks postsurgery, the combined SAG-IOX2 therapy produced increased bone formation in the defect with the bony union over the injury. Clinical significance: This therapeutic approach was successful in promoting cartilage and bone formation within a critical-size segmental defect and established the utility of a sequential small molecule therapy for the enhancement of fracture callus development in clinically challenging bone injuries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
5
|
Rivera KO, Cuylear DL, Duke VR, O’Hara KM, Zhong JX, Elghazali NA, Finbloom JA, Kharbikar BN, Kryger AN, Miclau T, Marcucio RS, Bahney CS, Desai TA. Encapsulation of β-NGF in injectable microrods for localized delivery accelerates endochondral fracture repair. Front Bioeng Biotechnol 2023; 11:1190371. [PMID: 37284244 PMCID: PMC10241161 DOI: 10.3389/fbioe.2023.1190371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (β-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with β-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the β-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble β-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of β-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble β-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that β-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein β-NGF can be encapsulated within PEGDMA microrods for local delivery and that β-NGF bioactivity is maintained resulting in improved bone fracture repair.
Collapse
Affiliation(s)
- Kevin O. Rivera
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Darnell L. Cuylear
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Victoria R. Duke
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Kelsey M. O’Hara
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Justin X. Zhong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Nafisa A. Elghazali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Alex N. Kryger
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Chelsea S. Bahney
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A. Desai
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, CA, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Fortunato GM, Sigismondi S, Nicoletta M, Condino S, Montemurro N, Vozzi G, Ferrari V, De Maria C. Analysis of the Robotic-Based In Situ Bioprinting Workflow for the Regeneration of Damaged Tissues through a Case Study. Bioengineering (Basel) 2023; 10:bioengineering10050560. [PMID: 37237631 DOI: 10.3390/bioengineering10050560] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to critically analyse the workflow of the in situ bioprinting procedure, presenting a simulated neurosurgical case study, based on a real traumatic event, for collecting quantitative data in support of this innovative approach. After a traumatic event involving the head, bone fragments may have to be removed and a replacement implant placed through a highly demanding surgical procedure in terms of surgeon dexterity. A promising alternative to the current surgical technique is the use of a robotic arm to deposit the biomaterials directly onto the damaged site of the patient following a planned curved surface, which can be designed pre-operatively. Here we achieved an accurate planning-patient registration through pre-operative fiducial markers positioned around the surgical area, reconstructed starting from computed tomography images. Exploiting the availability of multiple degrees of freedom for the regeneration of complex and also overhanging parts typical of anatomical defects, in this work the robotic platform IMAGObot was used to regenerate a cranial defect on a patient-specific phantom. The in situ bioprinting process was then successfully performed showing the great potential of this innovative technology in the field of cranial surgery. In particular, the accuracy of the deposition process was quantified, as well as the duration of the whole procedure was compared to a standard surgical practice. Further investigations include a biological characterisation over time of the printed construct as well as an in vitro and in vivo analysis of the proposed approach, to better analyse the biomaterial performances in terms of osteo-integration with the native tissue.
Collapse
Affiliation(s)
- Gabriele Maria Fortunato
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Sofia Sigismondi
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Matteo Nicoletta
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Sara Condino
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- EndoCAS Center for Computer-Assisted Surgery, University of Pisa, 56126 Pisa, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Ferrari
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- EndoCAS Center for Computer-Assisted Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carmelo De Maria
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
7
|
Fracture Healing in Elderly Mice and the Effect of an Additional Severe Blood Loss: A Radiographic and Biomechanical Murine Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010070. [PMID: 36671642 PMCID: PMC9855159 DOI: 10.3390/bioengineering10010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Femoral fractures and severe bleeding frequently occur in old patients showing a delayed healing. As there are no studies investigating the combined effect of high age and severe blood loss on fracture healing, this was examined radiographically and biomechanically in this study. Therefore, young and old male mice were randomly assigned to three operation groups. In the fracture group (Fx), external fixator and osteotomy were applied to the femur. The combined trauma group (THFx) additionally received a pressure-controlled hemorrhage. Sham animals were only implanted with arterial catheter and external fixator. Sacrifice was performed after three weeks and bone healing was evaluated radiologically via µCT, as well as biomechanically using a three-point bending test. A decreased share of callus/total bone volume was observed in old mice with blood loss compared to old Fx. Hemorrhagic shock also reduced the trabecular number in old mice compared to Fx and young THFx. Moreover, a lower elastic limit in old Sham mice without fracture was revealed. Fracture combined with a high loss of blood further reduced the elastic limit in old mice compared to isolated Fx in old animals. In conclusion, this study showed that severe blood loss has a higher negative effect in old mice compared to young ones.
Collapse
|
8
|
Kalaitzoglou E, Fowlkes JL, Thrailkill KM. Mouse models of type 1 diabetes and their use in skeletal research. Curr Opin Endocrinol Diabetes Obes 2022; 29:318-325. [PMID: 35749285 PMCID: PMC9271636 DOI: 10.1097/med.0000000000000737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models. RECENT FINDINGS Humans with T1D have decreased bone mineral density and an increased risk for fragility fracture. Mouse models of insulin-deficiency diabetes (hereafter denoted as T1D) in many ways recapitulate these skeletal deficits. Utilizing techniques of microcomputed tomography, bone histomorphometry, biomechanical testing and fracture modeling, bone biomarker analysis, and Raman spectroscopy, mouse models of T1D have demonstrated abnormalities in bone mineralization, bone microarchitecture, osteoblast function, abnormal bone turnover, and diminished biomechanical properties of bone. SUMMARY Mouse models have provided significant insights into the underlying mechanisms involved in the abnormalities of bone observed in T1D in humans. These translational models have provided targets and pathways that may be modifiable to prevent skeletal complications of T1D.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - John L Fowlkes
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Jing Z, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Wei W. Bone formation and bone repair: The roles and crosstalk of osteoinductive signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Knox AM, McGuire AC, Natoli RM, Kacena MA, Collier CD. Methodology, selection, and integration of fracture healing assessments in mice. J Orthop Res 2021; 39:2295-2309. [PMID: 34436797 PMCID: PMC8542592 DOI: 10.1002/jor.25172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023]
Abstract
Long bone fractures are one of the most common and costly medical conditions encountered after trauma. Characterization of the biology of fracture healing and development of potential medical interventions generally involves animal models of fracture healing using varying genetic or treatment groups, then analyzing relative repair success via the synthesis of diverse assessment methodologies. Murine models are some of the most widely used given their low cost, wide variety of genetic variants, and rapid breeding and maturation. This review addresses key concerns regarding fracture repair investigations in mice and may serve as a guide in conducting and interpreting such studies. Specifically, this review details the procedures, highlights relevant parameters, and discusses special considerations for the selection and integration of the major modalities used for quantifying fracture repair in such studies, including X-ray, microcomputed tomography, histomorphometric, biomechanical, gene expression and biomarker analyses.
Collapse
Affiliation(s)
- Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
- Richard L. Roudebush VA Medical Center, IN, USA
| | | |
Collapse
|
11
|
Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep 2020; 10:22241. [PMID: 33335129 PMCID: PMC7747641 DOI: 10.1038/s41598-020-78983-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There are currently no pharmacological approaches in fracture healing designed to therapeutically stimulate endochondral ossification. In this study, we test nerve growth factor (NGF) as an understudied therapeutic for fracture repair. We first characterized endogenous expression of Ngf and its receptor tropomyosin receptor kinase A (TrkA) during tibial fracture repair, finding that they peak during the cartilaginous phase. We then tested two injection regimens and found that local β-NGF injections during the endochondral/cartilaginous phase promoted osteogenic marker expression. Gene expression data from β-NGF stimulated cartilage callus explants show a promotion in markers associated with endochondral ossification such as Ihh, Alpl, and Sdf-1. Gene ontology enrichment analysis revealed the promotion of genes associated with Wnt activation, PDGF- and integrin-binding. Subsequent histological analysis confirmed Wnt activation following local β-NGF injections. Finally, we demonstrate functional improvements to bone healing following local β-NGF injections which resulted in a decrease in cartilage and increase of bone volume. Moreover, the newly formed bone contained higher trabecular number, connective density, and bone mineral density. Collectively, we demonstrate β-NGF’s ability to promote endochondral repair in a murine model and uncover mechanisms that will serve to further understand the molecular switches that occur during cartilage to bone transformation.
Collapse
|
12
|
Tan Q, Wu JY, Liu YX, Liu K, Tang J, Ye WH, Zhu GH, Mei HB, Yang G. The neurofibromatosis type I gene promotes autophagy via mTORC1 signalling pathway to enhance new bone formation after fracture. J Cell Mol Med 2020; 24:11524-11534. [PMID: 32862562 PMCID: PMC7576311 DOI: 10.1111/jcmm.15767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bone fracture is one of the most common injuries. Despite the high regenerative capacity of bones, failure of healing still occurs to near 10% of the patients. Herein, we aim to investigate the modulatory role of neurofibromatosis type I gene (NF1) to osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs) and new bone formation after fracture in a rat model. We studied the NF1 gene expression in normal and non‐union bone fracture models. Then, we evaluated how NF1 overexpression modulated osteogenic differentiation of BMSCs, autophagy activity, mTORC1 signalling and osteoclastic bone resorption by qRT‐PCR, Western blot and immunostaining assays. Finally, we injected lentivirus‐NF1 (Lv‐NF1) to rat non‐union bone fracture model and analysed the bone formation process. The NF1 gene expression was significantly down‐regulated in non‐union bone fracture group, indicating NF1 is critical in bone healing process. In the NF1 overexpressing BMSCs, autophagy activity and osteogenic differentiation were significantly enhanced. Meanwhile, the NF1 overexpression inhibited mTORC1 signalling and osteoclastic bone resorption. In rat non‐union bone fracture model, the NF1 overexpression significantly promoted bone formation during fracture healing. In summary, we proved the NF1 gene is critical in non‐union bone healing, and NF1 overexpression promoted new bone formation after fracture by enhancing autophagy and inhibiting mTORC1 signalling. Our results may provide a novel therapeutic clue of promoting bone fracture healing.
Collapse
Affiliation(s)
- Qian Tan
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Jiang-Yan Wu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Yao-Xi Liu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Kun Liu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Jin Tang
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Wei-Hua Ye
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Guang-Hui Zhu
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Hai-Bo Mei
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| | - Ge Yang
- Department of Orthopedic Surgery, The Hunan Children's Hospital, Changsha, China
| |
Collapse
|
13
|
Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res 2020; 11:842-865. [PMID: 32783153 DOI: 10.1007/s13346-020-00829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone fracture is a major contributor to debilitation and death among patients with bone diseases. Thus, osteogenic protein therapeutics and their delivery to bone have been extensively researched as strategies to accelerate fracture healing. To prevent morbidity and mortality of fractures, which occur frequently in the aging population, there is a critical need for development of first-line therapeutics. Bone morphogenic protein-2 (BMP-2) has been at the forefront of bone regeneration research for its potent osteoinduction, despite safety concerns and biophysiological obstacles of delivery to bone. However, continued pursuit of osteoinductive proteins as a therapeutic option is largely aided by drug delivery systems, playing an imperative role in enhancing safety and efficacy. In this work, we highlighted several types of drug delivery platforms and their biomaterials, to evaluate the suitability in overcoming challenges of therapeutic protein delivery for bone regeneration. To showcase the clinical considerations for each type of platform, we have assessed the most common route of administration strategies for bone regeneration, classifying the platforms as implantable or injectable. Additionally, we have analyzed the commonly utilized models and methodology for safety and efficacy evaluation of these osteogenic protein-loaded systems, to present clinical opinions for future directions of research in this field. It is hoped that this review will promote research and development of clinically translatable osteogenic protein therapeutics, while targeting first-line treatment status for achieving desired outcomes of fracture healing. Graphical abstract.
Collapse
|
14
|
Thong FY, Mansor A, Ramalingam S, Yusof N. Does bone marrow aspirate help enhance the integration of gamma irradiated allograft bone? Cell Tissue Bank 2020; 21:107-117. [PMID: 31894432 DOI: 10.1007/s10561-019-09804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Bone allografts donated by other individuals offer a viable alternative to autograft. Risks of disease transmission are overcome by sterilizing the bone; unfortunately sterilization methods generally affect bone functional properties including osteogenic potential and biomechanical integrity. This study aimed to determine any enhancement effect when gamma sterilised allografts was impregnated with autologous bone marrow in improving the rate and quality of integration in metaphyseal-tibial defects of rabbits. Almost all subjects showed 50% of the defect being covered by new bones by the third week and smaller residual defect size in the treated group at the fifth week. Hounsfield units at the defect site showed increasing healing in all samples, with the treated group having an apparent advantage although insignificant (p > 0.05). In the histopathological score evaluating healing over cortical and cancellous bone at the fracture site showed only slight variations between the groups (p > 0.05). Therefore no enhanced healing by the autologous bone marrow was observed when added to the bone allografts in treating the unicortical defects.
Collapse
Affiliation(s)
- Fu Yuen Thong
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bran S, Baciut G, Baciut M, Mitre I, Onisor F, Hedesiu M, Manea A. The opportunity of using alloplastic bone augmentation materials in the maxillofacial region– Literature review. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2018.1455784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Simion Bran
- Department of Maxillofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Avram Manea
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous Biphasic Calcium Phosphate (BCP) scaffolds for early osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110027. [PMID: 31546388 DOI: 10.1016/j.msec.2019.110027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
The application of heat stress on a defect site during the healing process is a promising technique for early bone regeneration. The primary goal of this study was to investigate the effect of periodic heat shock on bone formation. MC3T3-E1 cells were seeded onto biphasic calcium phosphate (BCP) scaffolds, followed by periodic heating to evaluate osteogenic differentiation. Heat was applied to cells seeded onto scaffolds at 41 °C for 1 h once, twice, and four times a day for seven days and their viability, morphology, and differentiation were analyzed. BCP scaffolds with interconnected porous structures mimic bone biology for cellular studies. MTT and confocal studies have shown that heat shock significantly increased cell proliferation without any toxic effects. Compared to non-heated samples, heat shock enhanced calcium deposition and mineralization, which could be visualized by SEM observation and Alizarin red S staining. Immunostaining images showed the localization of osteogenic proteins ALP and OPN on heat-shocked cells. qRT-PCR analysis revealed the presence of more osteospecific markers, osteopontin (OPN), osteocalcin, collagen type X, and Runx2, in the heat-shocked samples than in the non-heated sample. Periodic heat shock significantly upregulated both heat shock proteins (HSP70 and HSP27) in differentiated MC3T3-E1 cells. The results of this study demonstrated that periodically heat applied especially two times a day was better approach for osteogenic differentiation. Hence, this work provides a define temperature and time schedule for the development of a clinical heating device in future for early bone regeneration during the postsurgical period.
Collapse
|
17
|
Rao M, Pang X, Yang J. Tobramycin promotes fracture healing by accelerating osteogenesis differentiation of MSCs through activating Wnt/β-catenin pathway. Minerva Med 2019; 111:189-192. [PMID: 31124631 DOI: 10.23736/s0026-4806.19.06096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingli Rao
- Department of Obstetrics and Gynecology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xianlun Pang
- Health Management Center, The Affiliated Hospital (TCM) of Southwest Medical University, Luzhou, China
| | - Jian Yang
- Department of Orthopedic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China -
| |
Collapse
|
18
|
Pomini KT, Cestari TM, Santos German ÍJ, de Oliveira Rosso MP, de Oliveira Gonçalves JB, Buchaim DV, Pereira M, Andreo JC, Rosa GM, Della Coletta BB, Cosin Shindo JVT, Buchaim RL. Influence of experimental alcoholism on the repair process of bone defects filled with beta-tricalcium phosphate. Drug Alcohol Depend 2019; 197:315-325. [PMID: 30875652 DOI: 10.1016/j.drugalcdep.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated the effect of ethanol on the repair in calvaria treated with beta-tricalcium phosphate (β-TCP). Forty rats were distributed into 2 groups: Water group (CG, n = 20) and Alcohol Group (AG, n = 20), which received 25% ethanol ad libitum after an adaptation period of 3 weeks. After 90 days of liquid diet, the rats were submitted to a 5.0 mm bilateral craniotomy in the parietal bones; the left parietal was filled with β-TCP (CG-TCP and AG-TCP) and the contralateral only with blood clot (CG-Clot and AG-Clot). The animals were killed after 10, 20, 40 and 60 days. The groups CG-Clot and AG-Clot showed similar pattern of bone formation with a gradual and significant increase in the amount of bone in CG-Clot (22.17 ± 3.18 and 34.81 ± 5.49) in relation to AG-Clot (9.35 ± 5.98 and 21.65 ± 6.70) in periods of 20-40 days, respectively. However, in the other periods there was no statistically significant difference. Alcohol ingestion had a negative influence on bone formation, even with the use of β-TCP, exhibiting slow resorption and replacement by fibrous tissue, with 16% of bone formation within 60 days in AG-TCP, exhibiting immature bone tissue with predominance of disorganized collagen fibers. Defects in CG-TCP showed bone tissue with predominance of lamellar arrangement filling 39% of the original defect. It can be concluded that chronic ethanol consumption impairs the ability to repair bone defects, even with the use of a β-TCP biomaterial.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Tânia Mary Cestari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | | | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil; Medical School, University Center of Adamantina (UNIFAI), Adamantina, Brazil.
| | - Mizael Pereira
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Geraldo Marco Rosa
- University of the Sacred Heart (USC), Bauru, Brazil; University of the Ninth of July (UNINOVE), Bauru, Brazil.
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil.
| |
Collapse
|
19
|
Wojda SJ, Donahue SW. Parathyroid hormone for bone regeneration. J Orthop Res 2018; 36:2586-2594. [PMID: 29926970 DOI: 10.1002/jor.24075] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
Delayed healing and/or non-union occur in approximately 5-10% of the fractures that occur annually in the United States. Segmental bone loss increases the probability of non-union. Though grafting can be an effective treatment for segmental bone loss, autografting is limited for large defects since a limited amount of bone is available for harvest. Parathyroid hormone (PTH) is a key regulator of calcium homeostasis in the body and plays an important role in bone metabolism. Presently PTH is FDA approved for use as an anabolic treatment for osteoporosis. The anabolic effect PTH has on bone has led to research on its use for bone regeneration applications. Numerous studies in animal models have indicated enhanced fracture healing as a result of once daily injections of PTH. Similarly, in a human case study, non-union persisted despite treatment attempts with internal fixation, external fixation, and autograft in combination with BMP-7, until off label use of PTH1-84 was utilized. Use of a biomaterial scaffold to locally deliver PTH to a defect site has also been shown to improve bone formation and healing around dental implants in dogs and drill defects in sheep. Thus, PTH may be used to promote bone regeneration and provide an alternative to autograft and BMP for the treatment of large segmental defects and non-unions. This review briefly summarizes the unmet clinical need for improved bone regeneration techniques and how PTH may help fill that void by both systemically and locally delivered PTH for bone regeneration applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2586-2594, 2018.
Collapse
Affiliation(s)
- Samantha J Wojda
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
20
|
Williams JN, Li Y, Valiya Kambrath A, Sankar U. The Generation of Closed Femoral Fractures in Mice: A Model to Study Bone Healing. J Vis Exp 2018:58122. [PMID: 30176027 PMCID: PMC6128110 DOI: 10.3791/58122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone fractures impose a tremendous socio-economic burden on patients, in addition to significantly affecting their quality of life. Therapeutic strategies that promote efficient bone healing are non-existent and in high demand. Effective and reproducible animal models of fractures healing are needed to understand the complex biological processes associated with bone regeneration. Many animal models of fracture healing have been generated over the years; however, murine fracture models have recently emerged as powerful tools to study bone healing. A variety of open and closed models have been developed, but the closed femoral fracture model stands out as a simple method for generating rapid and reproducible results in a physiologically relevant manner. The goal of this surgical protocol is to generate unilateral closed femoral fractures in mice and facilitate a post-fracture stabilization of the femur by inserting an intramedullary steel rod. Although devices such as a nail or a screw offer greater axial and rotational stability, the use of an intramedullary rod provides a sufficient stabilization for consistent healing outcomes without producing new defects in the bone tissue or damaging nearby soft tissue. Radiographic imaging is used to monitor the progression of callus formation, bony union, and subsequent remodeling of the bony callus. Bone healing outcomes are typically associated with the strength of the healed bone and measured with torsional testing. Still, understanding the early cellular and molecular events associated with fracture repair is critical in the study of bone tissue regeneration. The closed femoral fracture model in mice with intramedullary fixation serves as an attractive platform to study bone fracture healing and evaluate therapeutic strategies to accelerate healing.
Collapse
Affiliation(s)
- Justin N Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | | | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine;
| |
Collapse
|
21
|
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. J Bone Miner Res 2018; 33:930-944. [PMID: 29314250 PMCID: PMC6549722 DOI: 10.1002/jbmr.3379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
Approximately 10% of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days postfracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell (MSC) recruitment, and chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor, and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609-treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609-treated animals with significantly higher torsional strength and stiffness by 28 days postinjury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Roshni B. Patel
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kyung Shin Kang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Elsa Mével
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Austin J Pucylowski
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Mariah A. Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Michael J. Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY
| | - Melissa A. Kacena
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Stuart J. Warden
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Abstract
BACKGROUND Nonhealing bone defects represent an immense biomedical burden. Despite recent advances in protein-based bone regeneration, safety concerns over bone morphogenetic protein-2 have prompted the search for alternative factors. Previously, the authors examined the additive/synergistic effects of hedgehog and Nel-like protein-1 (NELL-1) on the osteogenic differentiation of mesenchymal stem cells in vitro. In this study, the authors sought to leverage their previous findings by applying the combination of Smoothened agonist (SAG), hedgehog signal activator, and NELL-1 to an in vivo critical-size bone defect model. METHODS A 4-mm parietal bone defect was created in mixed-gender CD-1 mice. Treatment groups included control (n = 6), SAG (n = 7), NELL-1 (n = 7), and SAG plus NELL-1 (n = 7). A custom fabricated poly(lactic-co-glycolic acid) disk with hydroxyapatite coating was used as an osteoinductive scaffold. RESULTS Results at 4 and 8 weeks showed increased bone formation by micro-computed tomographic analyses with either stimulus alone (SAG or NELL-1), but significantly greater bone formation with both components combined (SAG plus NELL-1). This included greater bone healing scores and increased bone volume and bone thickness. Histologic analyses confirmed a significant increase in new bone formation with the combination therapy SAG plus NELL-1, accompanied by increased defect vascularization. CONCLUSIONS In summary, the authors' results suggest that combining the hedgehog signaling agonist SAG and NELL-1 has potential as a novel therapeutic strategy for the healing of critical-size bone defects. Future directions will include optimization of dosage and delivery strategy for an SAG and NELL-1 combination product.
Collapse
|
23
|
Cohn Yakubovich D, Eliav U, Yalon E, Schary Y, Sheyn D, Cook-Wiens G, Sun S, McKenna CE, Lev S, Binshtok AM, Pelled G, Navon G, Gazit D, Gazit Z. Teriparatide attenuates scarring around murine cranial bone allograft via modulation of angiogenesis. Bone 2017; 97:192-200. [PMID: 28119180 DOI: 10.1016/j.bone.2017.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Nearly all bone fractures in humans can deteriorate into a non-union fracture, often due to formation of fibrotic tissue. Cranial allogeneic bone grafts present a striking example: although seemingly attractive for craniofacial reconstructions, they often fail due to fibrosis at the host-graft junction, which physically prevents the desired bridging of bone between the host and graft and revitalization of the latter. In the present study we show that intermittent treatment with recombinant parathyroid hormone-analogue (teriparatide) modulates neovascularization feeding in the graft surroundings, consequently reducing fibrosis and scar tissue formation and facilitates osteogenesis. Longitudinal inspection of the vascular tree feeding the allograft has revealed that teriparatide induces formation of small-diameter vessels in the 1st week after surgery; by the 2nd week, abundant formation of small-diameter blood vessels was detected in untreated control animals, but far less in teriparatide-treated mice, although in total, more blood capillaries were detected in the animals that were given teriparatide. By that time point we observed expression of the profibrogenic mediator TGF-β in untreated animals, but negligible expression in the teriparatide-treated mice. To evaluate the formation of scar tissue, we utilized a magnetization transfer contrast MRI protocol to differentiate osteoid tissue from scar tissue, based on the characterization of collagen fibers. Using this method we found that significantly more bone matrix was formed in animals given teriparatide than in control animals. Altogether, our findings show how teriparatide diminishes scarring, ultimately leading to superior bone graft integration.
Collapse
Affiliation(s)
- Doron Cohn Yakubovich
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Uzi Eliav
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Yalon
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Yeshai Schary
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Galen Cook-Wiens
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shuting Sun
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Gazit
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
24
|
Vas WJ, Shah M, Al Hosni R, Owen HC, Roberts SJ. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. J Tissue Eng 2017; 8:2041731417704791. [PMID: 28491274 PMCID: PMC5406151 DOI: 10.1177/2041731417704791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.
Collapse
Affiliation(s)
- Wollis J Vas
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Rawiya Al Hosni
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Owen
- Department of Natural Sciences, School of Science & Technology, Middlesex University, London, UK
| | - Scott J Roberts
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| |
Collapse
|
25
|
Duman IG, Davul S, Gokce H, Gonenci R, Özden R, Uruc V. Effects of Gaseous Ozone Treatment on Bone Regeneration in Femoral Defect Model in Rats. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ibrahim Gokhan Duman
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Serkan Davul
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Hasan Gokce
- Department of Pathology, Ýnönü University, Medical Faculty
| | | | - Raif Özden
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Vedat Uruc
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| |
Collapse
|
26
|
Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Goodarzi A, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. CELL JOURNAL 2016; 19:159-165. [PMID: 28367426 PMCID: PMC5241512 DOI: 10.22074/cellj.2016.4866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/07/2016] [Indexed: 11/06/2022]
Abstract
Objective Nonunion is defined as a minimum of a 9-month period of time since an injury
with no visibly progressive signs of healing for 3 months. Recent studies show that application
of mesenchymal stromal cells (MSCs) in the laboratory setting is effective for bone
regeneration. Animal studies have shown that MSCs can be used to treat nonunions. For
the first time in an Iranian population, the present study investigated the safety of MSC
implantation to treat human lower limb long bone nonunion.
Materials and Methods It is a prospective clinical trial for evaluating the safety of using
autologus bone marrow derived mesenchymal stromal cells for treating nonunion. Orthopedic
surgeons evaluated 12 patients with lower limb long bone nonunion for participation in this
study. From these, 5 complied with the eligibility criteria and received MSCs. Under fluoroscopic
guidance, patients received a one-time implantation of 20-50×106 MSCs into the nonunion site.
All patients were followed by anterior-posterior and lateral X-rays from the affected limb, in addition
to hematological, biochemical, and serological laboratory tests obtained before and 1, 3, 6,
and 12 months after the implantation. Possible adverse effects that included local or systemic,
serious or non-serious, and related or unrelated effects were recorded during this time period.
Results From a safety perspective, all patients tolerated the MSCs implantation during
the 12 months of the trial. Three patients had evidence of bony union based on the after
implantation Xrays.
Conclusion The results have suggested that implantation of bone marrow-derived MSCs
is a safe treatment for nonunion. A double-blind, controlled clinical trial is required to assess
the efficacy of this treatment (Registration Number: NCT01206179).
Collapse
Affiliation(s)
- Mohsen Emadedin
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Labibzadeh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Fazeli
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Mohseni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajiheh Azimian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Goodarzi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maede Ghorbani Liastani
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Mirazimi Bafghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Abstract
Delayed fracture healing and nonunion occurs in up to 5-10% of all fractures, and can present a challenging clinical scenario for the treating physician. Methods for the enhancement of skeletal repair may benefit patients that are at risk of, or have experienced, delayed healing or nonunion. These methods can be categorized into either physical stimulation therapies or biological therapies. Physical stimulation therapies include electrical stimulation, low-intensity pulsed ultrasonography, or extracorporeal shock wave therapy. Biological therapies can be further classified into local or systemic therapy based on the method of delivery. Local methods include autologous bone marrow, autologous bone graft, fibroblast growth factor-2, platelet-rich plasma, platelet-derived growth factor, and bone morphogenetic proteins. Systemic therapies include parathyroid hormone and bisphosphonates. This article reviews the current applications and supporting evidence for the use of these therapies in the enhancement of fracture healing.
Collapse
Affiliation(s)
- John A Buza
- NYU Langone Medical Center Hospital for Joint Diseases, New York, USA
| | - Thomas Einhorn
- NYU Langone Medical Center Hospital for Joint Diseases, New York, USA
| |
Collapse
|
28
|
A method of treatment for nonunion after fractures using mesenchymal stromal cells loaded on collagen microspheres and incorporated into platelet-rich plasma clots. INTERNATIONAL ORTHOPAEDICS 2016; 40:1033-8. [PMID: 26980620 DOI: 10.1007/s00264-016-3130-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/08/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE There is evidence showing that mesenchymal stromal cells (MSC) may constitute a potential therapeutic strategy to induce bone regeneration. In this work, we investigate the capacity of autologous bone marrow (BM) MSC loaded on collagen microspheres (CM) and included into autologous platelet-rich plasma (PRP) clots (MSC/CM/PRP) to induce bone formation in patients with nonunion lesions. METHODS MSC were isolated from BM cells of patients with nonunion lesions. Phenotypical (marker expression) and functional studies (osteogenic differentiation) were performed. MSC were seeded on CM and included into autologous PRP clot (MSC/CM/PRP). The capacity of MSC/CM/PRP to induce bone formation was evaluated in three patients diagnosed with nonunion. RESULTS MSC loaded on CM/PRP clots maintain their biological functions, in vitro. After three months, post-MSC transplantation, all patients showed evidence of osteogenesis at the site of nonunion. After one year, all patients showed a complete healing of the nonunion. CONCLUSIONS Our results support the use of autologous MSC transplanted as MSC/CM/PRP for the treatment of nonunion fractures. Future studies incorporating a larger number of patients may confirm the results obtained in this work.
Collapse
|
29
|
|
30
|
Ribeiro FO, Gómez-Benito MJ, Folgado J, Fernandes PR, García-Aznar JM. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2. PLoS One 2015; 10:e0127722. [PMID: 26043112 PMCID: PMC4456173 DOI: 10.1371/journal.pone.0127722] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 04/18/2015] [Indexed: 01/08/2023] Open
Abstract
The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.
Collapse
Affiliation(s)
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - João Folgado
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
31
|
Nicholls F, Ng AH, Hu S, Janic K, Fallis C, Willett T, Grynpas M, Ferguson P. Can OP-1 stimulate union in a rat model of pathological fracture post treatment for soft tissue sarcoma? J Orthop Res 2014; 32:1252-63. [PMID: 24964906 DOI: 10.1002/jor.22661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
The goal of soft tissue sarcoma management in the extremities is limb preservation, often combining surgery and external beam radiation. In patients who have undergone this therapy in the thigh, pathologic fracture is a serious, late complication. Non-union rates of 80-90% persist. No reliable biologic solution exists. A rat model combining one 18 Gy dose of radiation and diaphyseal periosteal excision reliably generates atrophic non-union of femoral fractures. We hypothesized that augmentation with OP-1 would increase union rate. Female Sprague-Dawley retired breeder rats were randomized to Control, Disease (external beam radiotherapy and periosteal stripping), Control + OP-1 (80 µg) and Disease + OP-1 groups. Animals underwent prophylactic fixation and controlled left femur fracture. Twenty-eight, 35, and 42 days post-fracture were end-points. Femora were analyzed using MicroCT, Back Scattered Electron Microscopy, and Histomorphometry. We observed a 2% union rate in the Disease groups (±OP-1 treatment). The union rate in Control groups was 97%. MicroCT demonstrated a lack of callus volume in Disease groups. Heterotopic ossification was observed in some OP-1 treated animals. The ineffectiveness of OP-1 in stimulating fracture union in this model suggests the endogenous repair mechanism has been compromised beyond the capabilities of osteoinductive biologics.
Collapse
Affiliation(s)
- Fred Nicholls
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kfuri M, de Freitas RL, Batista BB, Salim R, Castiglia MT, Tavares RA, Araújo PH. Updates in biological therapies for knee injuries: bone. Curr Rev Musculoskelet Med 2014; 7:220-7. [PMID: 25030275 PMCID: PMC4596166 DOI: 10.1007/s12178-014-9225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone is a unique tissue because of its mechanical properties, ability for self-repair, and enrollment in different metabolic processes such as calcium homeostasis and hematopoietic cell production. Bone barely tolerates deformation and tends to fail when overloaded. Fracture healing is a complex process that in particular cases is impaired. Osteoprogenitor cells proliferation, growth factors, and a sound tridimensional scaffold at fracture site are key elements for new bone formation and deposition. Mechanical stability and ample vascularity are also of great importance on providing a proper environment for bone healing. From mesenchymal stem cells delivery to custom-made synthetic scaffolds, many are the biological attempts to enhance bone healing. Impaired fracture healing represents a real burden to contemporary society. Sound basic science knowledge has contributed to newer approaches aimed to accelerate and improve the quality of bone healing.
Collapse
Affiliation(s)
- Mauricio Kfuri
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor - Hospital das Clinicas - Campus USP Av. Bandeirantes 3900 - 11o andar, 14048-900, Ribeirão Preto, SP, Brazil,
| | | | | | | | | | | | | |
Collapse
|
33
|
Marsell R, Hailer NP. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting. Ups J Med Sci 2014; 119:287-9. [PMID: 25017508 PMCID: PMC4116769 DOI: 10.3109/03009734.2014.931493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechanical stability of the subchondral bone was maintained. To our knowledge, this is the first report on the treatment of an osteonecrosis in this location with a BMP, and this strategy could potentially be applied in other locations with juxta-articular osteonecrosis.
Collapse
Affiliation(s)
- Richard Marsell
- Department of Orthopaedics, Institute of Surgical Sciences, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Nils P. Hailer
- Department of Orthopaedics, Institute of Surgical Sciences, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
34
|
Guimarães JM, Guimarães ICDV, Duarte MEL, Vieira T, Vianna VF, Fernandes MBC, Vieira AR, Casado PL. Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Orthop Res 2013; 31:1971-9. [PMID: 23939983 DOI: 10.1002/jor.22455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/08/2013] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process influenced by a multitude of factors and expression of several thousand genes. Polymorphisms in these genes can lead to an extended healing process and explain why certain patients are more susceptible to develop non-union. A total of 16 SNPs within five genes involved in bone repair pathogenesis (FAM5C, BMP4, FGF3, FGF10, and FGFR1) were investigated in 167 patients with long bone fractures, 101 with uneventful healing, and 66 presenting aseptic non-unions. Exclusion criteria were patients presenting pathological fractures, osteoporosis, hypertrophic and infected non-unions, pregnancy, and children. All genetic markers were genotyped using TaqMan real-time PCR. Chi-square test was used to compare genotypes, allele frequencies, and haplotype differences between groups. Binary logistic regression analyzed the significance of many covariates and the incidence of non-union. Statistical analysis revealed open fracture to be a risk factor for non-union development (p < 0.001, OR 3.6 [1.70-7.67]). A significant association of haplotype GTAA in BMP4 (p = 0.01) and FGFR1 rs13317 (p = 0.005) with NU could be observed. Also, uneventful healing showed association with FAM5C rs1342913 (p = 0.04). Our work supported the role of BMP4 and FGFR1 in NU fracture independently of the presence of previously described risk factors.
Collapse
Affiliation(s)
- João Matheus Guimarães
- Trauma and Orthopaedic Surgery, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, Peacher G, Hak DJ, Stahel PF. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res 2013; 8:33. [PMID: 24016227 PMCID: PMC3847297 DOI: 10.1186/1749-799x-8-33] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/04/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Novel bone substitutes have challenged the notion of autologous bone grafting as the 'gold standard' for the surgical treatment of fracture nonunions. The present study was designed to test the hypothesis that autologous bone grafting is equivalent to other bone grafting modalities in the management of fracture nonunions of the long bones. METHODS A retrospective review of patients with fracture nonunions included in two prospective databases was performed at two US level 1 trauma centers from January 1, 1998 (center 1) or January 1, 2004 (center 2), respectively, until December 31, 2010 (n = 574). Of these, 182 patients required adjunctive bone grafting and were stratified into the following cohorts: autograft (n = 105), allograft (n = 38), allograft and autograft combined (n = 16), and recombinant human bone morphogenetic protein-2 (rhBMP-2) with or without adjunctive bone grafting (n = 23). The primary outcome parameter was time to union. Secondary outcome parameters consisted of complication rates and the rate of revision procedures and revision bone grafting. RESULTS The autograft cohort had a statistically significant shorter time to union (198 ± 172-225 days) compared to allograft (416 ± 290-543 days) and exhibited a trend towards earlier union when compared to allograft/autograft combined (389 ± 159-619 days) or rhBMP-2 (217 ± 158-277 days). Furthermore, the autograft cohort had the lowest rate of surgical revisions (17%) and revision bone grafting (9%), compared to allograft (47% and 32%), allograft/autograft combined (25% and 31%), or rhBMP-2 (27% and 17%). The overall new-onset postoperative infection rate was significantly lower in the autograft group (12.4%), compared to the allograft cohort (26.3%) (P < 0.05). CONCLUSION Autologous bone grafting appears to represent the bone grafting modality of choice with regard to safety and efficiency in the surgical management of long bone fracture nonunions.
Collapse
Affiliation(s)
- Michael A Flierl
- Department of Orthopaedic Surgery, Denver Health Medical Center, University of Colorado Denver, School of Medicine, 777 Bannock Street, Denver, CO 80204, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hulsart-Billström G, Piskounova S, Gedda L, Andersson BM, Bergman K, Hilborn J, Larsson S, Bowden T. Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1201-9. [PMID: 23392969 DOI: 10.1007/s10856-013-4877-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/22/2013] [Indexed: 05/16/2023]
Abstract
The possibility to affect bone formation by using crushed versus solid hydrogels as carriers for bone morphogenetic protein 2 (BMP-2) was studied. Hydrogels, based on chemical crosslinking between hyaluronic acid and poly(vinyl alcohol) derivatives, were loaded with BMP-2 and hydroxyapatite. Crushed and solid forms of the gels were analyzed both in vitro via a release study using ¹²⁵I radioactive labeling of BMP-2, and in vivo in a subcutaneous ectopic bone model in rats. Dramatically different morphologies were observed for the ectopic bone formed in vivo in the two types of gels, even though virtually identical release profiles were observed in vitro. Solid hydrogels induced formation of a dense bone shell around non-degraded hydrogel, while crushed hydrogels demonstrated a uniform bone formation throughout the entire sample. These results suggest that by crushing the hydrogel, the construct's three-dimensional network becomes disrupted. This could expose unreacted functional groups, making the fragment's surfaces reactive and enable limited chemical fusion between the crushed hydrogel fragments, leading to similar in vitro release profiles. However, in vivo these interactions could be broken by enzymatic activity, creating a macroporous structure that allows easier cell infiltration, thus, facilitating bone formation.
Collapse
|
37
|
Malhotra A, Pelletier MH, Yu Y, Walsh WR. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 2013. [PMID: 23197184 DOI: 10.1007/s00402-012-1641-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased concentration of platelets within platelet-rich plasma (PRP) provides a vehicle to deliver supra-physiologic concentrations of growth factors to an injury site, possibly accelerating or otherwise improving connective tissue regeneration. This potential benefit has led to the application of PRP in several applications; however, inconsistent results have limited widespread adoption in bone healing. This review provides a core understanding of the bone healing mechanisms, and corresponds this to the factors present in PRP. In addition, the current state of the art of PRP preparation, the key aspects that may influence its effectiveness, and treatment outcomes as they relate specifically to bone defect healing are presented. Although PRP does have a sound scientific basis, its use for bone healing appears only beneficial when used in combination with osteoconductive scaffolds; however, neither allograft nor autograft appear to be appropriate carriers. Aggressive processing techniques and very high concentrations of PRP may not improve healing outcomes. Moreover, many other variables exist in PRP preparation and use that influence its efficacy; the effect of these variables should be understood when considering PRP use. This review includes the essentials of what has been established, what is currently missing in the literature, and recommendations for future directions.
Collapse
Affiliation(s)
- Angad Malhotra
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
38
|
Guang LG, Boskey AL, Zhu W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. Int J Biochem Cell Biol 2012; 44:1825-33. [PMID: 22771956 DOI: 10.1016/j.biocel.2012.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/18/2022]
Abstract
Chemokine stromal cell-derived factor-1 (SDF-1) signals via binding to its primary transmembrane receptor, cysteine (C)-X-C chemokine receptor-4 (CXCR4). We previously reported that SDF-1 regulates osteogenic differentiation of mesenchymal stem/progenitor cells (MPCs) induced by bone morphogenetic protein-2 (BMP2). Although BMP2 is also capable of inducing chondrogenic differentiation of MPCs, the involvement of SDF-1 signaling in this function of BMP2 remains unknown. In this study, we aimed to test the role of SDF-1 signaling involved in BMP2-induced chondrogenic differentiation, using ATDC5 chondroprogenitors and mouse bone marrow-derived mesenchymal stromal cells (BMSCs). Our data showed that blocking of the SDF-1/CXCR4 pathway inhibits the differentiation of these cells into the chondrocytic lineages in response to BMP2 stimulation, evidenced by the reduced expression of type II collagen α1 (Col2α1), aggrecan, and type X collagen α1 (Col10α1), markers for chondrogenic differentiation. This effect of blocking SDF-1 signaling on BMP2-chondrogenic differentiation is associated with suppressed Sox9 and Runx2 expression (key transcription factors required for early and late stages of chondrogenic differentiation, respectively) and mediated via inhibiting intracellular Smad and Erk activation. Moreover, we found that addition of exogenous SDF-1 protein synergistically enhances the BMP2-induced chondrogenic differentiation in a dose-dependent manner. Collectively, our results demonstrated a novel role of SDF-1 signaling in regulating BMP2-induced chondrogenic differentiation in vitro. These data provide new insights into molecular mechanisms underlying BMP2-osteo/chondrogenesis, and may lead to the identification of new therapeutic targets and strategies to improve cartilage repair and regeneration in broad orthopaedic situations.
Collapse
Affiliation(s)
- Liang G Guang
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | |
Collapse
|
39
|
Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics 2011; 34:e877-84. [PMID: 22146205 DOI: 10.3928/01477447-20111021-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This retrospective study investigated the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) mixed with cancellous allograft on fracture healing compared to iliac crest autograft in the treatment of long bone nonunion. Eighty-nine patients with 93 established long bone nonunions treated between January 2002 and June 2004 at a single academic Level I trauma center were evaluated. Patients with clinical and radiographic evidence of failed fracture union underwent nonunion debridement, revision of fixation, and implantation at the nonunion site of either rhBMP-2 or the standard treatment autologous iliac crest bone graft. Union rate, operative time, estimated intraoperative blood loss, hospital length of stay, and postoperative infections were recorded. Nineteen nonunions received rhBMP-2 on a specialized carrier matrix (an absorbable collagen sponge) mixed with cancellous allograft, and 74 nonunions were treated with autologous iliac crest bone graft. There was no statistical difference in the rate of healing between treatment groups (68.4% vs 85.1%, respectively; P=.09). Incidence of postoperative infection was 16.2% after autologous iliac crest bone graft and 5.3% after rhBMP-2/absorbable collagen sponge (P=.22). Iliac crest autograft was associated with longer operative procedures (257.9±93.0 vs 168.9±86.5 minutes; P=.0007) and greater intraoperative blood loss (554.6±447.8 vs 331.6±357.2 mL; P=.01). These outcomes suggest that rhBMP-2 may provide a suitable alternative to autologous iliac bone graft, with the possible advantages of shorter operative time and reduced intraoperative blood loss, and may be considered as part of the orthopedic surgeon's treatment options.
Collapse
|
40
|
Colnot C. Cell sources for bone tissue engineering: insights from basic science. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:449-57. [PMID: 21902612 DOI: 10.1089/ten.teb.2011.0243] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the goals of bone tissue engineering is to design delivery methods for skeletal stem/progenitor cells to repair or replace bone. Although the materials used to retain cells play a central role in the quality of the constructs, the source of cells is key for bone regeneration. Bone marrow is the most common cell source, but other tissues are now being explored, such as the periosteum, fat, muscle, cord blood, and embryonic or induced pluripotent stem cells. The therapeutic effect of exogenous stem/progenitor cells is accepted, yet their contribution to bone repair is not well defined. The in vitro osteo- and/or chondrogenic potential of these skeletal progenitors do not necessarily predict their differentiation potential in vivo and their function may be affected by their ability to home correctly to bone. This review provides an overview of animal models used to test the efficacy of cell-based approaches. We examine the mechanisms of endogenous cell recruitment during bone repair and compare the role of local versus systemic cell recruitment. We discuss how the normal repair process can help define efficacious cell sources for bone tissue engineering and improve their methods of delivery.
Collapse
Affiliation(s)
- Céline Colnot
- INSERM U781, Tour Lavoisier 2ème étage, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
41
|
Kasturi G, Adler RA. Mechanical means to improve bone strength: ultrasound and vibration. Curr Rheumatol Rep 2011; 13:251-6. [PMID: 21484337 DOI: 10.1007/s11926-011-0177-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Not all fractures heal well. One method that has been used to improve fracture healing is low-intensity pulsed ultrasound (LIPUS). LIPUS has been US Food and Drug Administration approved for several years, and some preclinical and clinical evidence indicates that fracture healing can be improved by this technique, which appears to be generally safe. There are several suggested mechanisms of action of LIPUS. Clinical studies generally support its usefulness in accelerating fracture healing. A less-established modality is whole body vibration (WBV), which appears to stimulate bone and muscle growth while suppressing adipogenesis in animal studies. Early studies in humans, including some in children with disabilities, suggest that WBV holds promise as a technique for reducing fracture risk. The exact place of WBV in preventing fracture remains to be established.
Collapse
Affiliation(s)
- Gopi Kasturi
- Physical Medicine and Rehabilitation, VA Central California Health Care System, Fresno, CA, USA.
| | | |
Collapse
|
42
|
Datta NS. Osteoporotic fracture and parathyroid hormone. World J Orthop 2011; 2:67-74. [PMID: 22474638 PMCID: PMC3302045 DOI: 10.5312/wjo.v2.i8.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/19/2011] [Accepted: 06/01/2011] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and age-related bone loss is associated with changes in bone remodeling characterized by decreased bone formation relative to bone resorption, resulting in bone fragility and increased risk of fractures. Stimulating the function of bone-forming osteoblasts, is the preferred pharmacological intervention for osteoporosis. Recombinant parathyroid hormone (PTH), PTH(1-34), is an anabolic agent with proven benefits to bone strength and has been characterized as a potential therapy for skeletal repair. In spite of PTH's clinical use, safety is a major consideration for long-term treatment. Studies have demonstrated that intermittent PTH treatment enhances and accelerates the skeletal repair process via a number of mechanisms. Recent research into the molecular mechanism of PTH action on bone tissue has led to the development of PTH analogs to control osteoporotic fractures. This review summarizes a number of advances made in the field of PTH and bone fracture to combat these injuries in humans and in animal models. The ultimate goal of providing an alternative to PTH, currently the sole anabolic therapy in clinical use, to promote bone formation and improve bone strength in the aging population is yet to be achieved.
Collapse
|
43
|
Abstract
The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing.
Collapse
|
44
|
Alaee F, Sugiyama O, Virk MS, Tang Y, Wang B, Lieberman JR. In vitro evaluation of a double-stranded self-complementary adeno-associated virus type2 vector in bone marrow stromal cells for bone healing. GENETIC VACCINES AND THERAPY 2011; 9:4. [PMID: 21352585 PMCID: PMC3056728 DOI: 10.1186/1479-0556-9-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/27/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Both adenoviral and lentiviral vectors have been successfully used to induce bone repair by over-expression of human bone morphogenetic protein 2 (BMP-2) in primary rat bone marrow stromal cells in pre-clinical models of ex vivo regional gene therapy. Despite being a very efficient means of gene delivery, there are potential safety concerns that may limit the adaptation of these viral vectors for clinical use in humans. Recombinant adeno-associated viral (rAAV) vector is a promising viral vector without known pathogenicity in humans and has the potential to be an effective gene delivery vehicle to enhance bone repair. In this study, we investigated gene transfer in rat and human bone marrow stromal cells in order to evaluate the effectiveness of the self-complementary AAV vector (scAAV) system, which has higher efficiency than the single-stranded AAV vector (ssAAV) due to its unique viral genome that bypasses the rate-limiting conversion step necessary in ssAAV. METHODS Self-complementaryAAV2 encoding GFP and BMP-2 (scAAV2-GFP and scAAV2-BMP-2) were used to transduce human and rat bone marrow stromal cells in vitro, and subsequently the levels of GFP and BMP-2 expression were assessed 48 hours after treatment. In parallel experiments, adenoviral and lentiviral vector mediated over-expression of GFP and BMP-2 were used for comparison. RESULTS Our results demonstrate that the scAAV2 is not capable of inducing significant transgene expression in human and rat bone marrow stromal cells, which may be associated with its unique tropism. CONCLUSIONS In developing ex vivo gene therapy regimens, the ability of a vector to induce the appropriate level of transgene expression needs to be evaluated for each cell type and vector used.
Collapse
Affiliation(s)
- Farhang Alaee
- New England Musculoskeletal Institute, Department of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | | | | | | | | | | |
Collapse
|