1
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
2
|
Turner RT, Branscum AJ, Iwaniec UT. Long-duration leptin transgene expression in dorsal vagal complex does not alter bone parameters in female Sprague Dawley rats. Bone Rep 2024; 21:101769. [PMID: 38706522 PMCID: PMC11067478 DOI: 10.1016/j.bonr.2024.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Deepika F, Bathina S, Armamento-Villareal R. Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review. Biomedicines 2023; 11:biomedicines11020644. [PMID: 36831180 PMCID: PMC9953715 DOI: 10.3390/biomedicines11020644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism. METHODS This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords. RESULTS Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets. CONCLUSION New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| |
Collapse
|
4
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
5
|
Garbe A, Graef F, Appelt J, Schmidt-Bleek K, Jahn D, Lünnemann T, Tsitsilonis S, Seemann R. Leptin Mediated Pathways Stabilize Posttraumatic Insulin and Osteocalcin Patterns after Long Bone Fracture and Concomitant Traumatic Brain Injury and Thus Influence Fracture Healing in a Combined Murine Trauma Model. Int J Mol Sci 2020; 21:E9144. [PMID: 33266324 PMCID: PMC7729898 DOI: 10.3390/ijms21239144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies on insulin, leptin, osteocalcin (OCN), and bone remodeling have evoked interest in the interdependence of bone formation and energy household. Accordingly, this study attempts to investigate trauma specific hormone changes in a murine trauma model and its influence on fracture healing. Thereunto 120 female wild type (WT) and leptin-deficient mice underwent either long bone fracture (Fx), traumatic brain injury (TBI), combined trauma (Combined), or neither of it and therefore served as controls (C). Blood samples were taken weekly after trauma and analyzed for insulin and OCN concentrations. Here, WT-mice with Fx and, moreover, with combined trauma showed a greater change in posttraumatic insulin and OCN levels than mice with TBI alone. In the case of leptin-deficiency, insulin changes were still increased after bony lesion, but the posttraumatic OCN was no longer trauma specific. Four weeks after trauma, hormone levels recovered to normal/basal line level in both mouse strains. Thus, WT- and leptin-deficient mice show a trauma specific hyperinsulinaemic stress reaction leading to a reduction in OCN synthesis and release. In WT-mice, this causes a disinhibition and acceleration of fracture healing after combined trauma. In leptin-deficiency, posttraumatic OCN changes are no longer specific and fracture healing is impaired regardless of the preceding trauma.
Collapse
Affiliation(s)
- Anja Garbe
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Frank Graef
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Tim Lünnemann
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Ricarda Seemann
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| |
Collapse
|
6
|
Grevenstein D, Heilig J, Dargel J, Oppermann J, Eysel P, Brochhausen C, Niehoff A. COMP in the Infrapatellar Fat Pad-Results of a Prospective Histological, Immunohistological, and Biochemical Case-Control Study. J Orthop Res 2020; 38:747-758. [PMID: 31696983 DOI: 10.1002/jor.24514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis (OA) involves several structures and molecules in the joint, which interact in a pathophysiological process. One of these molecules is the cartilage oligomeric matrix protein (COMP). Elevated COMP levels in the synovial fluid as well as in the serum have been described in OA patients. However, this has not been described in the infrapatellar fat pad (IPFP) tissue before. In this prospective trial, we collected 14 IPFPs from patients with high-grade OA (mean age 63.8 ± 17.6 years) who underwent total knee replacement (OA group) and from 11 healthy patients (mean age 33.7 ± 14.8 years) who underwent anterior cruciate ligament reconstruction (control group). The presence of macrophages (CD68 and CD206) and proinflammatory cytokines (interleukin 1β [IL-1β] and IL-6) was analyzed. Histological and immunohistological examinations as well as immunoblotting analysis for COMP, leptin, and matrix-metalloproteinase-3 were performed. The IPFPs of both the OA and control group consisted of adipose tissue and fibrous tissue, and the fibrous tissue showed higher score values than the adipose tissue for COMP staining (intensity as well as stained area) in both groups. Although COMP could be detected in most samples, leptin expression was found only in single specimens. COMP could be detected mostly in the fibrous tissue portion of the IPFP. We speculate that it is involved in a remodeling process taking place in the IPFP during OA. Presence of leptin was irregular in immunohistology, and the control group showed higher scores in case of presence. Interestingly, immunoblotting could detect leptin in all analyzed samples. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:747-758, 2020.
Collapse
Affiliation(s)
- David Grevenstein
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Juliane Heilig
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Jens Dargel
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Departement for Orthopedic Surgery, St. Josefs-Hospital, Wiesbaden, Germany
| | - Johannes Oppermann
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Peer Eysel
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
7
|
Wang CH, Lai YH, Lin YL, Kuo CH, Syu RJ, Chen MC, Hsu BG. Increased Serum Leptin Level Predicts Bone Mineral Density in Hemodialysis Patients. Int J Endocrinol 2020; 2020:8451751. [PMID: 32565794 PMCID: PMC7290877 DOI: 10.1155/2020/8451751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Leptin acts through the adipose-bone axis to regulate bone mineral density (BMD). This study evaluated the relationship between BMD and serum leptin levels in patients on hemodialysis. METHODS In this cross-sectional study including 98 hemodialysis patients, BMD was measured using dual energy X-ray absorptiometry of the lumbar vertebrae (L2-L4), and serum leptin levels were determined using an enzyme immunoassay. RESULTS There were 25 (25.5%), 13 (13.3%), and 60 (61.2%) patients with osteopenia, osteoporosis, and normal BMD, respectively. Advanced age (P=0.017); decreased body mass index (BMI, P < 0.001); body height (P < 0.001); prehemodialysis body weight (BW, P < 0.001); post-hemodialysis BW (P < 0.001); waist circumference (P < 0.001); and triglyceride (P=0.015), albumin (P=0.004), and leptin levels (P=0.017) were associated with lower lumbar T scores, whereas increased urea reduction rate (URR, P=0.004) and fractional clearance index for urea (Kt/V, P=0.004) were associated with lower lumbar T scores. The multivariable forward stepwise linear regression analysis with adjustment for sex; age; body height; prehemodialysis BW; BMI; waist circumference; logarithmically transformed triglycerides (log-triglycerides), albumin, creatinine, and leptin (log-leptin) levels; URR; and Kt/V indicated that high serum level of log-leptin (R 2 change = 0.184; P < 0.001), increased prehemodialysis BW (R 2 change = 0.325; P=0.008), male sex (R 2 change = 0.048; P=0.001), young age (R 2 change = 0.044; P=0.012), and increased serum albumin level (R 2 change = 0.017; P=0.044) were significantly and independently associated with lumbar BMD. CONCLUSIONS Advanced age and female sex were associated with poor BMD, whereas increased BW, serum albumin, and leptin levels were positively associated with BMD in patients on hemodialysis.
Collapse
Affiliation(s)
- Chih-Hsien Wang
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Hsien Lai
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Li Lin
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chiu-Huang Kuo
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ru-Jiang Syu
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ming-Chun Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pediatric, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Administration of Tramadol or Buprenorphine via the drinking water for post-operative analgesia in a mouse-osteotomy model. Sci Rep 2019; 9:10749. [PMID: 31341225 PMCID: PMC6656891 DOI: 10.1038/s41598-019-47186-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Adequate analgesia is essential whenever pain might occur in animal experiments. Unfortunately, the selection of suitable analgesics for mice in bone-linked models is limited. Here, we evaluated two analgesics – Tramadol [0.1 mg/ml (Tlow) vs. 1 mg/ml (Thigh)] and Buprenorphine (Bup; 0.009 mg/ml) – after a pre-surgical injection of Buprenorphine, in a mouse-osteotomy model. The aim of this study was to verify the efficacy of these opioids in alleviating pain-related behaviors, to provide evidence for adequate dosages and to examine potential side effects. High concentrations of Tramadol affected water intake, drinking frequency, food intake and body weight negatively in the first 2–3 days post-osteotomy, while home cage activity was comparable between all groups. General wellbeing parameters were strongly influenced by anesthesia and analgesics. Model-specific pain parameters did not indicate more effective pain relief at high concentrations of Tramadol. In addition, ex vivo high-resolution micro computed tomography (µCT) analysis and histology analyzing bone healing outcomes showed no differences between analgesic groups with respect to newly formed mineralized bone, cartilage and vessels. Our results show that high concentrations of Tramadol do not improve pain relief compared to low dosage Tramadol and Buprenorphine, but rather negatively affect animal wellbeing.
Collapse
|
9
|
Reid IR, Baldock PA, Cornish J. Effects of Leptin on the Skeleton. Endocr Rev 2018; 39:938-959. [PMID: 30184053 DOI: 10.1210/er.2017-00226] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Leptin originates in adipocytes, including those in bone marrow, and circulates in concentrations 20 to 90 times higher than those in the cerebrospinal fluid. It has direct anabolic effects on osteoblasts and chondrocytes, but it also influences bone indirectly, via the hypothalamus and sympathetic nervous system, via changes in body weight, and via effects on the production of other hormones (e.g., pituitary). Leptin's role in bone physiology is determined by the balance of these conflicting effects. Reflecting this inconsistency, the leptin-deficient mouse has reduced length and bone mineral content of long bones but increased vertebral trabecular bone. A consistent bone phenotype in human leptin deficiency has not been established. Systemic leptin administration in animals and humans usually exerts a positive effect on bone mass, and leptin administration into the cerebral ventricles usually normalizes the bone phenotype in leptin-deficient mice. Reflecting the role of the sympathetic nervous system in mediating the central catabolic effects of leptin on the skeleton, β-adrenergic agonists and antagonists have major effects on bone in mice, but this is not consistently seen in humans. The balance of the central and peripheral effects of leptin on bone remains an area of substantial controversy and might vary between species and according to other factors such as body weight, baseline circulating leptin levels, and the presence of specific pathologies. In humans, leptin is likely to contribute to the positive relationship observed between adiposity and bone density, which allows the skeleton to respond appropriately to changes in soft tissue mass.
Collapse
Affiliation(s)
- Ian R Reid
- University of Auckland, Auckland, New Zealand.,Department of Endocrinology, Auckland District Health Board, Auckland, New Zealand
| | - Paul A Baldock
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
10
|
Wu Z, Shao P, Dass CR, Wei Y. Systemic leptin administration alters callus VEGF levels and enhances bone fracture healing in wildtype and ob/ob mice. Injury 2018; 49:1739-1745. [PMID: 30244701 DOI: 10.1016/j.injury.2018.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/05/2018] [Accepted: 06/30/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Leptin's role in bone formation has been reported, however, its mechanism of affecting bone metabolism is remaining unclear. In this study, we aimed to test whether leptin has a positive effect on fracture healing through the possible mechanism of increasing vascular endothelial growth factor (VEGF) expression in callus tissue. METHODS Standardized femur fractures were created in leptin-deficient ob/ob and wildtype C57BL/6J mice, and recombinant mouse leptin or its vehicle (physiological saline) was administered intraperitoneally during the study. Body weight, radiological, histologic and immunoblotting analyses were performed at different stages of fracture healing. KEY FINDINGS The results showed that leptin treatment led to lower rate of body weight change in both mice genotypes. Radiological and histological analyses showed that the experimental groups had better fracture healing at 14, 21 and 28 days compared to the control groups. Leptin-treated groups had significantly higher VEGF expression in callus compared with the control groups at 2 and 3 weeks post-fracture except normal mice at 2 weeks, and leptin-deficient mice had higher VEGF levels in calluses than normal mice at the same timepoint. CONCLUSION Low-dose systemically-administered leptin has a positive effect on promoting fracture healing during the latter stages in a clinically-relevant mouse bone fracture model, and increase callus VEGF levels.
Collapse
Affiliation(s)
- Zhisheng Wu
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Peng Shao
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China; Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, Australia
| | - Yongzhong Wei
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Lang A, Schulz A, Ellinghaus A, Schmidt-Bleek K. Osteotomy models - the current status on pain scoring and management in small rodents. Lab Anim 2018; 50:433-441. [PMID: 27909193 DOI: 10.1177/0023677216675007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fracture healing is a complex regeneration process which produces new bone tissue without scar formation. However, fracture healing disorders occur in approximately 10% of human patients and cause severe pain and reduced quality of life. Recently, the development of more standardized, sophisticated and commercially available osteosynthesis techniques reflecting clinical approaches has increased the use of small rodents such as rats and mice in bone healing research dramatically. Nevertheless, there is no standard for pain assessment, especially in these species, and consequently limited information regarding the welfare aspects of osteotomy models. Moreover, the selection of analgesics is restricted for osteotomy models since non-steroidal anti-inflammatory drugs (NSAIDs) are known to affect the initial, inflammatory phase of bone healing. Therefore, opioids such as buprenorphine and tramadol are often used. However, dosage data in the literature are varied. Within this review, we clarify the background of osteotomy models, explain the current status and challenges of animal welfare assessment, and provide an example score sheet including model specific parameters. Furthermore, we summarize current refinement options and present a brief outlook on further 3R research.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany .,Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.,German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Anja Schulz
- German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
12
|
The temporal expression of adipokines during spinal fusion. Spine J 2017. [PMID: 28647583 DOI: 10.1016/j.spinee.2017.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Adipokines are secreted by white adipose tissue and have been associated with fracture healing. Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model. PURPOSE Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model. STUDY DESIGN The study design included a laboratory animal model. METHODS New Zealand white rabbits were assigned to either sham surgery (n=2), unilateral posterior spinal fusion (n=14), or bilateral posterior spinal fusion (n=14). Rabbits were euthanized 1-6 and 10 weeks out from surgery. Fusion was evaluated by radiographs, manual palpation, and histology. Reverse transcription-polymerase chain reaction on the bone fusion mass catalogued the gene expression of leptin, adiponectin, resistin, and vascular endothelial growth factor (VEGF) at each time point. Results were normalized to the internal control gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (2^ΔCt), and control bone sites (2^ΔΔCt). Quantitative data were analyzed by two-factor analysis of variance (p<.05). RESULTS Manual palpation scores, radiograph scores, and histologic findings showed progression of boney fusion over time (p<.0003). The frequency of fusion by palpation after 4 weeks was 68.75%. Leptin expression in decortication and bone graft sites peaked at 5 weeks after the fusion procedure (p=.0143), adiponectin expression was greatest 1 week after surgery (p<.001), VEGF expression peaked at 4 weeks just after initial increases in leptin expression (p<.001), and resistin decreased precipitously 1 week after the fusion procedure (p<.001). CONCLUSIONS Leptin expression is likely associated with the maturation phase of bone fusion. Adiponectin and resistin may play a role early on during the fusion process. Our results suggest that leptin expression may be upstream of VEGF expression during spinal fusion, and both appear to play an important role in bone spinal fusion.
Collapse
|
13
|
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat 2017; 12:16-25. [PMID: 29662775 PMCID: PMC5866497 DOI: 10.1016/j.jot.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.
Collapse
Affiliation(s)
- Huan Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hai Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Tan Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
14
|
Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol 2017; 232:461-474. [PMID: 28057869 PMCID: PMC5288125 DOI: 10.1530/joe-16-0484] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
Leptin, the protein product of the ob gene, is essential for normal bone growth, maturation and turnover. Peripheral actions of leptin occur at lower serum levels of the hormone than central actions because entry of leptin into the central nervous system (CNS) is limited due to its saturable transport across the blood-brain barrier (BBB). We performed a study in mice to model the impact of leptin production associated with different levels of adiposity on bone formation and compared the response with well-established centrally mediated actions of the hormone on energy metabolism. Leptin was infused (0, 4, 12, 40, 140 or 400 ng/h) for 12 days into 6-week-old female ob/ob mice (n = 8/group) using sc-implanted osmotic pumps. Treatment resulted in a dose-associated increase in serum leptin. Bone formation parameters were increased at EC50 infusion rates of 7-17 ng/h, whereas higher levels (EC50, 40-80 ng/h) were required to similarly influence indices of energy metabolism. We then analyzed gene expression in tibia and hypothalamus at dose rates of 0, 12 and 140 ng/h; the latter dose resulted in serum leptin levels similar to WT mice. Infusion with 12 ng/h leptin increased the expression of genes associated with Jak/Stat signaling and bone formation in tibia with minimal effect on Jak/Stat signaling and neurotransmitters in hypothalamus. The results suggest that leptin acts peripherally to couple bone acquisition to energy availability and that limited transport across the BBB insures that the growth-promoting actions of peripheral leptin are not curtailed by the hormone's CNS-mediated anorexigenic actions.
Collapse
Affiliation(s)
- Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics ProgramSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
15
|
Abstract
Background Leptin plays a crucial role in bone metabolism, and its level is related to bone callus formation in the fracture repair process. The objective of this study was to evaluate the effect of recombinant leptin on the healing process of femoral fractures in rats. Material/Methods Forty-eight male Sprague Dawley (SD) rats with an average body weight of 389 g (range: 376–398 g) and an average age of 10 weeks were included in this animal research, and all rats were randomly divided into two major groups. Then standardized femur fracture models were implemented in all SD rats. Rats in the control group were treated with only 0.5 mL of physiological saline, and rats in the experimental group were treated with recombinant leptin 5 μg/kg/d along with the same 0.5 mL of physiological saline for 42 days intraperitoneally. At the same time, each major group was evenly divided into three parallel subgroups for each parallel bone evaluation separately at the second, fourth, and sixth weeks. Each subgroup included eight rats. Results The total radiological evaluation results showed that the healing progress of femoral fracture in the experimental group was superior to that in the control group from the fourth week. At the sixth week, experimental group rats began to present significantly better femoral fracture healing progress than that of the control group rats. Results of biomechanics show the ultimate load (N) and deflection ultimate load (mm) of the experimental group rats was significantly increased compared with that of the control group rats from the fourth week. Conclusions Our results suggest that leptin may have a positive effect on SD rat femur fracture healing.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
16
|
Lin HN, Cottrell J, O'Connor JP. Variation in lipid mediator and cytokine levels during mouse femur fracture healing. J Orthop Res 2016; 34:1883-1893. [PMID: 26919197 DOI: 10.1002/jor.23213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Fracture healing is regulated by a variety of inflammatory mediators and growth factors which act over time to regenerate the injured tissue. This study used a mouse femur fracture model to quantify the temporal expression pattern of lipid mediators, cytokines, and related mRNAs during healing. Cyclooxygenase (COX-1 and COX-2) and 5-lipoxygenase (5-LO) derived lipid mediators, cytokines, and mRNA levels were quantified using mass spectrometry (LC-MS/MS), bead-based multiplex assays (xMAP), and quantitative PCR of cDNA (RTqPCR), respectively. Our analysis found that, the early inflammatory response (between 0 and 4 days after fracture) in the mouse femur fracture model coincided with elevated levels of COX-derived lipid mediators and inflammatory cytokines but with decreased levels of 5-LO-derived lipid mediators. Further, the COX-derived lipid mediators remained elevated for at least 7 days after fracture, suggesting that the COX-derived lipid mediators have additional functions during later phases of the fracture healing response. Differences were also found between mRNA levels and corresponding cytokines and lipid mediator levels, supporting a role for post-transcriptional regulation of gene expression. The temporal changes in fracture callus lipid mediator levels and inflammatory cytokines support a general positive role for inflammatory cytokines and COX-derived lipid mediators on fracture healing and a general negative role for 5-lipoxygenase derived lipid mediators during the initial stages of repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1883-1893, 2016.
Collapse
Affiliation(s)
- Hsuan-Ni Lin
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, New Jersey 07103
| | - Jessica Cottrell
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079
| | - J Patrick O'Connor
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, New Jersey 07103
| |
Collapse
|
17
|
Virk SS, Coble D, Bertone AL, Hussein HH, Khan SN. Experimental Design and Surgical Approach to Create a Spinal Fusion Model in a New Zealand White Rabbit (Oryctolagus cuniculus). J INVEST SURG 2016; 30:226-234. [PMID: 27739917 DOI: 10.1080/08941939.2016.1235748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are several animal models routinely used for study of the spinal fusion process and animal selection largely depends on the scientific question to be answered. This review outlines the advantages and disadvantages of various animal models used to study spinal fusion and describes the New Zealand White (NSW) rabbit which is the most popular preclinical model to study spinal fusion. We outline critical steps required in planning and performing spinal fusion surgery in this model. This includes determination of the required animal number to obtain statistical significance, an outline of appropriate technique for posterolateral fusion and other components of completing a study. As advances in drug delivery move forward and our understanding of the cascade of gene expression occurring during the fusion process grows, performing and interpreting preclinical animal models will be vital to validating new therapies to enhance spinal fusion.
Collapse
Affiliation(s)
- Sohrab S Virk
- a Department of Orthopaedics , Ohio State University Wexner Medical Center , Columbus , Ohio , USA
| | - Dondrae Coble
- b Office of Research, College of Veterinary Medicine, The Ohio State University , Columbus , Ohio , USA
| | - Alicia L Bertone
- a Department of Orthopaedics , Ohio State University Wexner Medical Center , Columbus , Ohio , USA.,c Comparative Orthopedic Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University , Columbus , Ohio , USA
| | - Hayam Hamaz Hussein
- c Comparative Orthopedic Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University , Columbus , Ohio , USA
| | - Safdar N Khan
- a Department of Orthopaedics , Ohio State University Wexner Medical Center , Columbus , Ohio , USA
| |
Collapse
|
18
|
Liu P, Liu J, Xia K, Chen L, Wu X. Effect of leptin combined with CoCl2 on healing in Sprague Dawley Rat fracture model. Sci Rep 2016; 6:30754. [PMID: 27468656 PMCID: PMC4965822 DOI: 10.1038/srep30754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022] Open
Abstract
To evaluate the effect of leptin combined with CoCl2 on rat femur fracture healing. 48 male Sprague Dawley rats were randomly divided into two main groups. Then standardized femur fractures were created to all rats. Control group rats were treated with 0.5 mL physiological saline, and experimental group rats were treated with 5 μg/Kg.d leptin and 15 mg/Kg.d CoCl2 along with 0.5 mL physiological saline for 42 days intraperitoneally. Each main group was divided into three subgroups for each evaluation at second, fourth and sixth weeks, each subgroup included eight rats. The radiological evaluation showed that the fracture healing progress of experimental group was superior to control group from second week. At fourth week, experimental group had better fracture healing progress than control group significantly. Results of biomechanics show the ultimate load (N) and deflection ultimate load (mm) of experimental group was significantly increased than that in control group from fourth week. The present result demonstrated that leptin combined with CoCl2 significantly increased the mRNA expression levels of HIF1A, Vegfa, Runx2, Bmp2, Bglap and Alpl. It suggested that leptin combined with CoCl2 have a positive effect on rat femur fracture healing by activating the HIF1A pathway.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Junfeng Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Kuo Xia
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Liyang Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
19
|
Histing T, Andonyan A, Klein M, Scheuer C, Stenger D, Holstein JH, Veith NT, Pohlemann T, Menger MD. Obesity does not affect the healing of femur fractures in mice. Injury 2016; 47:1435-44. [PMID: 27156834 DOI: 10.1016/j.injury.2016.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/02/2023]
Abstract
Obesity is reported to be both protective and deleterious to bone. Lipotoxicity and inflammation might be responsible for bone loss through inhibition of osteoblasts and activation of osteoclasts. However, little is known whether obesity affects the process of fracture healing. Therefore, we studied the effect of high fat diet-induced (HFD) obesity on callus formation and bone remodelling in a closed femur fracture model in mice. Thirty-one mice were fed a diet containing 60kJ% fat (HFD) for a total of 20 weeks before fracture and during the entire postoperative observation period. Control mice (n=31) received a standard diet containing 10kJ% fat. Healing was analyzed using micro-CT, biomechanical, histomorphometrical, immunohistochemical, serum and protein biochemical analysis at 2 and 4 weeks after fracture. HFD-fed mice showed a higher body weight and increased serum concentrations of leptin and interleukin-6 compared to controls. Within the callus tissue Western blot analyses revealed a higher expression of transcription factor peroxisome proliferator-activated receptor y (PPARy) and a reduced expression of runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein (BMP)-4. However, obesity did not affect the expression of BMP-2 and did not influence the receptor activator of nuclear factor κB (RANK)/RANK ligand/osteoprotegerin (OPG) pathway during fracture healing. Although the bones of HFD-fed animals showed an increased number of adipocytes within the bone marrow, HFD did not increase callus adiposity. In addition, radiological and histomorphometric analysis could also not detect significant differences in bone formation between HFD-fed animals and controls. Accordingly, HFD did not affect bending stiffness after 2 and 4 weeks of healing. These findings indicate that obesity does not affect femur fracture healing in mice.
Collapse
Affiliation(s)
- T Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | - A Andonyan
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - M Klein
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - C Scheuer
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - D Stenger
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - J H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - N T Veith
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - T Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
20
|
Liu A, Li Y, Wang Y, Liu L, Shi H, Qiu Y. Exogenous Parathyroid Hormone-Related Peptide Promotes Fracture Healing in Lepr(-/-) Mice. Calcif Tissue Int 2015; 97:581-91. [PMID: 26314884 DOI: 10.1007/s00223-015-0041-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
Diabetic osteoporosis continues to surge worldwide, increasing the risk of fracture. We have previously demonstrated that haploinsufficiency of endogenous parathyroid hormone-related peptide (PTHrP) impairs fracture healing. However, whether an exogenous supply of PTHrP can repair bone damage and accelerate fracture healing remains unclear. This study aimed to assess the efficacy and safety of PTHrP in healing fractures. Standardized mid-diaphyseal femur fractures were generated in 12-week-old wild-type and leptin receptor null Lepr(-/-) mice. After administration of PTHrP for 2 weeks, callus tissue properties were analyzed by radiography, micro-computed tomography, histology, histochemistry, immunohistochemistry, and molecular biology techniques. At 2 weeks post-fracture, cartilaginous callus areas were reduced, while total callus and bony callus areas were increased in PTHrP-treated Lepr(-/-) animals and control wild-type mice, compared with vehicle-treated Lepr(-/-) mice. The following parameters were enhanced both in Lepr(-/-) mice after treatment with PTHrP and vehicle-treated wild-type animals, compared with vehicle-treated Lepr(-/-) mice: osteoblast numbers; tissue alkaline phosphatase (ALP) and Type I collagen immunopositive areas; mRNA levels of ALP, Type I collagen, osteoprotegerin, and receptor activator for nuclear factor-κ B ligand; protein levels of Runt-related transcription factor 2 and insulin-like growth factor-1; and the number and surface of osteoclasts. In conclusion, exogenous PTHrP by subcutaneous injection promotes fracture repair in Lepr(-/-) mice by increasing callus formation and accelerating cell transformation: upregulated osteoblastic gene and protein expression, increased endochondral bone formation, osteoblastic bone formation, and osteoclastic bone resorption. However, complete repair was not obtained in PTHrP-treated Lepr(-/-) mice as in control wild-type animals.
Collapse
Affiliation(s)
- Anlong Liu
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yishan Li
- Department of International Training, PLA University of Science and Technology, Nanjing, 210007, Jiangsu, China
| | - Yinhe Wang
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Li Liu
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Hongfei Shi
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yong Qiu
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism 2015; 64:105-13. [PMID: 25497343 PMCID: PMC4532332 DOI: 10.1016/j.metabol.2014.10.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023]
Abstract
Leptin was initially best known for its role in energy homeostasis and regulation of energy expenditure. In the past few years we have realized that leptin also plays a major role in neuroendocrine regulation and bone metabolism. Here, we review the literature the indirect and direct pathways through which leptin acts to influence bone metabolism and discuss bone abnormalities related to leptin deficiency in both animal and human studies. The clinical utility of leptin in leptin deficient individuals and its potential to improve metabolic bone disease are also discussed. We are beginning to understand the critical role leptin plays in bone metabolism; future randomized studies are needed to fully assess the potential and risk-benefit of leptin's use in metabolic bone disease particularly in leptin deficient individuals.
Collapse
Affiliation(s)
- Jagriti Upadhyay
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215.
| | - Olivia M Farr
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
22
|
Rőszer T, Józsa T, Kiss-Tóth ED, De Clerck N, Balogh L. Leptin receptor deficient diabetic (db/db) mice are compromised in postnatal bone regeneration. Cell Tissue Res 2013; 356:195-206. [PMID: 24343796 DOI: 10.1007/s00441-013-1768-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/04/2013] [Indexed: 12/24/2022]
Abstract
Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Cardiovascular Development and Repair, Spanish National Cardiovascular Research Center (Centro Nacional de Investigaciones Cardiovasculares Carlos III), Calle Melchor Fernández Almagro 3, 28029, Madrid, Spain,
| | | | | | | | | |
Collapse
|
23
|
Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab 2013; 18:29-42. [PMID: 23770129 DOI: 10.1016/j.cmet.2013.05.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since its discovery as an adipocyte-secreted hormone, leptin has been found to impact food intake, energy homeostasis, and metabolism through its effects on the central nervous system and peripheral organs. Recent research indicates that leptin may also be involved in cognition, immune function, and bone metabolism. These findings place leptin at the intersection of neuroendocrinology and metabolism, and possibly immune function, and render it an appealing therapeutic target for several niche areas of unmet clinical need. Current evidence regarding classic and emerging roles of leptin as well as the pros and cons of its potential clinical use are summarized herein.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Clinical Biochemistry, Attikon General University Hospital, Athens University Medical School, 12462 Athens, Greece
| | | | | | | | | | | |
Collapse
|