1
|
Damle SR, Krzyzanowska AK, Korsun MK, Morse KW, Gilbert S, Kim HJ, Boachie-Adjei O, Rawlins BA, van der Meulen MCH, Greenblatt MB, Hidaka C, Cunningham ME. Inducing Angiogenesis in the Nucleus Pulposus. Cells 2023; 12:2488. [PMID: 37887332 PMCID: PMC10605635 DOI: 10.3390/cells12202488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Bone morphogenetic protein (BMP) gene delivery to Lewis rat lumbar intervertebral discs (IVDs) drives bone formation anterior and external to the IVD, suggesting the IVD is inhospitable to osteogenesis. This study was designed to determine if IVD destruction with a proteoglycanase, and/or generating an IVD blood supply by gene delivery of an angiogenic growth factor, could render the IVD permissive to intra-discal BMP-driven osteogenesis and fusion. Surgical intra-discal delivery of naïve or gene-programmed cells (BMP2/BMP7 co-expressing or VEGF165 expressing) +/- purified chondroitinase-ABC (chABC) in all permutations was performed between lumbar 4/5 and L5/6 vertebrae, and radiographic, histology, and biomechanics endpoints were collected. Follow-up anti-sFlt Western blotting was performed. BMP and VEGF/BMP treatments had the highest stiffness, bone production and fusion. Bone was induced anterior to the IVD, and was not intra-discal from any treatment. chABC impaired BMP-driven osteogenesis, decreased histological staining for IVD proteoglycans, and made the IVD permissive to angiogenesis. A soluble fragment of VEGF Receptor-1 (sFlt) was liberated from the IVD matrix by incubation with chABC, suggesting dysregulation of the sFlt matrix attachment is a possible mechanism for the chABC-mediated IVD angiogenesis we observed. Based on these results, the IVD can be manipulated to foster vascular invasion, and by extension, possibly osteogenesis.
Collapse
Affiliation(s)
- Sheela R. Damle
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
| | - Agata K. Krzyzanowska
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
| | - Maximilian K. Korsun
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
| | - Kyle W. Morse
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
| | - Susannah Gilbert
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
| | - Han Jo Kim
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Oheneba Boachie-Adjei
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Bernard A. Rawlins
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Marjolein C. H. van der Meulen
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Chisa Hidaka
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Department of Genetic Medicine and Belfer Gene Therapy Core Facility, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Matthew E. Cunningham
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY 10021, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
2
|
Guo S, Yan M, Li X, Zhang S, Liu Z, Li K, Liu P, Liu Y, Sun G, Fu Q. Single-cell RNA-seq analysis reveals that immune cells induce human nucleus pulposus ossification and degeneration. Front Immunol 2023; 14:1224627. [PMID: 37638033 PMCID: PMC10449260 DOI: 10.3389/fimmu.2023.1224627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background and aims Determining the transcriptomes and molecular mechanism underlying human degenerative nucleus pulposus (NP) is of critical importance for treating intervertebral disc degeneration (IDD). Here, we aimed to elucidate the detailed molecular mechanism of NP ossification and IDD using single-cell RNA sequencing. Methods Single-cell RNA-seq and bioinformatic analysis were performed to identify NP cell populations with gene signatures, biological processes and pathways, and subpopulation analysis, RNA velocity analysis, and cell-to-cell communication analysis were performed in four IDD patients. We also verified the effects of immune cells on NP ossification using cultured NP cells and a well-established rat IDD model. Results We identified five cell populations with gene expression profiles in degenerative NP at single-cell resolution. GO database analysis showed that degenerative NP-associated genes were mainly enriched in extracellular matrix organization, immune response, and ossification. Gene set enrichment analysis showed that rheumatoid arthritis signaling, antigen processing and presentation signaling were activated in the blood cell cluster. We revealed that stromal cells, which are progenitor cells, differentiated toward an ossification phenotype and delineated interactions between immune cells (macrophages and T cells) and stromal cells. Immune factors such as TNF-α, CD74 and CCL-3 promoted the differentiation of stromal cells toward an ossification phenotype in vitro. Blocking TNF-α with a specific inhibitor successfully reversed NP ossification and modified NP morphology in vivo. Conclusion Our study revealed an increase in macrophages and T cells in degenerative NP, which induced stromal cell differentiation toward an ossification phenotype, and contributed to the identification of a novel therapeutic target to delay IDD.
Collapse
Affiliation(s)
- Song Guo
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Meijun Yan
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Xinhua Li
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Shuya Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Zhong Liu
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Kewei Li
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Pengcheng Liu
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Yanbin Liu
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| | - Guixin Sun
- Department of Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Spine Surgery, Shanghai Jiaotong University First People’s Hospital, Shanghai, China
| |
Collapse
|
3
|
Wang D, Li Z, Huang W, Cao S, Xie L, Chen Y, Li H, Wang L, Chen X, Yang JR. Single-cell transcriptomics reveals heterogeneity and intercellular crosstalk in human intervertebral disc degeneration. iScience 2023; 26:106692. [PMID: 37216089 PMCID: PMC10192848 DOI: 10.1016/j.isci.2023.106692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the human intervertebral disc (IVD) has hindered the elucidation of the microenvironment and mechanisms underlying IVD degeneration (IVDD). Here we determined the landscapes of nucleus pulposus (NP), annulus fibrosus (AF), and immunocytes in human IVD by scRNA-seq. Six NP subclusters and seven AF subclusters were identified, whose functional differences and distribution during different stages of degeneration (Pfirrmann I-V) were investigated. We found MCAM+ progenitor in AF, as well as CD24+ progenitor and MKI67+ progenitor in NP, forming a lineage trajectory from CD24+/MKI67+ progenitors to EffectorNP_⅓ during IVDD. There is a significant increase in monocyte/macrophage (Mφ) in degenerated IVDs (p = 0.044), with Mφ-SPP1 exclusively found in IVDD but not healthy IVDs. Further analyses of the intercellular crosstalk network revealed interactions between major subpopulations and changes in the microenvironment during IVDD. Our results elucidated the unique characteristics of IVDD, thereby shedding light on therapeutic strategies.
Collapse
Affiliation(s)
- Dandan Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - ZiZhang Li
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Shengnan Cao
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Liangyu Xie
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Huazhong Li
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Lei Wang
- 960th Hospital of PLA, Jinan 250031, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Rohanifar M, Clayton SW, Easson GW, Patil DS, Lee F, Jing L, Barcellona MN, Speer JE, Stivers JJ, Tang SY, Setton LA. Single Cell RNA-Sequence Analyses Reveal Uniquely Expressed Genes and Heterogeneous Immune Cell Involvement in the Rat Model of Intervertebral Disc Degeneration. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:8244. [PMID: 36451894 PMCID: PMC9706593 DOI: 10.3390/app12168244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.
Collapse
Affiliation(s)
- Milad Rohanifar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sade W. Clayton
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garrett W.D. Easson
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepanjali S. Patil
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Frank Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Julie E. Speer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jordan J. Stivers
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon Y. Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
6
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Cui S, Zhou Z, Chen X, Wei F, Richards RG, Alini M, Grad S, Li Z. Transcriptional profiling of intervertebral disc in a post-traumatic early degeneration organ culture model. JOR Spine 2021; 4:e1146. [PMID: 34611583 PMCID: PMC8479529 DOI: 10.1002/jsp2.1146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The goal of this study is to characterize transcriptome changes and gene regulation networks in an organ culture system that mimics early post-traumatic intervertebral disc (IVD) degeneration. METHODS To mimic a traumatic insult, bovine caudal IVDs underwent one strike loading. The control group was cultured under physiological loading. At 24 hours after one strike or physiological loading, RNA was extracted from nucleus pulposus (NP) and annulus fibrosus (AF) tissue. High throughput next generation RNA sequencing was performed to identify differentially expressed genes (DEGs) between the one strike loading group and the control group. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze DEGs and pathways. Protein-protein interaction (PPI) network was analyzed with cytoscape software. DEGs were verified using qRT-PCR. Degenerated human IVD tissue was collected for immunofluorescence staining to verify the expression of DEGs in human disc tissue. RESULTS One strike loading resulted in significant gene expression changes compared with physiological loading. In total 253 DEGs were found in NP tissue and 208 DEGs in AF tissue. Many of the highly dysregulated genes have known functions in disc degeneration and extracellular matrix (ECM) homeostasis. ACTB, ACTG, PFN1, MYL12B in NP tissue and FGF1, SPP1 in AF tissue were verified by qRT-PCR and immunofluorescence imaging. The identified DEGs were involved in focal adhesion, ECM-receptor interaction, PI3K-AKT, and cytokine-cytokine receptor interaction pathways. Three clusters of PPI networks were identified. GO enrichment revealed that these DEGs were mainly involved in inflammatory response, the ECM and growth factor signaling and protein folding biological process. CONCLUSION Our study revealed different DEGs, pathways, biological process and PPI networks involved in post-traumatic IVD degeneration. These findings will advance the understanding of the pathogenesis of IVD degeneration, and help to identify novel biomarkers for the disease diagnosis.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Xu Chen
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Fuxin Wei
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
8
|
Kudelko M, Chen P, Tam V, Zhang Y, Kong OY, Sharma R, Au TY, To MKT, Cheah KS, Chan WC, Chan D. PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biol Plus 2021; 12:100082. [PMID: 34409283 PMCID: PMC8361275 DOI: 10.1016/j.mbplus.2021.100082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Proteomics of healthy mouse IVDs differentiating compartments and spine levels. NP cells feature vacuoles with lysosomal, transport and cell–cell communication functions. Collagen XII, decorin and other ECM proteins contribute to function of the AF. Distinct proteomics between lumbar and tail discs. Mouse is a relevant model for human disc biology but care is needed in its use.
Mice are commonly used to study intervertebral disc (IVD) biology and related diseases such as IVD degeneration. Discs from both the lumbar and tail regions are used. However, little is known about compartmental characteristics in the different regions, nor their relevance to the human setting, where a functional IVD unit depends on a homeostatic proteome. Here, we address these major gaps through comprehensive proteomic profiling and in-depth analyses of 8-week-old healthy murine discs, followed by comparisons with human. Leveraging on a dataset of over 2,700 proteins from 31 proteomic profiles, we identified key molecular and cellular differences between disc compartments and spine levels, but not gender. The nucleus pulposus (NP) and annulus fibrosus (AF) compartments differ the most, both in matrisome and cellularity contents. Differences in the matrisome are consistent with the fibrous nature required for tensile strength in the AF and hydration property in the NP. Novel findings for the NP cells included an enrichment in cell junction proteins for cell–cell communication (Cdh2, Dsp and Gja1) and osmoregulation (Slc12a2 and Wnk1). In NP cells, we detected heterogeneity of vacuolar organelles; where about half have potential lysosomal function (Vamp3, Copb2, Lamp1/2, Lamtor1), some contain lipid droplets and others with undefined contents. The AF is enriched in proteins for the oxidative stress responses (Sod3 and Clu). Interestingly, mitochondrial proteins are elevated in the lumbar than tail IVDs that may reflect differences in metabolic requirement. Relative to the human, cellular and structural information are conserved for the AF. Even though the NP is more divergent between mouse and human, there are similarities at the level of cell biology. Further, common cross-species markers were identified for both NP (KRT8/19, CD109) and AF (COL12A1). Overall, mouse is a relevant model to study IVD biology, and an understanding of the limitation will facilitate research planning and data interpretation, maximizing the translation of research findings to human IVDs.
Collapse
Affiliation(s)
- Mateusz Kudelko
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Oi-Yin Kong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rakesh Sharma
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tiffany Y.K. Au
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Kathryn S.E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Corresponding author at: School of Biomedical Sciences, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
9
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
11
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
12
|
Ligorio C, O'Brien M, Hodson NW, Mironov A, Iliut M, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. TGF-β3-loaded graphene oxide - self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus. Acta Biomater 2021; 127:116-130. [PMID: 33831573 DOI: 10.1016/j.actbio.2021.03.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. Early treatment of IVD degeneration is critical to the reduction of low back pain and related disability. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. Recently, we developed an injectable graphene oxide (GO) - self-assembling peptide FEFKFEFK (F: phenylalanine; K: lysine; E: glutamic acid) hybrid hydrogels as potential delivery platform for cells and/or drugs in the NP. In this current study, we explored the possibility of using the GO present in these hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function. For this purpose, we first investigated the potential of GO to bind and sequestrate TGF-β3. We then cultured bovine NP cells in the new functional scaffolds and investigated their response to the presence of GO and TGF-β3. Our results clearly showed that GO flakes can sequestrate TGF-β3 through strong binding interactions resulting in a slow and prolonged release, with the GF remaining active even when bound to the GO flakes. The adsorption of the GF on the GO flakes to create TGF-β3-loaded GO flakes and their subsequent incorporation in the hydrogels through mixing, [(GO/TGF-β3Ads)-F8] hydrogel, led to the upregulation of NP-specific genes, accompanied by the production and deposition of an NP-like ECM, rich in aggrecan and collagen II. NP cells actively interacted with TGF-β3-loaded GO flakes and remodeled the scaffolds through endocytosis. This work highlights the potential of using GO as a nanocarrier for the design of functional hybrid peptide-based hydrogels. STATEMENT OF SIGNIFICANCE: Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. In this current study, we explored the possibility of using peptide - GO hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function.
Collapse
|
13
|
Architecture-Promoted Biomechanical Performance-Tuning of Tissue-Engineered Constructs for Biological Intervertebral Disc Replacement. MATERIALS 2021; 14:ma14102692. [PMID: 34065565 PMCID: PMC8160686 DOI: 10.3390/ma14102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
Background: Biological approaches to intervertebral disc (IVD) restoration and/or regeneration have become of increasing interest. However, the IVD comprises a viscoelastic system whose biological replacement remains challenging. The present study sought to design load-sharing two-component model systems of circular, nested, concentric elements reflecting the nucleus pulposus and annulus fibrosus. Specifically, we wanted to investigate the effect of architectural design variations on (1) model system failure loads when testing the individual materials either separately or homogeneously mixed, and (2) also evaluate the potential of modulating other mechanical properties of the model systems. Methods: Two sets of softer and harder biomaterials, 0.5% and 5% agarose vs. 0.5% agarose and gelatin, were used for fabrication. Architectural design variations were realized by varying ring geometries and amounts while keeping the material composition across designs comparable. Results: Variations in the architectural design, such as lamellar width, number, and order, combined with choosing specific biomaterial properties, strongly influenced the biomechanical performance of IVD constructs. Biomechanical characterization revealed that the single most important parameter, in which the model systems vastly exceeded those of the individual materials, was failure load. The model system failure loads were 32.21- and 84.11-fold higher than those of the agarose materials and 55.03- and 2.14-fold higher than those of the agarose and gelatin materials used for system fabrication. The compressive strength, dynamic stiffness, and viscoelasticity of the model systems were always in the range of the individual materials. Conclusions: Relevant architecture-promoted biomechanical performance-tuning of tissue-engineered constructs for biological IVD replacement can be realized by slight modifications in the design of constructs while preserving the materials’ compositions. Minimal variations in the architectural design can be used to precisely control structure–function relations for IVD constructs rather than choosing different materials. These fundamental findings have important implications for efficient tissue-engineering of IVDs and other load-bearing tissues, as potential implants need to withstand high in situ loads.
Collapse
|
14
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
15
|
Lee NN, Kramer JS, Stoker AM, Bozynski CC, Cook CR, Stannard JT, Choma TJ, Cook JL. Canine models of spine disorders. JOR Spine 2020; 3:e1109. [PMID: 33392448 PMCID: PMC7770205 DOI: 10.1002/jsp2.1109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neck and low back pain are common among the adult human population and impose large social and economic burdens on health care and quality of life. Spine-related disorders are also significant health concerns for canine companions with etiopathogeneses, clinical presentations, and diagnostic and therapeutic options that are very similar to their human counterparts. Historically, induced and spontaneous pathology in laboratory rodents, dogs, sheep, goats, pigs, and nonhuman primates have been used for study of human spine disorders. While each of these can serve as useful preclinical models, they all have inherent limitations. Spontaneously occurring spine disorders in dogs provide highly translatable data that overcome many of the limitations of other models and have the added benefit of contributing to veterinary healthcare as well. For this scoping review, peer-reviewed manuscripts were selected from PubMed and Google Scholar searches using keywords: "intervertebral disc," "intervertebral disc degeneration," "biomarkers," "histopathology," "canine," and "mechanism." Additional keywords such as "injury," "induced model," and "nucleus degeneration" were used to further narrow inclusion. The objectives of this review were to (a) outline similarities in key features of spine disorders between dogs and humans; (b) describe relevant canine models; and (c) highlight the applicability of these models for advancing translational research and clinical application for mechanisms of disease, diagnosis, prognosis, prevention, and treatment, with a focus on intervertebral disc degeneration. Best current evidence suggests that dogs share important anatomical, physiological, histological, and molecular components of spinal disorders in humans, such that induced and spontaneous canine models can be very effective for translational research. Taken together, the peer-reviewed literature supports numerous advantages for use of canine models for study of disorders of the spine when the potential limitations and challenges are addressed.
Collapse
Affiliation(s)
- Naomi N. Lee
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
- Comparative Medicine ProgramUniversity of MissouriColumbiaMissouriUSA
| | - Jacob S. Kramer
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Aaron M. Stoker
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Chantelle C. Bozynski
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Cristi R. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James T. Stannard
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Theodore J. Choma
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James L. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
16
|
Kim MKM, Burns MJ, Serjeant ME, Séguin CA. The mechano-response of murine annulus fibrosus cells to cyclic tensile strain is frequency dependent. JOR Spine 2020; 3:e21114. [PMID: 33392464 PMCID: PMC7770207 DOI: 10.1002/jsp2.1114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The intervertebral disk (IVD) is a composite structure essential for spine stabilization, load bearing, and movement. Biomechanical factors are important contributors to the IVD microenvironment regulating joint homeostasis; however, the cell type-specific effectors of mechanotransduction in the IVD are not fully understood. The current study aimed to determine the effects of cyclic tensile strain (CTS) on annulus fibrosus (AF) cells and identify mechano-sensitive pathways. Using a cell-type specific reporter mouse to differentiation NP and AF cells from the murine IVD, we characterized AF cells in dynamic culture exposed to CTS (6% strain) at specific frequencies (0.1 Hz, 1.0 Hz, or 2.0 Hz). We demonstrate that our culture model maintains the phenotype of primary AF cells and that the bioreactor system delivers uniform biaxial strain across the cell culture surface. We show that exposure of AF cells to CTS induces cytoskeleton reorganization resulting in stress fiber formation, with acute exposure to CTS at 2.0 Hz inducing a significant yet transient increase ERK1/2 pathway activation. Using SYBPR-based qPCR to assess the expression of extracellular matrix (ECM) genes, ECM-remodeling genes, candidate mechano-sensitive genes, inflammatory cytokines and cell surface receptors, we demonstrated that exposure of AF cells to CTS at 0.1 Hz increased Acan, Prg4, Col1a1 and Mmp3 expression. AF cells exposed to CTS at 1.0 Hz showed a significant increase in the expression of Acan, Myc, and Tnfα. Exposure of AF cells to CTS at 2.0 Hz induced a significant increase in Acan, Prg4, Cox2, Myc, Fos, and Tnfα expression. Among the cell surface receptors assessed, AF cells exposed to CTS at 2.0 Hz showed a significant increase in Itgβ1, Itgα5, and Trpv4 expression. Our findings demonstrate that the response of AF cells to CTS is frequency dependent and suggest that mechanical loading may directly contribute to matrix remodeling and the onset of local tissue inflammation in the murine IVD.
Collapse
Affiliation(s)
- Min Kyu M. Kim
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Marissa J. Burns
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
| | - Meaghan E. Serjeant
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| |
Collapse
|
17
|
Harmon MD, Ramos DM, Nithyadevi D, Bordett R, Rudraiah S, Nukavarapu SP, Moss IL, Kumbar SG. Growing a backbone - functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomater Sci 2020; 8:1216-1239. [PMID: 31957773 DOI: 10.1039/c9bm01288e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Back pain and associated maladies can account for an immense amount of healthcare cost and loss of productivity in the workplace. In particular, spine related injuries in the US affect upwards of 5.7 million people each year. The degenerative disc disease treatment almost always arises due to a clinical presentation of pain and/or discomfort. Preferred conservative treatment modalities include the use of non-steroidal anti-inflammatory medications, physical therapy, massage, acupuncture, chiropractic work, and dietary supplements like glucosamine and chondroitin. Artificial disc replacement, also known as total disc replacement, is a treatment alternative to spinal fusion. The goal of artificial disc prostheses is to replicate the normal biomechanics of the spine segment, thereby preventing further damage to neighboring sections. Artificial functional disc replacement through permanent metal and polymer-based components continues to evolve, but is far from recapitulating native disc structure and function, and suffers from the risk of unsuccessful tissue integration and device failure. Tissue engineering and regenerative medicine strategies combine novel material structures, bioactive factors and stem cells alone or in combination to repair and regenerate the IVD. These efforts are at very early stages and a more in-depth understanding of IVD metabolism and cellular environment will also lead to a clearer understanding of the native environment which the tissue engineering scaffold should mimic. The current review focusses on the strategies for a successful regenerative scaffold for IVD regeneration and the need for defining new materials, environments, and factors that are so finely tuned in the healthy human intervertebral disc in hopes of treating such a prevalent degenerative process.
Collapse
Affiliation(s)
- Matthew D Harmon
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - D Nithyadevi
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Rosalie Bordett
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Isaac L Moss
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
18
|
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, Presciutti SM, Gibson G, Drissi H. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep 2020; 10:15263. [PMID: 32943704 PMCID: PMC7499307 DOI: 10.1038/s41598-020-72261-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Camila M Trochez
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meixue Duan
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
19
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
20
|
Rajasekaran S, Tangavel C, Soundararajan DCR, Nayagam SM, Matchado MS, Muthurajan R, Anand KSSV, Rajendran S, Shetty AP, Kanna RM, Kuppamuthu D. Proteomic Signatures of Healthy Intervertebral Discs From Organ Donors: A Comparison With Previous Studies on Discs From Scoliosis, Animals, and Trauma. Neurospine 2020; 17:426-442. [PMID: 32615701 PMCID: PMC7338947 DOI: 10.14245/ns.2040056.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To catalog and characterize the proteome of normal human intervertebral disc (IVD). METHODS Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. RESULTS A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. CONCLUSION The proteome of "healthy" human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | | | | |
Collapse
|
21
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
22
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
23
|
Xu J, Liu S, Wang S, Qiu P, Chen P, Lin X, Fang X. Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1213-1225. [PMID: 30889657 DOI: 10.1016/j.msec.2019.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with lower back pain, with the dysfunction of nucleus pulposus (NP) cells instigating degeneration onset. Here, we developed an optimized decellularised NP scaffold that could induce mesenchymal stem cells (MSCs) into NP-like cells in vitro and rescue the degenerated IVD in vivo. We optimized a decellularisation protocol for porcine NP and evaluated the biological properties and microstructure of the NP scaffold. Through co-culture with MSCs, we analysed scaffold bioactivity and potential signalling pathways. We tested the therapeutic efficacy of the scaffold using an IVD degeneration model in vivo. The decellularisation protocol generally removed the cellular components of the NP and preserved the majority of the biological components and regular microstructure. MSCs seeded in the NP-ECM scaffold differentiated into NP-like cells in vitro; this change was attributed to activation of the TGF-β signalling pathway. The NP-ECM exhibited good cytocompatibility ex vivo and decelerated the degeneration of the IVD in vivo. These results indicate the successful establishment of a naturally-derived ECM material that could induce MSCs into NP cells and serve as a potential treatment for degenerated IVDs.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shijie Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
24
|
Extracellular Matrix and Adhesion Molecule Gene Expression in the Normal and Injured Murine Intervertebral Disc. Am J Phys Med Rehabil 2019; 98:35-42. [DOI: 10.1097/phm.0000000000001012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
26
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
27
|
Caprez S, Menzel U, Li Z, Grad S, Alini M, Peroglio M. Isolation of high-quality RNA from intervertebral disc tissue via pronase predigestion and tissue pulverization. JOR Spine 2018; 1:e1017. [PMID: 31463444 PMCID: PMC6686795 DOI: 10.1002/jsp2.1017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 01/07/2023] Open
Abstract
The isolation of high-quality RNA from the intervertebral disc and especially from the nucleus pulposus is challenging due to the low cellularity and high proteoglycan content of this tissue. In this study, we report a simple modification of the standard guanidinium thiocyanate-phenol-chloroform extraction method, which involves enzymatic predigestion of the tissue prior to standard RNA isolation. Yield, purity and integrity of RNA isolated from bovine nucleus pulposus, inner annulus fibrosus and outer annulus fibrosus were compared among complete matrix digestion, predigestion and pulverization, pulverization alone, and pulverization followed by on-column purification. With predigestion, the average yield of RNA obtained from bovine nucleus pulposus was 8.82 ± 2.05 ng/mg of wet tissue with 260/280 and 260/230 optical density ratios of 1.91 ± 0.15 and 1.84 ± 0.30, respectively. RIN analysis indicated that RNA quality was best preserved with the predigestion method (RNA integrity number > 7), and the extracted RNA was suitable for real-time polymerase chain reaction. This method is of importance for gene expression studies on intervertebral disc development, degeneration and repair, and we anticipate that it may be further applied to other tissues rich in proteoglycans.
Collapse
Affiliation(s)
| | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | | | | | | |
Collapse
|
28
|
Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside. Oncotarget 2018; 9:26507-26526. [PMID: 29899873 PMCID: PMC5995168 DOI: 10.18632/oncotarget.25476] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
The socioeconomic burden of chronic back pain related to intervertebral disc (IVD) disease is high and current treatments are only symptomatic. Minimally invasive strategies that promote biological IVD repair should address this unmet need. Notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) during IVD maturation and degeneration. The regenerative potential of NC-secreted substances on CLCs and mesenchymal stromal cells (MSCs) has already been demonstrated. However, identification of these substances remains elusive. Innovatively, this study exploits the regenerative NC potential by using healthy porcine NC-derived matrix (NCM) and employs the dog as a clinically relevant translational model. NCM increased the glycosaminoglycan and DNA content of human and canine CLC aggregates and facilitated chondrogenic differentiation of canine MSCs in vitro. Based on these results, NCM, MSCs and NCM+MSCs were injected in mildly (spontaneously) and moderately (induced) degenerated canine IVDs in vivo and, after six months of treatment, were analyzed. NCM injected in moderately (induced) degenerated canine IVDs exerted beneficial effects at the macroscopic and MRI level, induced collagen type II-rich extracellular matrix production, improved the disc height, and ameliorated local inflammation. MSCs exerted no (additive) effects. In conclusion, NCM induced in vivo regenerative effects on degenerated canine IVDs. NCM may, comparable to demineralized bone matrix in bone regeneration, serve as ‘instructive matrix’, by locally releasing growth factors and facilitating tissue repair. Therefore, intradiscal NCM injection could be a promising regenerative treatment for IVD disease, circumventing the cumbersome identification of bioactive NC-secreted substances.
Collapse
|
29
|
Riester SM, Lin Y, Wang W, Cong L, Ali AMM, Peck SH, Smith LJ, Currier BL, Clark M, Huddleston P, Krauss W, Yaszemski MJ, Morrey ME, Abdel MP, Bydon M, Qu W, Larson AN, van Wijnen AJ, Nassr A. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res 2018; 36:1356-1369. [PMID: 29227558 PMCID: PMC5990467 DOI: 10.1002/jor.23834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Degenerative disk disease of the spine is a major cause of back pain and disability. Optimization of regenerative medical therapies for degenerative disk disease requires a deep mechanistic understanding of the factors controlling the structural integrity of spinal tissues. In this investigation, we sought to identify candidate regulatory genes controlling extracellular matrix synthesis in spinal tissues. To achieve this goal we performed high throughput next generation RNA sequencing on 39 annulus fibrosus and 21 nucleus pulposus human tissue samples. Specimens were collected from patients undergoing surgical discectomy for the treatment of degenerative disk disease. Our studies identified associations between extracellular matrix genes, growth factors, and other important regulatory molecules. The fibrous matrix characteristic of annulus fibrosus was associated with expression of the growth factors platelet derived growth factor beta (PDGFB), vascular endothelial growth factor C (VEGFC), and fibroblast growth factor 9 (FGF9). Additionally we observed high expression of multiple signaling proteins involved in the NOTCH and WNT signaling cascades. Nucleus pulposus extracellular matrix related genes were associated with the expression of numerous diffusible growth factors largely associated with the transforming growth signaling cascade, including transforming factor alpha (TGFA), inhibin alpha (INHA), inhibin beta A (INHBA), bone morphogenetic proteins (BMP2, BMP6), and others. CLINICAL SIGNIFICANCE this investigation provides important data on extracellular matrix gene regulatory networks in disk tissues. This information can be used to optimize pharmacologic, stem cell, and tissue engineering strategies for regeneration of the intervertebral disk and the treatment of back pain. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1356-1369, 2018.
Collapse
Affiliation(s)
- Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Occupational and Environmental Medicine, HealthPartners, MN, USA
| | - Yang Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Cong
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, The First Hospital of China Medical University, No.155, Nanjing Bei Street, Shenyang, 110001, P. R. China
| | | | - Sun H. Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Michelle Clark
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Paul Huddleston
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - William Krauss
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
- Spine Center, Mayo Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmad Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc Natl Acad Sci U S A 2017; 114:11476-11481. [PMID: 29073074 PMCID: PMC5664524 DOI: 10.1073/pnas.1709082114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chondrodystrophy, characterized by short limbs and intervertebral disc disease (IVDD), is a common phenotype in many of the most popular dog breeds, including the dachshund, beagle, and French bulldog. Here, we report the identification of a FGF4 retrogene insertion on chromosome 12, the second FGF4 retrogene reported in the dog, as responsible for chondrodystrophy and IVDD. Identification of the causative mutation for IVDD will impact an incredibly large proportion of the dog population and provides a model for IVDD in humans, as FGF-associated mutations are responsible for IVDD and short stature in human achondroplasia. This is a report of a second retrogene copy of the same parental gene, each causing complementary disease phenotypes in a mammalian species. Chondrodystrophy in dogs is defined by dysplastic, shortened long bones and premature degeneration and calcification of intervertebral discs. Independent genome-wide association analyses for skeletal dysplasia (short limbs) within a single breed (PBonferroni = 0.01) and intervertebral disc disease (IVDD) across breeds (PBonferroni = 4.0 × 10−10) both identified a significant association to the same region on CFA12. Whole genome sequencing identified a highly expressed FGF4 retrogene within this shared region. The FGF4 retrogene segregated with limb length and had an odds ratio of 51.23 (95% CI = 46.69, 56.20) for IVDD. Long bone length in dogs is a unique example of multiple disease-causing retrocopies of the same parental gene in a mammalian species. FGF signaling abnormalities have been associated with skeletal dysplasia in humans, and our findings present opportunities for both selective elimination of a medically and financially devastating disease in dogs and further understanding of the ever-growing complexity of retrogene biology.
Collapse
|
31
|
Matrisome Profiling During Intervertebral Disc Development And Ageing. Sci Rep 2017; 7:11629. [PMID: 28912585 PMCID: PMC5599645 DOI: 10.1038/s41598-017-11960-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is often the cause of low back pain. Degeneration occurs with age and is accompanied by extracellular matrix (ECM) depletion, culminating in nucleus pulpous (NP) extrusion and IVD destruction. The changes that occur in the disc with age have been under investigation. However, a thorough study of ECM profiling is needed, to better understand IVD development and age-associated degeneration. As so, iTRAQ LC-MS/MS analysis of foetus, young and old bovine NPs, was performed to define the NP matrisome. The enrichment of Collagen XII and XIV in foetus, Fibronectin and Prolargin in elder NPs and Collagen XI in young ones was independently validated. This study provides the first matrisome database of healthy discs during development and ageing, which is key to determine the pathways and processes that maintain disc homeostasis. The factors identified may help to explain age-associated IVD degeneration or constitute putative effectors for disc regeneration.
Collapse
|
32
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Ehlicke F, Köster N, Salzig D, Czermak P. Non-invasive Raman Spectroscopy and Quantitative Real-Time PCR Distinguish Among Undifferentiated Human Mesenchymal Stem Cells and Redifferentiated Nucleus Pulposus Cells and Chondrocytes In Vitro. Open Biomed Eng J 2017; 11:72-84. [PMID: 28868091 PMCID: PMC5564017 DOI: 10.2174/1874120701711010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The most common cause of lower back pain is the pathological degeneration of the nucleus pulposus (NP). Promising NP regeneration strategies involving human mesenchymal stem cells (hMSCs) would require specific markers to confirm successful differentiation into the NP lineage and to distinguish the articular cartilage (AC). Objective: We sought specific NP mRNA markers that are upregulated in native NP cells but not in dedifferentiated NP cells, undifferentiated hMSCs or chondrocytes. We also considered the suitability of non-invasive Raman spectroscopy to distinguish among these classes of cells. Method: We used quantitative real-time PCR and Raman spectroscopy to analyse undifferentiated hMSCs in monolayers and embedded in hydrogels, and compared the results with dedifferentiated and redifferentiated human NP and AC cells. Results: The redifferentiation of NP cells induced the expression of annexin A3 (ANXA3), collagen type II (COL2) and proteoglycan mRNAs, whereas the redifferentiation of AC cells only induced proteoglycan expression. Redifferentiated NP cells expressed higher levels of ANXA3, COL2, paired box 1 (PAX1) and OCT4 mRNA than redifferentiated AC cells. Redifferentiated NP cells and undifferentiated hMSC-TERT cells expressed similar amount of OCT4 mRNA, indicating that only ANXA3, COL2 and PAX1 are promising markers for redifferentiated NP cells. Raman spectra clearly differed among the three cell types and highlighted their differentiation status. Conclusion: We recommend ANXA3, COL2 and PAX1 as markers to determine the success of hMSC-based differentiation to regenerate NP cells. Raman spectroscopy can be used to determine cell type and differentiation status especially in the context of clinical trials.
Collapse
Affiliation(s)
- Franziska Ehlicke
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Natascha Köster
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.,Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Ludwigstr. 23, 35390 Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
| |
Collapse
|
34
|
van den Akker GGH, Koenders MI, van de Loo FAJ, van Lent PLEM, Blaney Davidson E, van der Kraan PM. Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:2053-2062. [PMID: 28567592 DOI: 10.1007/s00586-017-5150-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cells in the intervertebral disc have unique phenotypes and marker genes that separate the nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) have been identified. Recently, it was shown that phenotypic marker genes exhibit variable expression in humans. In this study, the bovine tail was used to determine the ability of marker genes to distinguish the outer and inner AF from NP tissue and isolated cells. METHODS Bovine tail intervertebral discs from 13 donors were dissected and correct isolation of tissue was confirmed. mRNA was isolated directly from tissue or passage 0 monolayer cells and used for gene expression measurements (qPCR). Conventional marker genes (bAcan, bCol1a1, bCol2a1) and novel marker genes (bAdamts17, bBrachyury/T, bCD24, bCol5a1, bCol12a1, bFoxf1, bKrt19, bPax1, bSfrp2) were evaluated. RESULTS As expected bAcan, bCol2a1 and bCol1a1 distinguished outer AF from NP tissue, while inner AF and NP could not be discriminated. The NP markers bT, bCd24 and bKrt19 were significantly higher expressed in NP than inner and outer AF tissue. bFoxF1 and bPax1 only distinguished IVD tissues from AC. The AF markers bAdamts17, bCol5a1, bCol12a1 and bSfrp2 were higher expressed in the outer AF compared with inner AF and NP tissue. Monolayer culturing strongly decreased bAcan, bCol2a1, bCD24 and bCol5a1 expression, while bCol1a1, bT, bKrt19 and bSfrp2 were not affected. CONCLUSION The IVD phenotypic marker genes bT, bKrt19, bSfrp2 and bCol12a1 convincingly distinguished NP from outer AF in situ and in vitro.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Esmeralda Blaney Davidson
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7:1501. [PMID: 28473691 PMCID: PMC5431421 DOI: 10.1038/s41598-017-01567-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc (IVD) demonstrates substantial changes in cell and matrix composition with both ageing and degeneration. While recent transcriptomic profiling studies have helped define human NP cell phenotype, it remains unclear how expression of these markers is influenced by ageing or degeneration. Furthermore, cells of the NP are thought to derive from the notochord, although adult NP lacks identifiable notochordal (NC) cells. This study aimed to confirm expression of previously identified NP and NC marker genes in adult human NP cells from a range of ages and degenerate states. Importantly, using gene expression analysis (N = 60) and immunohistochemistry (N = 56) the study demonstrates expression of NP markers FoxF1, Pax-1, keratin-8/18, carbonic anhydrase-12, and NC markers brachyury, galectin-3 and CD24 in cells of the NP irrespective of age or degeneration. Our immunohistochemical data, combined with flow cytometry (N = 5) which identified a small number of CA12+Gal3+T+CD24+ cells, suggests the possible presence of a sub-population of cells with an NC-like phenotype in adult NP tissue. These findings suggest that the NP contains a heterogeneous population of cells, which may possess varied phenotypic and functional profiles and thus warrant further investigation to improve our understanding of IVD homeostasis and repair.
Collapse
|
36
|
Bach FC, Miranda-Bedate A, van Heel FW, Riemers FM, Müller MC, Creemers LB, Ito K, Benz K, Meij BP, Tryfonidou MA. Bone Morphogenetic Protein-2, But Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells. Tissue Eng Part A 2017; 23:233-242. [DOI: 10.1089/ten.tea.2016.0251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ferdi W.M. van Heel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C.M.E. Müller
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Laura B. Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
38
|
Fisahn C, Schmidt C, Rostad S, Li R, Rustagi T, Alonso F, Shoja MM, Iwanaga J, Chapman JR, Oskouian RJ, Tubbs RS. Adult Apical Ligament of the Dens Lacks Notochordal Tissue: Application to Better Understanding the Origins of Skull Base Chordomas. World Neurosurg 2017; 101:42-46. [PMID: 28153624 DOI: 10.1016/j.wneu.2017.01.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The apical ligament has long been reported to contain notochord remnants and thus might serve as a site of origin of chordoma formation at the skull base. However, to our knowledge, the histologic study of the apical ligament using histologic staining specific for notochordal tissue has not been previously performed. Therefore the current study was undertaken. METHODS Fifteen apical ligament samples underwent histologic examination with specific markers for notochordal differentiation. RESULTS Across all samples, there was no indication of any notochordal remnants. CONCLUSIONS On the basis of our cadaveric study, the apical ligament does not contain notochord tissue and in adults should not be considered a remnant of this structure. Moreover, it is unlikely that the apical ligament gives rise to chordomas at the craniocervical junction under normal circumstances.
Collapse
Affiliation(s)
- Christian Fisahn
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA; Seattle Science Foundation, Seattle, Washington, USA; Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany.
| | | | | | - Rong Li
- Department of Pathology, Children's of Alabama, Birmingham, Alabama, USA
| | - Tarush Rustagi
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA
| | - Fernando Alonso
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA
| | | | - Joe Iwanaga
- Seattle Science Foundation, Seattle, Washington, USA
| | - Jens R Chapman
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA
| | - Rod J Oskouian
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA
| | - R Shane Tubbs
- Seattle Science Foundation, Seattle, Washington, USA
| |
Collapse
|
39
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Gan Y, Li S, Li P, Xu Y, Wang L, Zhao C, Ouyang B, Tu B, Zhang C, Luo L, Luo X, Mo X, Zhou Q. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF- β3-Loaded Nanoparticles for Nucleus Pulposus Regeneration. Stem Cells Int 2016; 2016:9042019. [PMID: 27774108 PMCID: PMC5059651 DOI: 10.1155/2016/9042019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cell- (MSC-) based therapy is regarded as a potential tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to induce MSC differentiation in NP-like cells when MSCs are implanted into the NP. The purpose of this study was to construct poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles as carriers for TGF-β3 controlled release and establish a codelivery system of a dextran/gelatin hydrogel with the nanoparticles for long-term processing of discogenesis differentiation. TGF-β3-loaded PLGA nanoparticles were prepared by the double-emulsion solvent evaporation method and seeded uniformly into the hydrogel. Morphological observations, an assessment of the release kinetics of TGF-β3, a cytotoxic assay, a cell proliferation test, a biochemical content assay, qRT-PCR, and immunohistological analyses of the codelivery system were conducted in the study. The results showed that the TGF-β3-loaded nanoparticles could release TGF-β3 gradually. The codelivery system exhibited favorable cytocompatibility, and the TGF-β3 that was released could induce MSCs to NP-like cells while promoting ECM-related biosynthesis. These results suggest this codelivery system may be employed as a promising carrier for discogenesis of MSCs in situ.
Collapse
Affiliation(s)
- Yibo Gan
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Sukai Li
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Pei Li
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liyuan Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Chen Zhao
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Bin Ouyang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Bing Tu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Chengmin Zhang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Lei Luo
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Xiangdong Luo
- Institution of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiumei Mo
- College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, China
| | - Qiang Zhou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, 30 No. Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
41
|
Rodrigues‐Pinto R, Berry A, Piper‐Hanley K, Hanley N, Richardson SM, Hoyland JA. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res 2016; 34:1327-40. [PMID: 26910849 PMCID: PMC5021113 DOI: 10.1002/jor.23205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016.
Collapse
Affiliation(s)
- Ricardo Rodrigues‐Pinto
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- Department of OrthopaedicsCentro Hospitalar do Porto—Hospital de Santo AntónioLargo Prof. Abel SalazarPorto4099‐001Portugal
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Karen Piper‐Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Neil Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Stephen M. Richardson
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Judith A. Hoyland
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research UnitManchester Academic Health Science CentreManchesterUnited Kingdom
| |
Collapse
|
42
|
Nakai T, Sakai D, Nakamura Y, Nukaga T, Grad S, Li Z, Alini M, Chan D, Masuda K, Ando K, Mochida J, Watanabe M. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype. J Orthop Res 2016; 34:1361-72. [PMID: 27273299 DOI: 10.1002/jor.23326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/27/2016] [Indexed: 02/04/2023]
Abstract
Characterization of cells is important for facilitating cell-based therapies for degenerative diseases of intervertebral discs. For this purpose, we analyzed mouse annulus fibrosus cells by flowcytometory to detect phenotypic change in their primary cultures. After examination of sixteen cell surface proteins, we focused on CD146 that solely increased during culture expansion. CD146 is known to be a marker for mesenchymal stem cells and for their vascular smooth muscle commitment with expression of contractile phenotype enhanced by SM22α. We sorted CD146+ cells to elucidate their characteristics and the key factors that play a role in this change. Whole cell cultures showed the ability for tripotent differentiation toward mesenchymal lineages, whereas sorted CD146+ cells did not. Expression of CD146 was elevated by addition of transforming growth factor β1, and sorted CD146+ cells expressed higher levels of mRNA for SM22α and Elastin than did CD146- cells. Morphologically, CD146+ cells more broadly deposited extracellular type I collagen than CD146- cells and showed filamentous actin bundles traversing their cytoplasm and cell-cell junctions. Moreover, CD146+ cells demonstrated significantly higher gel contraction properties than CD146- cells when they were embedded in collagen gels. Human annulus fibrosus CD146+ cells also showed higher contractility. Immunohistochemistry determined CD146+ cells localized to the outermost annulus layers of mouse intervertebral disc tissue with co-expression of SM22α. These results suggest that increment of CD146 expression indicates gradual change of cultured annulus fibrosus cells to express a contractile phenotype and that transforming growth factor β1 enhances this cellular commitment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1361-1372, 2016.
Collapse
Affiliation(s)
- Tomoko Nakai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan.,Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Tadashi Nukaga
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| | - Sibylle Grad
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Zhen Li
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Danny Chan
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, California, 90293-0863
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Joji Mochida
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan.,Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
43
|
Tang X, Jing L, Richardson WJ, Isaacs RE, Fitch RD, Brown CR, Erickson MM, Setton LA, Chen J. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 2016; 34:1316-26. [PMID: 27018499 PMCID: PMC5321132 DOI: 10.1002/jor.23244] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016.
Collapse
Affiliation(s)
- Xinyan Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Orthopaedic Surgery Department, University of California, San Francisco, CA, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - William J Richardson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robert E Isaacs
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Robert D Fitch
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Brown
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Melissa M Erickson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Chen
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
45
|
van den Akker GGH, Surtel DAM, Cremers A, Richardson SM, Hoyland JA, van Rhijn LW, Voncken JW, Welting TJM. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus. PLoS One 2016; 11:e0144497. [PMID: 26794306 PMCID: PMC4721917 DOI: 10.1371/journal.pone.0144497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Stephen M. Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail: (JWV); (TJMW)
| |
Collapse
|
46
|
Numaguchi S, Esumi M, Sakamoto M, Endo M, Ebihara T, Soma H, Yoshida A, Tokuhashi Y. Passive cigarette smoking changes the circadian rhythm of clock genes in rat intervertebral discs. J Orthop Res 2016; 34:39-47. [PMID: 25939642 DOI: 10.1002/jor.22941] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 05/01/2015] [Indexed: 02/04/2023]
Abstract
We aimed to elucidate the molecular changes in intervertebral discs (IVDs) caused by passive smoking. Rats were subjected to 8 weeks of passive smoking; thereafter, their lumbar vertebrae were harvested. The annulus fibrosus and cartilage endplate (AF/CEP) were harvested together, and the nucleus pulposus (NP) was isolated separately. The expression of 27,342 rat genes was analyzed. In 3 "nonsmoking" rats, 96 of 112 genes whose expression varied ≥10-fold between the AF/CEP and NP were more highly expressed in the AF/CEP. With these differentially expressed genes, we uncovered novel AF/CEP and NP marker genes and indicated their possible novel functions. Although passive smoking induced less marked alteration in the gene expression profiles of both the AF/CEP and NP, multiple clock-related genes showed altered expression. These genes were expressed with a circadian rhythm in IVD cells, and most genes showed a phase shift of -6 to -9 h induced by passive smoking. Some clock-related genes showed abolished oscillation in the NP. Passive smoking also changed the expression levels of proteases and protease inhibitors and reduced the expression of NP marker genes. Thus, passive smoking induces changes in the circadian rhythm of a peripheral clock (IVD clock) that might be involved in molecular events related to IVD degeneration.
Collapse
Affiliation(s)
- Shumpei Numaguchi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Mariko Esumi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Mika Sakamoto
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Michiko Endo
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Takayuki Ebihara
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Hirotoki Soma
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Akio Yoshida
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yasuaki Tokuhashi
- Department of Therapeutics for Aging Locomotive Disorders, Nihon University School of Medicine, Tokyo, 173-8610, Japan.,Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| |
Collapse
|
47
|
Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus. Sci Rep 2015; 5:15662. [PMID: 26489762 PMCID: PMC4614807 DOI: 10.1038/srep15662] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies fail to replace the normal disc in facilitating spinal movements and absorbing load. The focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 238 differentially expressed genes in the degenerative annulus fibrosus. Seventeen of the dysregulated molecular markers showed log2-fold changes greater than ±1.5. Various dysregulated cellular functions, including cell proliferation and inflammatory response, were identified. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon pathway. This study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation, which may affect cellular function in human degenerative disc.
Collapse
|
48
|
Chen S, Hu ZJ, Zhou ZJ, Lin XF, Zhao FD, Ma JJ, Zhang JF, Wang JY, Qin A, Fan SW. Evaluation of 12 Novel Molecular Markers for Degenerated Nucleus Pulposus in a Chinese Population. Spine (Phila Pa 1976) 2015; 40:1252-60. [PMID: 25893345 DOI: 10.1097/brs.0000000000000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A transcriptional expression assessment of human samples. OBJECTIVE To evaluate 12 new candidate nucleus pulposus (NP) markers in degenerative disc disease in a Chinese population. SUMMARY OF BACKGROUND DATA Disc degeneration is a major contributor of low back pain. However, no specific and reliable markers of degeneration of NP are available. METHODS Specimens of NP were collected from 81 patients and grouped into the degenerated disc group (undergoing discectomy and fusion with significant signs of disc degeneration) and the trauma control group (undergoing anterior vertebral body and disc excision and fusion without signs of disc degeneration). Lumbar spine magnetic resonance imaging, hematoxylin-eosin staining, and safranin O staining of sections of NP tissues were conducted to evaluate the severity of the disc degeneration in all samples. Quantitative reverse transcription polymerase chain reaction was performed to investigate the levels of mRNA expression of these genes, as well as those of aggrecan, type II collagen, and SRY-box 9 (SOX-9). Degenerated samples were also divided into groups according to Pfirrmann grading system to elucidate the association of severity of degeneration and gene transcriptional levels. We also tested the relationship between mRNA levels of these genes and clinical characteristics such as hypertension and diabetes mellitus. RESULTS We demonstrated that 11 of the 12 candidates showed significant differential expression in degenerated discs. Changes in the expression of these 11 genes were determined to be risk factors in degenerative disc diseases. The expression of neurochondrin (NCDN), keratin 8 (KRT8), and matrix Gla protein (MGP) even showed significant changes among subgroups of patients with degenerative disc disease stratified according to the Pfirrmann grading system. The expression of keratin 18 (KRT18), cadherin 2 (CDH2), synaptosomal-associated protein 25 (SNAP25), KRT8, and NCDN was significantly decreased in patients with hypertension. In contrast, the expression of MGP and cartilage oligomeric matrix protein was significantly upregulated in patients with diabetes mellitus. CONCLUSION Overall, we demonstrated the clinical utility of 11 novel NP markers for degenerative disc disease. Among them, the expression of NCDN, KRT8, and MGP may indicate the severity of disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Shuai Chen
- *Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China †Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China; and ‡Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Differentiation of Human Ligamentum Flavum Stem Cells Toward Nucleus Pulposus-Like Cells Induced by Coculture System and Hypoxia. Spine (Phila Pa 1976) 2015; 40:E665-74. [PMID: 25785962 PMCID: PMC4450897 DOI: 10.1097/brs.0000000000000882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human ligamentum flavum (LF)-derived stem cells (LFSCs) and nucleus pulposus cells (NPCs) were cocultured under normoxia or hypoxia. OBJECTIVE To isolate and identify human LFSCs and determine whether they can differentiate into NPCs when cocultured with NPCs under hypoxia. SUMMARY OF BACKGROUND DATA Mesenchymal stem cell (MSC)-based therapies have been proposed as a biological treatment for intervertebral disc degeneration. MSCs derived from various tissues are leading candidates for cell-based therapies, but such cells have not been reported in LF. METHODS LF cells were isolated from patient samples and cultured using culture flasks coated with fibronectin, and their identity was confirmed using flow cytometry. The cells were induced to differentiate into osteoblasts, chondrocytes, and adipocytes, and their morphology, immunophenotype, cell proliferation capacity, cell cycle, and expression of stem cell-specific genes were compared with those of bone marrow-MSCs (BM-MSCs) derived from the same patients. NPCs and LFSCs were cocultured in 1-μm-pore-size insert transwell-culture systems under hypoxia (2% O2) or normoxia. CD24 expression was measured by flow cytometry and confocal microscopy assay. On day 14, reverse transcription-polymerase chain reaction was used for comparing the expression of chondrogenic genes (Sox-9, collagen-II, aggrecan) and novel marker genes (KRT19, CA12, FOXF1, HIF-1α) between the 2 groups. RESULTS LFSCs were obtained using the fibronectin differential-adhesion assay. The morphology of LFSCs was altered, and their immunophenotype, multilineage induction, cell proliferation capacity, cell cycle, and stem cell-specific gene expression were closely related-but not identical-to BM-MSCs, CD24 expression was highly significant in the differentiated LFSCs. RT/Real-time polymerase chain reaction revealed that compared with LFSCs grown under normoxia, hypoxia-treated LFSCs expressed higher levels of Sox-9, collagen-II, aggrecan, KRT19, CA12, and HIF-1α genes except FOXF1. CONCLUSION Stem cells were identified in human LF, and LFSCs cocultured with NPCs were successfully differentiated into NP-like cells under hypoxia. This potentially provides new cell candidates for cell-based regenerative medicine and tissue engineering. LEVEL OF EVIDENCE N/A.
Collapse
|
50
|
Chan WCW, Au TYK, Tam V, Cheah KSE, Chan D. Coming together is a beginning: the making of an intervertebral disc. ACTA ACUST UNITED AC 2015; 102:83-100. [PMID: 24677725 DOI: 10.1002/bdrc.21061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/27/2014] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age.
Collapse
Affiliation(s)
- Wilson C W Chan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|