1
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
2
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Alobaisi K, Thangavel S, Begum R, Diaz R, Al-Dayel F, Al-Kuraya KS. Polo-like Kinase 1 Predicts Lymph Node Metastasis in Middle Eastern Colorectal Cancer Patients; Its Inhibition Reverses 5-Fu Resistance in Colorectal Cancer Cells. Cells 2024; 13:1700. [PMID: 39451218 PMCID: PMC11506015 DOI: 10.3390/cells13201700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase essential for regulating multiple stages of cell cycle progression in mammals. Aberrant regulation of PLK1 has been observed in numerous human cancers and is linked to poor prognoses. However, its role in the pathogenesis of colorectal cancer (CRC) in the Middle East remains unexplored. PLK1 overexpression was noted in 60.3% (693/1149) of CRC cases and was significantly associated with aggressive clinico-pathological parameters and p-ERK1/2 overexpression. Intriguingly, multivariate logistic regression analysis identified PLK1 as an independent predictor of lymph node metastasis. Our in vitro experiments demonstrated that CRC cells with high PLK1 levels were resistant to 5-Fu treatment, while those with low PLK1 expression were sensitive. To investigate PLK1's role in chemoresistance, we used the specific inhibitor volasertib, which effectively reversed 5-Fu resistance. Interestingly, forced PLK1 expression activated the CRAF-MEK-ERK signaling cascade, while its inhibition suppressed this cascade. PLK1 knockdown reduced epithelial-to-mesenchymal transition (EMT) progression and stem cell-like traits in 5-Fu-resistant cells, implicating PLK1 in EMT induction and stemness in CRC. Moreover, silencing ERK1/2 significantly mitigated chemoresistance, EMT, and stemness properties in CRC cell lines that express PLK1. Furthermore, the knockdown of Zeb1 attenuated EMT and stemness, suggesting a possible link between EMT activation and the maintenance of stemness in CRC. Our findings underscore the pivotal role of PLK1 in mediating chemoresistance and suggest that PLK1 inhibition may represent a potential therapeutic strategy for the management of aggressive colorectal cancer subtypes.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Divya Padmaja
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Khadija Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Roxanne Diaz
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| |
Collapse
|
3
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Xu R, Lee YJ, Kim CH, Min GH, Kim YB, Park JW, Kim DH, Kim JH, Yim H. Invasive FoxM1 phosphorylated by PLK1 induces the polarization of tumor-associated macrophages to promote immune escape and metastasis, amplified by IFITM1. J Exp Clin Cancer Res 2023; 42:302. [PMID: 37968723 PMCID: PMC10652615 DOI: 10.1186/s13046-023-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Understanding the mechanism behind immune cell plasticity in cancer metastasis is crucial for identifying key regulators. Previously we found that mitotic factors regulate epithelial-mesenchymal transition, but how these factors convert to metastatic players in the tumor microenvironment (TME) is not fully understood. METHODS The clinical importance of mitotic factors was analyzed by heatmap analysis, a KM plot, and immunohistochemistry in lung adenocarcinoma (LUAD) patients. Immunoprecipitation, LC-MS/MS, kinase assay, and site-directed mutagenesis were performed for the interaction and phosphorylation. A tail-vein injection mouse model, Transwell-based 3D culture, microarray analysis, coculture with monocytes, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated FoxM1 in metastasis of TME. RESULTS The phosphorylated FoxM1 at Ser25 by PLK1 acquires the reprogramming ability to stimulate the invasive traits in cancer and influence immune cell plasticity. This invasive form of p-FoxM1 upregulates the expression of IL1A/1B, VEGFA, and IL6 by direct activation, recruiting monocytes and promoting the polarization of M2d-like tumor-associated macrophages (TAMs). Upregulation of PD-L1 in LUAD having phosphomimetic FoxM1 facilitates immune evasion. In invasive LUAD with phosphomimetic FoxM1, IFITM1 is the most highly expressed through the activation of the STING-TBK1-IRF3 signaling, which enhances FoxM1-mediated signaling. Clinically, higher expression of FOXM1, PLK1, and IFITM1 is inversely correlated with the survival rate of advanced LUAD patients, providing a promising therapeutic strategy for the treatment of LUAD. CONCLUSION FoxM1-based therapy would be a potential therapeutic strategy for LUAD to reduce TAM polarization, immune escape, and metastasis, since FoxM1 functions as a genetic reprogramming factor reinforcing LUAD malignancy in the TME.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Young-Joo Lee
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Chungcheongbuk-Do, 28160, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do, 15588, Republic of Korea.
| |
Collapse
|
5
|
Javed A, Özduman G, Altun S, Duran D, Yerli D, Özar T, Şimşek F, Sami Korkmaz K. Mitotic kinase inhibitors as Therapeutic Interventions for Prostate Cancer: Evidence from In vitro Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:EMIDDT-EPUB-129979. [PMID: 36872354 DOI: 10.2174/1871530323666230303092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer is one of the devastating diseases characterized by genetic changes leading to uncontrolled growth and metastasis of the cells of the prostate gland and affects men worldwide. Conventional hormonal and chemotherapeutic agents are effective in mitigating the disease if diagnosed at an early stage. All dividing eukaryotic cells require mitotic progression for the maintenance of genomic integrity in progeny populations. The protein kinases, upon activation and de-activation in an ordered fashion, lead to spatial and temporal regulation of the cell division process. The entry into mitosis along with the progression into sub-phases of mitosis is ensured due to the activity of mitotic kinases. These kinases include Polo-Like-Kinase 1 (PLK1), Aurora kinases, and Cyclin-Dependent-Kinase 1 (CDK1), among others. The mitotic kinases, among others, are usually overexpressed in many cancers and can be targeted using small molecule inhibitors to reduce the effects of these regulators on mechanisms, such as regulation of genomic integrity and mitotic fidelity. In this review, we attempted to discuss the appropriate functions of mitotic kinases revealed through cell culture studies and the impact of their respective inhibitors derived in pre-clinical studies. The review is designed to elucidate the growing field of small molecule inhibitors and their functional screening or mode of action at the cellular and molecular level in the context of Prostate Cancer. Therefore, studies performed specifically on cells of Prostatic-origin are narrated in this review, culminating in a comprehensive view of the specific field of mitotic kinases that can be targeted for therapy of Prostate cancer.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Gülseren Özduman
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Sevda Altun
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Doğan Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Dilan Yerli
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Tilbe Özar
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Faruk Şimşek
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
6
|
Patra D, Bhavya K, Ramprasad P, Kalia M, Pal D. Anti-cancer drug molecules targeting cancer cell cycle and proliferation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:343-395. [PMID: 37061337 DOI: 10.1016/bs.apcsb.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer, a vicious clinical burden that potentiates maximum fatality for humankind, arises due to unregulated excessive cell division and proliferation through an eccentric expression of cell cycle regulator proteins. A set of evolutionarily conserved machinery controls the cell cycle in an extremely precise manner so that a cell that went through the cycle can produce a genetically identical copy. To achieve perfection, several checkpoints were placed in the cycle for surveillance; so, errors during the division were rectified by the repair strategies. However, irreparable damage leads to exit from the cell cycle and induces programmed cell death. In comparison to a normal cell, cancer cells facilitate the constitutive activation of many dormant proteins and impede negative regulators of the checkpoint. Extensive studies in the last few decades on cell division and proliferation of cancer cells elucidate the molecular mechanism of the cell-cycle regulators that are often targeted for the development of anti-cancer therapy. Each phase of the cell cycle has been regulated by a unique set of proteins including master regulators Cyclins, and CDKs, along with the accessory proteins such as CKI, Cdc25, error-responsive proteins, and various kinase proteins mainly WEE1 kinases, Polo-like kinases, and Aurora kinases that control cell division. Here in this chapter, we have analytically discussed the role of cell cycle regulators and proliferation factors in cancer progression and the rationale of using various cell cycle-targeting drug molecules as anti-cancer therapy.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
7
|
Olawale F, Iwaloye O, Elekofehinti OO. Virtual screening of natural compounds as selective inhibitors of polo-like kinase-1 at C-terminal polo box and N-terminal catalytic domain. J Biomol Struct Dyn 2022; 40:13606-13624. [PMID: 34669551 DOI: 10.1080/07391102.2021.1991476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The over-expression of Polo-like kinase-1 (PLK1) is associated with cancer prognosis due to its pivotal role in cell proliferation. The N-terminal catalytic domain (NCD) and C-terminal polo box domain (PBD) of PLK1 are critical for the activity of the protein. Drugs that inhibit PLK1 by targeting these domains are on clinical trials, but so far, none has been approved by FDA. Thus, this study targets the two domains of PLK1 to identify compounds with inhibitory potential. Four validated e-pharmacophore models from NCD (PDB ID: 2OU7 and 4J52) and PBD (PDB ID: 5NEI and 5NN2) were used to screen over 26,000 natural compounds from NPASS database. Hits were identified after the well-fitted compounds were subjected to molecular docking study and ADME prediction. The pIC50 and electronic behaviour of the identified hits selectively targeting NCD and PBD of PLK1 were predicted via an externally validated QSAR model and quantum mechanics. The results showed that CAA180504, CAA197326, CAA74619, CAA328856 modulating PLK1 at NCD, and CBB130581, CBB230713, CBB206123, CBB12656 and CBB267117 modulating PLK1 at PBD had better molecular docking scores, pharmacokinetics and drug-like properties than NCD (volasertib) and PBD (purpurogallin) reference inhibitors. The compounds all had satisfactory inhibitory (pIC50) values which range from 6.187 to 7.157. The electronic behaviours of understudied compounds using HOMO/LUMO and global descriptive parameters revealed the atomic portion of the compounds prone to donating and accepting electrons. In conclusion, the hit compounds identified from the library of natural compounds are worthy of further experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of Life Science, University of Kwazulu Natal, Durban, South Africa.,Department of Biochemistry, University of Lagos, Lagos, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
8
|
Chuang HW, Pan JH, Cai YX, Rupa D, Huang TS, Kuo TC, Lin CW, Chen CW, Lin CC, Lee HS, Yuan TC. Reciprocal regulation of CIP2A and AR expression in prostate cancer cells. Discov Oncol 2022; 13:87. [PMID: 36098827 PMCID: PMC9470804 DOI: 10.1007/s12672-022-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein overexpressed in human malignancies, including prostate cancer (PCa). In this study, we aimed to explore the oncogenic function of CIP2A in PCa cells and its underlying mechanism. We showed that 63.3% (38/60 cases) of PCa tissues exhibited a high CIP2A immunostaining, compared to 25% (3/12 cases) of BPH samples (p = 0.023). Furthermore, the protein level of CIP2A was positively correlated with patients' short survival time and nuclear AR levels in PCa tissues. Compared to PZ-HPV-7, an immortalized prostate cell line, androgen-sensitive LNCaP C-33, androgen-independent LNCaP C-81, or 22Rv1 cells exhibited a high CIP2A level, associated with high protein and phosphorylation levels of AR. While AR expression and activity modulated CIP2A expression, manipulating CIP2A expression in PCa cells regulated their AR protein levels and proliferation. The reduction of CIP2A expression also enhanced the sensitivity of PCa cells toward Enzalutamide treatment. Our data further showed that depletion of polo-kinase 1 (PLK1) expression or activity in C-81 or 22Rv1 cells caused reduced protein levels of c-Myc and AR. Notably, inhibition of PLK1 activity could abolish CIP2A-promoted expressions in c-Myc, AR, and prostate-specific antigen (PSA) in C-33 cells under an androgen-deprived condition, suggesting the role of PLK1 activity in CIP2A-promoted AR expression. In summary, our data showed the existence of a novel regulation between CIP2A and AR protein levels, which is critical for promoting PCa malignancy. Thus, CIP2A could serve as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung, 813414, Taiwan, ROC
| | - Jian-Hua Pan
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Yi-Xuan Cai
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Darius Rupa
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Ting-Syuan Huang
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Tzu-Chien Kuo
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Chiao-Wen Lin
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Chi-Wei Chen
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC
| | - Chia-Chin Lin
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung, 813414, Taiwan, ROC
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung, 813414, Taiwan, ROC
| | - Ta-Chun Yuan
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301, Taiwan, ROC.
| |
Collapse
|
9
|
Navitoclax Enhances the Therapeutic Effects of PLK1 Targeting on Lung Cancer Cells in 2D and 3D Culture Systems. Pharmaceutics 2022; 14:pharmaceutics14061209. [PMID: 35745782 PMCID: PMC9229367 DOI: 10.3390/pharmaceutics14061209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
The efficacy of antimitotics is limited by slippage, whereby treated cells arrested in mitosis exit mitosis without cell division and, eventually, escape apoptosis, constituting a serious resistance mechanism to antimitotics. Strategies to overcome slippage should potentiate the cancer cell killing activity of these antimitotics. Such strategies should accelerate cell death in mitosis before slippage. Here, we undertook a mechanistic analysis to test whether the apoptosis activator Navitoclax potentiates apoptosis triggered by the antimitotic BI2536, a potent inhibitor of Polo-like kinase 1 (PLK1) with the goal of overcoming slippage. We found that cancer cells in 2D cultures treated with BI2536 alone accumulate in mitosis, but a significant fraction of arrested cells undergo slippage and survive. Remarkably, combining BI2536 with Navitoclax dramatically reduces slippage, shifting the cell fate to accelerated death in mitosis. The results are confirmed in 3D spheroids, a preclinical system that mimics in vivo tumor drug responses. Importantly, in 3D spheroids, the effect of the BI2536/Navitoclax combination requires a lower therapeutic dosage of each drug, underlying its potential to improve the therapeutic index. Our results highlight the relevance of apoptosis potentiators to circumvent slippage associated with antimitotics. The combination of BI2536 with Navitoclax shows in vitro synergy/additive effect, which warrants further clinical research.
Collapse
|
10
|
Chilamakuri R, Rouse DC, Agarwal S. Inhibition of Polo-like Kinase 1 by HMN-214 Blocks Cell Cycle Progression and Inhibits Neuroblastoma Growth. Pharmaceuticals (Basel) 2022; 15:ph15050523. [PMID: 35631350 PMCID: PMC9144399 DOI: 10.3390/ph15050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is an essential cell cycle mitotic kinase component that plays an important role in cell cycle progression and has been reported to be involved in various cancers, including neuroblastoma (NB). PLK1 also regulates G2/M transition, chromosomal segregation, spindle assembly maturation, and mitotic exit. NB is an early embryonic-stage heterogeneous solid tumor and accounts for 15% of all pediatric cancer-related deaths. Therefore, we aimed to develop a targeting strategy for PLK1 by repurposing HMN-214 in NB. HMN-214 is a prodrug of HMN-176 and is known to selectively interfere with PLK1 function. In the present study, we performed the transcriptomic analysis of a large cohort of primary NB patient samples and revealed that PLK1 expression is inversely correlated with the overall survival of NB patients. Additionally, we found that PLK1 strongly correlates with NB disease and stage progression. HMN-214 significantly inhibited NB proliferation and colony formation in both MYCN-amplified and -nonamplified cell lines in a dose-dependent manner. Furthermore, HMN-214 induces apoptosis and significantly obstructs the cell cycle at the G2/M phase in NB cells by inhibiting multiple cell-cycle-related genes, such as PLK1, WEE1, CDK1, CDK2, Cyclin B1, CHK1, and CHK2. HMN-214 significantly inhibits cell cycle regulator CDK1 and the phosphorylation and activation of PLK1 in NB. In the NB 3D spheroid tumor model, HMN-214 significantly and in a dose-dependent manner inhibits spheroid tumor mass and growth. Overall, our study highlights that targeting PLK1 using HMN-214 is a novel therapeutic approach for NB.
Collapse
|
11
|
Srinivas US, Tay NSC, Jaynes P, Anbuselvan A, Ramachandran GK, Wardyn JD, Hoppe MM, Hoang PM, Peng Y, Lim S, Lee MY, Peethala PC, An O, Shendre A, Tan BWQ, Jemimah S, Lakshmanan M, Hu L, Jakhar R, Sachaphibulkij K, Lim LHK, Pervaiz S, Crasta K, Yang H, Tan P, Liang C, Ho L, Khanchandani V, Kappei D, Yong WP, Tan DSP, Bordi M, Campello S, Tam WL, Frezza C, Jeyasekharan AD. PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene 2022; 41:1986-2002. [PMID: 35236967 DOI: 10.1038/s41388-022-02219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
Collapse
Affiliation(s)
- Upadhyayula S Srinivas
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Norbert S C Tay
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Gokula K Ramachandran
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Joanna D Wardyn
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlly Lim
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshay Shendre
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlyn Jemimah
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chao Liang
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore.
| |
Collapse
|
12
|
MRE11 as a molecular signature and therapeutic target for cancer treatment with radiotherapy. Cancer Lett 2021; 514:1-11. [PMID: 34022282 DOI: 10.1016/j.canlet.2021.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
MRE11, the core of the MRE11/RAD50/NBS1 complex, is one of key DNA damage response proteins. Increasing evidence suggests that its expression in cancer cells is critical to developing radioresistance; as such, MRE11 is an emerging marker for targeted radiosensitization strategies. Elevated MRE11 in tumor tissues has been associated with poor survival in patients undergoing radiotherapy, although in some cancer types, the opposite has been noted. The recent discovery of ionizing radiation-induced truncation of MRE11, which decreases its efficacy, may explain some of these paradoxical findings. The progress of research on the biological modulation of MRE11 expression is also discussed, with the potential application of small molecule or large molecule inhibitors of MRE11 for enhancing radiosensitivity. Current research has further highlighted both nuclease and non-nuclease activities of MRE11 in cancer cells treated with ionizing radiation, and differentiation between these is essential to verify the targeting effects of radiosensitizing agents. These updates clarify our understanding of how MRE11 expression may be utilized in future stratification of cancer patients for radiotherapy, and how it may be leveraged in shaping novel radiosensitization strategies.
Collapse
|
13
|
Oh Y, Jung H, Kim H, Baek J, Jun J, Cho H, Im D, Hah JM. Design and Synthesis of a Novel PLK1 Inhibitor Scaffold Using a Hybridized 3D-QSAR Model. Int J Mol Sci 2021; 22:3865. [PMID: 33917995 PMCID: PMC8068361 DOI: 10.3390/ijms22083865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in cell cycle progression and proliferation in cancer cells. PLK1 also contributes to anticancer drug resistance and is a valuable target in anticancer therapeutics. To identify additional effective PLK1 inhibitors, we performed QSAR studies of two series of known PLK1 inhibitors and proposed a new structure based on a hybridized 3D-QSAR model. Given the hybridized 3D-QSAR models, we designed and synthesized 4-benzyloxy-1-(2-arylaminopyridin-4-yl)-1H-pyrazole-3-carboxamides, and we inspected its inhibitory activities to identify novel PLK1 inhibitors with decent potency and selectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jung-Mi Hah
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Korea; (Y.O.); (H.J.); (H.K.); (J.B.); (J.J.); (H.C.); (D.I.)
| |
Collapse
|
14
|
Kollareddy M, Martinez LA. Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line. Cells 2021; 10:cells10040797. [PMID: 33918387 PMCID: PMC8067228 DOI: 10.3390/cells10040797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Mutant p53(s) are widely considered as oncogenes and promote several gain-of-function oncogenic activities. p53 mutations correlate with higher rates of metastasis and poor survival; therefore, it is paramount to inhibit mutant p53 protein either directly or indirectly. Although some compounds have been developed, none of them have achieved a desirable level of specificity. Some of these compounds only targeted specific mutations. In search of less-toxic compounds, we tested plant-derived compounds on mutant p53 triple-negative breast cancer cell lines. Here, we show that the compounds tested reduced the protein levels of one of the more frequent oncogenic p53 mutants (R249S; hot spot mutation), and its important targets that promote invasion and metastasis, including GMPS and IMPDH1. All compounds tested perturbed the invasion potential of the breast cancer cell line. These compounds downregulated several nucleotide metabolism genes (NMGs) which are essential for cell cycle progression. We observed S-phase arrest correlating to reduced cell proliferation and increased replication stress. Moreover, we also show a reduction of key ETS transcription family members including ETS2, ETS1, ETV1, and ETV4, which are involved in invasion and metastasis. We propose that these compounds may inhibit invasion by interfering with multiple pathways. Our findings exemplify that these tested compounds could inhibit invasion and cell growth in TNBC in a nucleotide-dependent manner.
Collapse
Affiliation(s)
- Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Correspondence: (M.K.); (L.A.M.)
| | - Luis A. Martinez
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA
- Correspondence: (M.K.); (L.A.M.)
| |
Collapse
|
15
|
A Cereblon Modulator CC-885 Induces CRBN- and p97-Dependent PLK1 Degradation and Synergizes with Volasertib to Suppress Lung Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:215-225. [PMID: 32728610 PMCID: PMC7369516 DOI: 10.1016/j.omto.2020.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Therapeutic targeting of advanced or metastatic non-small-cell lung cancer (NSCLC) represents a major goal of clinical treatment. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in cell cycle progression and is associated with oncogenesis in a large spectrum of cancer types, including NSCLC. Volasertib (BI 6727) is a potent, selective, PLK1 inhibitor that is currently under phase 2 clinical trials with modest antitumor activity against solid tumors. As the combination of volasertib with pemetrexed does not improve efficacy for NSCLC treatment, it is crucial to identify compounds that could enhance efficacy with volasertib. Immunomodulatory drugs (IMiDs) bind to E3 ligase CRBN and repurposes it to ubiquitinate other proteins as neo-substrates, representing an effective treatment for hematologic malignancies. In this study, by screening IMiDs, we found that a novel CRBN modulator, CC-885, can synergistically inhibit NSCLC with volasertib both in vitro and in vivo. This synergistic effect overcomes volasertib resistance caused by PLK1 mutations and is compromised in CRBN-or p97-depleted cells. Mechanistically, CC-885 selectively promotes CRBN- and p97-dependent PLK1 ubiquitination and degradation, thereby enhancing the sensitivity of NSCLC to volasertib. In conclusion, our findings reveal that PLK1 is a neo-substrate of CUL4-CRBN induced by CC-885 and represent a combinational approach for treating NSCLC.
Collapse
|
16
|
Rekha UV, Anita M, Jayamathi G, Sadhana K, Deepa S, Hussain S, Bhuvaneswari J, Ramya V, Selvaraj J, Naveenraj NS. Molecular docking analysis of piperine with CDK2,CDK4,Cyclin D and Cyclin T proteins. Bioinformation 2020; 16:359-362. [PMID: 32831516 PMCID: PMC7434954 DOI: 10.6026/97320630016359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022] Open
Abstract
Piperine is a component of Piper nigrum (Black pepper). It is well known in ayurvedic formulations. Piperine is a bioenhancer as it reduces the activity of drug-metabolizing enzymes in rodents and thereby enhancing the plasma concentrations of several drugs, including the Pglycoprotein substrates. Therefore, it is of interest to understand the molecular docking interactions of piperine with several cell cycle proteins such as Cyclin dependent kinase 2 (CDK2), Cyclin-dependent kinase 4 (CDK4), Cyclin D and Cyclin T for further consideration in drug discovery related to oral cancer.
Collapse
Affiliation(s)
- Umapathy Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - M Anita
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Govindaraj Jayamathi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - K Sadhana
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Subramanian Deepa
- Department of Periodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Sajid Hussain
- Department of Periodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - J Bhuvaneswari
- Department of Periodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - V Ramya
- Department of Periodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - NS Naveenraj
- Department of Public Health Dentistry, Ragas Dental College and Hospital, Chennai India
| |
Collapse
|
17
|
Kong LR, Ong RW, Tan TZ, Mohamed Salleh NAB, Thangavelu M, Chan JV, Koh LYJ, Periyasamy G, Lau JA, Le TBU, Wang L, Lee M, Kannan S, Verma CS, Lim CM, Chng WJ, Lane DP, Venkitaraman A, Hung HT, Cheok CF, Goh BC. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat Commun 2020; 11:2086. [PMID: 32350249 PMCID: PMC7190866 DOI: 10.1038/s41467-020-15608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically. Codon 158 gain-of-function mutant p53 (158-mutp53) promotes tumourigenesis in lung cancer. Here, the authors show that 158-mutp53 render cancers sensitive to cisplatin and p53 acetylation agents through a mechanism where acetylated mutant p53 upregulates TRAIP and inhibits NF-ĸB signaling.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Richard Weijie Ong
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Matan Thangavelu
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jane Vin Chan
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Lie Yong Judice Koh
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jieying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chwee Ming Lim
- Division of Surgical Oncology (Head and Neck Surgery), National University Cancer Institute, Singapore (NCIS), Singapore, 119074, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Ashok Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Huynh The Hung
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.
| |
Collapse
|
18
|
Chen W, Zhu S, Zhang Y, Xiao J, Tian D. Identification of key candidate tumor biomarkers in non-small-cell lung cancer by in silico analysis. Oncol Lett 2020; 19:1008-1016. [PMID: 31897214 PMCID: PMC6924182 DOI: 10.3892/ol.2019.11169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is a common malignancy worldwide. The aim of the present study was to investigate differentially expressed genes (DEGs) between non-small-cell lung cancer (NSCLC) and normal lung tissue, and to reveal the potential molecular mechanism underlying NSCLC. The Gene Expression Omnibus database was used to obtain three gene expression profiles (GSE18842, GSE30219 and GSE33532). DEGs were obtained by GEO2R. Gene Ontology and pathway enrichment analyses were performed for DEGs in the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of DEGs was constructed and analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape software. A survival analysis was performed and protein expression levels of DEGs in human NSCLC were analyzed in order to determine clinical significance. A total of 764 DEGs were identified, consisting of 428 upregulated and 336 downregulated genes in NSCLC tissues compared with normal lung tissues, which were enriched in the 'cell cycle', 'cell adhesion molecules', 'p53 signaling pathway', 'DNA replication' and 'tight junction'. A PPI network of DEGs consisting of 51 nodes and 192 edges was constructed. The top 10 genes were identified as hub genes from the PPI network. High expression of 4 of the 10 hub genes was associated with worse overall survival rate in patients with NSCLC, including CDK1, PLK1, RAD51 and RFC4. In conclusion, the present study aids in improving the current understanding of aberrant gene expression between NSCLC tissues and normal lung tissues underlying tumorgenesis in NSCLC. Identified hub genes can be used as a tumor marker for diagnosis and prognosis or as a drug therapy target in NSCLC.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Song Zhu
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yifei Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jinghua Xiao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
19
|
Chae HS, Xu R, Won JY, Chin YW, Yim H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. Int J Mol Sci 2019; 20:E2420. [PMID: 31100782 PMCID: PMC6566427 DOI: 10.3390/ijms20102420] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023] Open
Abstract
Increased health awareness among the public has highlighted the health benefits of dietary supplements including flavonoids. As flavonoids target several critical factors to exert a variety of biological effects, studies to identify their target-specific effects have been conducted. Herein, we discuss the basic structures of flavonoids and their anticancer activities in relation to the specific biological targets acted upon by these flavonoids. Flavonoids target several signaling pathways involved in apoptosis, cell cycle arrest, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/AKT kinase, and metastasis. Polo-like kinase 1 (PLK1) has been recognized as a valuable target in cancer treatment due to the prognostic implication of PLK1 in cancer patients and its clinical relevance between the overexpression of PLK1 and the reduced survival rates of several carcinoma patients. Recent studies suggest that several flavonoids, including genistein directly inhibit PLK1 inhibitory activity. Later, we focus on the anticancer effects of genistein through inhibition of PLK1.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Korea.
| | - Rong Xu
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Jae-Yeon Won
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Young-Won Chin
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Korea.
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|
20
|
Downregulation of miR-144 by triptolide enhanced p85α-PTEN complex formation causing S phase arrest of human nasopharyngeal carcinoma cells. Eur J Pharmacol 2019; 855:137-148. [PMID: 31059711 DOI: 10.1016/j.ejphar.2019.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Selective pharmacologic targeting of cell cycle regulators is a potent anti-cancer therapeutic strategy. Here, we show that caspase-3-mediated p21 cleavage involves p53 independent of triptolide (TPL)-induced S phase arrest in human type 1 nasopharyngeal carcinoma (NPC) cells. Coimmunoprecipitation studies demonstrated that TPL causes S phase cell cycle arrest by suppressing the formation of cyclin A-phosphor (p)-cyclin-dependent kinas 2 (CDK2) (Thr 39) complexes. Ectopic expression of constitutively active protein kinase B1 (Akt1) blocks the induction of S phase arrest and the suppression of cyclin A expression and CDK2 Thr 39 phosphorylation by TPL. Expression of the phosphomimetic mutant CDK2 (T39E) rescues the cells from TPL-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TPL-triggered S phase arrest. Treatment with TPL induces an increase in the formation of complexes between unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and p85α in the plasma membrane. Decreased microRNA (miR)-144 expression and increased PTEN expression after TPL treatment were demonstrated, and TPL-enhanced p85α-PTEN complexes and inhibitory effects on Akt (Ser 473) phosphorylation and S phase arrest were suppressed by ectopic PTEN short hairpin RNA or miR-144 expression. Knockdown of endogenous miR-144 by miR-144 Trap upregulated PTEN expression and accordingly enhanced p85α-PTEN complex formation and S phase arrest. Collectively, the effect of TPL on S phase arrest in human NPC cells is likely to enhance the p85α-PTEN interaction in the plasma membrane by suppressing miR-144 expression, resulting in the attenuation of cyclin A-p-CDK2 (Thr 39) complex formation via Akt inactivation.
Collapse
|
21
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
22
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
23
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Chan KK, Wong OGW, Wong ESY, Chan KKL, Ip PPC, Tse KY, Cheung ANY. Impact of iASPP on chemoresistance through PLK1 and autophagy in ovarian clear cell carcinoma. Int J Cancer 2018; 143:1456-1469. [PMID: 29663364 DOI: 10.1002/ijc.31535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2023]
Abstract
Ovarian clear cell carcinoma (OCCC) is a type of epithelial ovarian cancer that is strongly associated with endometriosis, resistance against conventional chemotherapy and thus poorer prognosis. The expression of inhibitory member of the ASPP family proteins (iASPP) and Polo-like kinase (PLK)1 were significantly higher in OCCC compared to benign cystadenomas and endometriosis. Both protein expressions were found to correlate with chemoresistance in patients with OCCC while high iASPP expression alone was significantly associated with a poor patient survival. The growth of OCCC cell lines, OVTOKO and KK, were inhibited after iASPP silencing. Such effect was related to senescence triggering as evidenced by increased SA-β-Gal staining and p21WAF1/Cip1 expression. Moreover, knockdown of iASPP induced PLK1 downregulation, whereas either genes' silencing sensitized the cells in response to cisplatin treatment. More prominent apoptosis was induced by cisplatin in OCCC cells after the knockdown of either iASPP or PLK1 as evidenced by the formation of more cleaved caspase 3. Heightened chemosensitivity to cisplatin after iASPP knockdown was further demonstrated in in vivo xenograft model. Additionally, both iASPP and PLK1 were shown to regulate autophagic flux as the induction of LC3B-II and LC3 puncta were much less in OCCC cells with either knockdown. Importantly, inhibition of autophagy also enhanced chemosensitivity to cisplatin in OCCC cells. These findings strongly imply that iASPP and PLK1 affect the chemoresistance of OCCC via the regulation of autophagy and apoptosis. Both iASPP and PLK1 can be potential therapeutic targets for treating OCCC in combination with conventional chemotherapy.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Autophagy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Cisplatin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Oscar Gee-Wan Wong
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Esther Shuk-Ying Wong
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Karen Kar-Loen Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Philip Pun-Ching Ip
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Ka-Yu Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
| | - Annie Nga-Yin Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong Island, Hong Kong
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
25
|
Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S, Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol 2018; 24:3583-3616. [PMID: 30166856 PMCID: PMC6113718 DOI: 10.3748/wjg.v24.i32.3583] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in gastric cancer incidence, the development of novel biologic agents and combined therapeutic strategies, the prognosis of gastric cancer remains poor. Recently, the introduction of modern immunotherapy, especially using immune checkpoint inhibitors, led to an improved prognosis in many cancers. The use of immunotherapy was also associated with manageable adverse event profiles and promising results in the treatment of patients with gastric cancer, especially in heavily pretreated patients. These data have led to an accelerated approval of some checkpoint inhibitors in this setting. Understanding the complex relationship between the host immune microenvironment and tumor and the immune escape phenomenon leading to cancer occurrence and progression will subsequently lead to the identification of prognostic immune markers. Furthermore, this understanding will result in the discovery of both new mechanisms for blocking tumor immunosuppressive signals and pathways to stimulate the local immune response by targeting and modulating different subsets of immune cells. Due to the molecular heterogeneity of gastric cancers associated with different clinico-biologic parameters, immune markers expression and prognosis, novel immunotherapy algorithms should be personalized and addressed to selected subsets of gastric tumors, which have been proven to elicit the best clinical responses. Future perspectives in the treatment of gastric cancer include tailored dual immunotherapies or a combination of immunotherapy with other targeted agents with synergistic antitumor effects.
Collapse
Affiliation(s)
- Daniela Cornelia Lazăr
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mihaela Flavia Avram
- Department of Surgery X, 1st Surgery Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Ioan Romoșan
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mărioara Cornianu
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Sorina Tăban
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Adrian Goldiș
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| |
Collapse
|
26
|
Liu TT, Yang KX, Yu J, Cao YY, Ren JS, Hao JJ, Pan BQ, Ma S, Yang LY, Cai Y, Wang MR, Zhang Y. Co-targeting PLK1 and mTOR induces synergistic inhibitory effects against esophageal squamous cell carcinoma. J Mol Med (Berl) 2018; 96:807-817. [PMID: 29959473 DOI: 10.1007/s00109-018-1663-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Both polo-like kinase 1 (PLK1) and mammalian/mechanistic target of rapamycin (mTOR) are attractive therapeutic targets for cancer therapy. However, the efficacy of the combined inhibition of both pathways for treating esophageal squamous cell carcinoma (ESCC), an aggressive malignancy with poor prognosis, remains unknown. In this study, we found that suppression of PLK1 by specific siRNA or inhibitor attenuated mTOR activity in ESCC cells. Phosphorylated S6, a downstream effector of mTOR signaling, was significantly correlated with overexpression of PLK1 in a subset of ESCC. These data suggest that PLK1 activates mTOR signaling in vitro and in vivo. More importantly, the mTOR inhibitor rapamycin synergized with PLK1 inhibitor BI 2536 to inhibit ESCC cell proliferation in culture and in mice. Notably, combined treatment with BI 2536 and rapamycin produced more potent inhibitory effects on the activation of S6 and AKT than either alone. Further analysis reveals that PLK1 modulates both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) cascades. Therefore, dual inhibition of PLK1 and mTOR yields stronger antitumor effects, at least partially due to synergistic abrogated the activation of S6, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AKT by cooperatively blocking mTORC1 and mTORC2 cascades. These results provide evidence that the mTOR inhibitor rapamycin synergistically enhances the antitumor effect of PLK1 inhibitor BI 2536 in ESCC cells. Simultaneous targeting of PLK1 and mTOR may thus be a novel and promising therapeutic strategy for ESCC. KEY MESSAGES PLK1 potentiates both mTORC1 and mTORC2 activities in ESCC cells. PLK1 expression positively correlated with mTOR activity in a subset of ESCC. Co-targeting of PLK1 and mTOR produced stronger antitumor effects partially due to synergistic inhibition of AKT, 4E-BP1 and S6 through cooperatively blocking mTORC2 and mTORC1 cascades. Combination targeting of PLK1 and mTOR may be a novel and promising therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Kai-Xia Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ying-Ya Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jian-Song Ren
- Program Office for Cancer Screening in Urban China, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bei-Qing Pan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
27
|
Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological Targeting of Cell Cycle, Apoptotic and Cell Adhesion Signaling Pathways Implicated in Chemoresistance of Cancer Cells. Int J Mol Sci 2018; 19:ijms19061690. [PMID: 29882812 PMCID: PMC6032165 DOI: 10.3390/ijms19061690] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dauren Alimbetov
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Terence Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - David Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
28
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
29
|
Saatci Ö, Borgoni S, Akbulut Ö, Durmuş S, Raza U, Eyüpoğlu E, Alkan C, Akyol A, Kütük Ö, Wiemann S, Şahin Ö. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene 2018; 37:2251-2269. [PMID: 29391599 DOI: 10.1038/s41388-017-0108-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 12/18/2022]
Abstract
Trastuzumab-refractory, HER2 (human epidermal growth factor receptor 2)-positive breast cancer is commonly treated with trastuzumab emtansine (T-DM1), an antibody-drug conjugate of trastuzumab and the microtubule-targeting agent, DM1. However, drug response reduces greatly over time due to acquisition of resistance whose molecular mechanisms are mostly unknown. Here, we uncovered a novel mechanism of resistance against T-DM1 by combining whole transcriptome sequencing (RNA-Seq), proteomics and a targeted small interfering RNA (siRNA) sensitization screen for molecular level analysis of acquired and de novo T-DM1-resistant models of HER2-overexpressing breast cancer. We identified Polo-like kinase 1 (PLK1), a mitotic kinase, as a resistance mediator whose genomic as well as pharmacological inhibition restored drug sensitivity. Both acquired and de novo resistant models exhibited synergistic growth inhibition upon combination of T-DM1 with a selective PLK1 inhibitor, volasertib, at a wide concentration range of the two drugs. Mechanistically, T-DM1 sensitization upon PLK1 inhibition with volasertib was initiated by a spindle assembly checkpoint (SAC)-dependent mitotic arrest, leading to caspase activation, followed by DNA damage through CDK1-dependent phosphorylation and inactivation of Bcl-2/xL. Furthermore, we showed that Ser70 phosphorylation of Bcl-2 directly regulates apoptosis by disrupting the binding to and sequestration of the pro-apoptotic protein Bim. Importantly, T-DM1 resistance signature or PLK1 expression correlated with cell cycle progression and DNA repair, and predicted a lower sensitivity to taxane/trastuzumab combination in HER2-positive breast cancer patients. Finally, volasertib in combination with T-DM1 greatly synergized in models of T-DM1 resistance in terms of growth inhibition both in three dimensional (3D) cell culture and in vivo. Altogether, our results provide promising pre-clinical evidence for potential testing of T-DM1/volasertib combination in T-DM1 refractory HER2-positive breast cancer patients for whom there is currently no treatment available.
Collapse
Affiliation(s)
- Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, 69120, Germany
| | - Özge Akbulut
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Selvi Durmuş
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Erol Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University School of Medicine, 06410, Ankara, Turkey
| | - Özgür Kütük
- Department of Medical Genetics, Başkent University, 01250, Adana, Turkey
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, 69120, Germany
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
- National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
30
|
Klauck PJ, Bagby SM, Capasso A, Bradshaw-Pierce EL, Selby HM, Spreafico A, Tentler JJ, Tan AC, Kim J, Arcaroli JJ, Purkey A, Messersmith WA, Kuida K, Gail Eckhardt S, Pitts TM. Antitumor activity of the polo-like kinase inhibitor, TAK-960, against preclinical models of colorectal cancer. BMC Cancer 2018; 18:136. [PMID: 29402316 PMCID: PMC5800287 DOI: 10.1186/s12885-018-4036-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) is a serine/threonine kinase that is a key regulator of multiple stages of mitotic progression. Plk1 is upregulated in many tumor types including colorectal cancer (CRC) and portends a poor prognosis. TAK-960 is an ATP-competitive Plk1 inhibitor that has demonstrated efficacy across a broad range of cancer cell lines, including CRC. In this study, we investigated the activity of TAK-960 against a large collection of CRC models including 55 cell lines and 18 patient-derived xenografts. METHODS Fifty-five CRC cell lines and 18 PDX models were exposed to TAK-960 and evaluated for proliferation (IC50) and Tumor Growth Inhibition Index, respectively. Additionally, 2 KRAS wild type and 2 KRAS mutant PDX models were treated with TAK-960 as single agent or in combination with cetuximab or irinotecan. TAK-960 mechanism of action was elucidated through immunoblotting and cell cycle analysis. RESULTS CRC cell lines demonstrated a variable anti-proliferative response to TAK-960 with IC50 values ranging from 0.001 to > 0.75 μmol/L. Anti-proliferative effects were sustained after removal of drug. Following TAK-960 treatment a highly variable accumulation of mitotic (indicating cell cycle arrest) and apoptotic markers was observed. Cell cycle analysis demonstrated that TAK-960 treatment induced G2/M arrest and polyploidy. Six out of the eighteen PDX models responded to single agent TAK-960 therapy (TGII< 20). The addition of TAK-960 to standard of care chemotherapy resulted in largely additive antitumor effects. CONCLUSION TAK-960 is an active anti-proliferative agent against CRC cell lines and PDX models. Collectively, these data suggest that TAK-960 may be of therapeutic benefit alone or in combination with other agents, although future work should focus on the development of predictive biomarkers and hypothesis-driven rational combinations.
Collapse
Affiliation(s)
- Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Takeda California, San Diego, CA USA
| | - Heather M. Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Jihye Kim
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Keisuke Kuida
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA USA
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
31
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
32
|
Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan. Oncotarget 2017; 7:15215-29. [PMID: 26934655 PMCID: PMC4924781 DOI: 10.18632/oncotarget.7714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic.
Collapse
|
33
|
Budczies J, Denkert C, Győrffy B, Schirmacher P, Stenzinger A. Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types. BMC Med Genomics 2017; 10:74. [PMID: 29212506 PMCID: PMC5719741 DOI: 10.1186/s12920-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer. METHODS Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome 9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors with chromosome 9p gains across many cancer types. RESULTS As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes including PLK1, TTK, MELK and CDC20 that represent potential drug targets. CONCLUSIONS Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Carsten Denkert
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Balázs Győrffy
- MTA TTK Lendulet Cancer Biomarker Research Group, Budapest, Hungary.,2nd Dept. of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter Schirmacher
- German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Zhao D, Tahaney WM, Mazumdar A, Savage MI, Brown PH. Molecularly targeted therapies for p53-mutant cancers. Cell Mol Life Sci 2017; 74:4171-4187. [PMID: 28643165 PMCID: PMC5664959 DOI: 10.1007/s00018-017-2575-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
The tumor suppressor p53 is lost or mutated in approximately half of human cancers. Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation, invasion, and drug resistance. Traditional strategies have been taken to directly target p53 mutants through identifying small molecular compounds to deplete mutant p53, or to restore its tumor suppressive function. Accumulating evidence suggest that cancer cells with mutated p53 often exhibit specific functional dependencies on secondary genes or pathways to survive, providing alternative targets to indirectly treat p53-mutant cancers. Targeting these genes or pathways, critical for survival in the presence of p53 mutations, holds great promise for cancer treatment. In addition, mutant p53 often exhibits novel gain-of-functions to promote tumor growth and metastasis. Here, we review and discuss strategies targeting mutant p53, with focus on targeting the mutant p53 protein directly, and on the progress of identifying genes and pathways required in p53-mutant cells.
Collapse
Affiliation(s)
- Dekuang Zhao
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - William M Tahaney
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Michelle I Savage
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
Lin P, Xiong DD, Dang YW, Yang H, He Y, Wen DY, Qin XG, Chen G. The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation. Oncotarget 2017; 8:92497-92521. [PMID: 29190933 PMCID: PMC5696199 DOI: 10.18632/oncotarget.21438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30–1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13–2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
36
|
The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis. Biosci Rep 2017; 37:BSR20170852. [PMID: 28724602 PMCID: PMC5554781 DOI: 10.1042/bsr20170852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients.
Collapse
|
37
|
Gossart JB, Pascal E, Meyer F, Heuillard E, Gonçalves M, Gossé F, Robinet E, Frisch B, Seguin C, Zuber G. Performance of Pyridylthiourea-Polyethylenimine Polyplex for siRNA-Mediated Liver Cancer Therapy in Cell Monolayer, Spheroid, and Tumor Xenograft Models. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700013. [PMID: 31565271 PMCID: PMC6607116 DOI: 10.1002/gch2.201700013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Indexed: 06/10/2023]
Abstract
Medical application of siRNAs relies on methods for delivering nucleic acids into the cytosol. Synthetic carriers, which assemble with nucleic acids into delivery systems, show promises for cancer therapy but efficiency remains to be improved. In here, the effectiveness of pyridylthiourea-polyethylenimine (πPEI), a siRNA carrier that favors both polyplex disassembly and endosome rupture upon sensing the acidic endosomal environment, in 3 experimental models of hepatocellular cancer is tested. The πPEI-assisted delivery of a siRNA targeting the polo-like kinase 1 into Huh-7 monolayer produces a 90% cell death via a demonstrated RNA interference mechanism. Incubation of polyplex with Huh-7 spheroids leads to siRNA delivery into the superficial first cell layer and a 60% reduction in spheroid growth compared to untreated controls. Administration of polyplexes into mice bearing subcutaneous implanted Huh-7Luc tumors results in a reduced tumor progression, similar to the one observed in the spheroid model. Altogether, these results support the in vivo use of synthetic and dedicated polymers for increasing siRNA-mediated gene knockdown, and their clinical promise in cancer therapeutics.
Collapse
Affiliation(s)
- Jean Baptiste Gossart
- Université de Strasbourg‐CNRS CAMB UMR 7199Faculté de Pharmacie74 route du Rhin67400IllkirchFrance
- Université de Strasbourg‐INSERMUMRS 1121 Biomaterials and Bioengineering, FTMS11 rue Humann67000StrasbourgFrance
| | - Etienne Pascal
- Université de Strasbourg‐CNRS CAMB UMR 7199Faculté de Pharmacie74 route du Rhin67400IllkirchFrance
| | - Florent Meyer
- Université de Strasbourg‐INSERMUMRS 1121 Biomaterials and Bioengineering, FTMS11 rue Humann67000StrasbourgFrance
| | - Emilie Heuillard
- Institut Hospitalo‐Universitaire de Strasbourg1 place de l'Hôpital67000StrasbourgFrance
| | - Mathieu Gonçalves
- Institut Hospitalo‐Universitaire de Strasbourg1 place de l'Hôpital67000StrasbourgFrance
| | - Francine Gossé
- Institut Hospitalo‐Universitaire de Strasbourg1 place de l'Hôpital67000StrasbourgFrance
- Inserm U11103 rue Koeberlé67000StrasbourgFrance
| | - Eric Robinet
- Institut Hospitalo‐Universitaire de Strasbourg1 place de l'Hôpital67000StrasbourgFrance
- Inserm U11103 rue Koeberlé67000StrasbourgFrance
| | - Benoît Frisch
- Université de Strasbourg‐CNRS CAMB UMR 7199Faculté de Pharmacie74 route du Rhin67400IllkirchFrance
| | - Cendrine Seguin
- Université de Strasbourg‐CNRS CAMB UMR 7199Faculté de Pharmacie74 route du Rhin67400IllkirchFrance
| | - Guy Zuber
- Université de Strasbourg‐CNRS, UMR 7242Boulevard Sebastien Brant67400IllkirchFrance
| |
Collapse
|
38
|
Chaisaingmongkol J, Budhu A, Dang H, Rabibhadana S, Pupacdi B, Kwon SM, Forgues M, Pomyen Y, Bhudhisawasdi V, Lertprasertsuke N, Chotirosniramit A, Pairojkul C, Auewarakul CU, Sricharunrat T, Phornphutkul K, Sangrajrang S, Cam M, He P, Hewitt SM, Ylaya K, Wu X, Andersen JB, Thorgeirsson SS, Waterfall JJ, Zhu YJ, Walling J, Stevenson HS, Edelman D, Meltzer PS, Loffredo CA, Hama N, Shibata T, Wiltrout RH, Harris CC, Mahidol C, Ruchirawat M, Wang XW. Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Cell 2017; 32. [PMID: 28648284 PMCID: PMC5524207 DOI: 10.1016/j.ccell.2017.05.009] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are clinically disparate primary liver cancers with etiological and biological heterogeneity. We identified common molecular subtypes linked to similar prognosis among 199 Thai ICC and HCC patients through systems integration of genomics, transcriptomics, and metabolomics. While ICC and HCC share recurrently mutated genes, including TP53, ARID1A, and ARID2, mitotic checkpoint anomalies distinguish the C1 subtype with key drivers PLK1 and ECT2, whereas the C2 subtype is linked to obesity, T cell infiltration, and bile acid metabolism. These molecular subtypes are found in 582 Asian, but less so in 265 Caucasian patients. Thus, Asian ICC and HCC, while clinically treated as separate entities, share common molecular subtypes with similar actionable drivers to improve precision therapy.
Collapse
Affiliation(s)
- Jittiporn Chaisaingmongkol
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Benjarath Pupacdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - So Mee Kwon
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | | | | | | | | | | | | | - Maggie Cam
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ping He
- FDA, Silver Spring, MD 20993, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xiaolin Wu
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Snorri S Thorgeirsson
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joshua J Waterfall
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jennifer Walling
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Holly S Stevenson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daniel Edelman
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, The University of Tokyo, Tokyo 104-0045, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, The University of Tokyo, Tokyo 104-0045, Japan; Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 104-0045, Japan
| | - Robert H Wiltrout
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; HRH Princess Chulabhorn College of Medical Science, Bangkok 10210, Thailand.
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand.
| | - Xin W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Fernández-Sainz J, Pacheco-Liñán PJ, Granadino-Roldán JM, Bravo I, Garzón A, Rubio-Martínez J, Albaladejo J. Binding of the anticancer drug BI-2536 to human serum albumin. A spectroscopic and theoretical study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:77-87. [PMID: 28531794 DOI: 10.1016/j.jphotobiol.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 01/30/2023]
Abstract
BI-2536 is a potent Polo-like kinase inhibitor which induces apoptosis in diverse human cancer cell lines. The binding affinity of BI-2536 for human serum albumin (HSA) protein may define its pharmacokinetic and pharmacodynamic profile. We have studied the binding of BI-2536 to HSA by means of different spectroscopic techniques and docking calculations. We have experimentally observed that the affinity of BI-2536 for HSA is higher than that of other common HSA binding drugs. Therefore, it can be postulated that the drug dose should be increased to achieve a certain concentration of free drug in plasma, although BI-2536 could also reach tumour tissues by uptaking HSA/BI-2536 complex. Only a single binding site on HSA has been observed for BI-2536 which seems to correspond to the subdomain IIA pocket. The formation of the HSA/BI-2536 complex is a spontaneous and entropy-driven process that does not cause a significant change of the secondary structure of the protein. Its endothermic character could be related to proton release. Thermodynamic analysis showed that the main protein-drug interactions are of the van der Waals type although the presence of amide and ether groups in BI-2536 could also allow H-bonding with some residues in the subdomain IIA pocket.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, s/n, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, s/n, 02071 Albacete, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, s/n, 02071 Albacete, Spain
| | - Andrés Garzón
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, s/n, 02071 Albacete, Spain.
| | - Jaime Rubio-Martínez
- Departament de Química Física, Universitat de Barcelona (UB), Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Martí iFranqués 1, 08028 Barcelona, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
40
|
Ruf S, Heberle AM, Langelaar-Makkinje M, Gelino S, Wilkinson D, Gerbeth C, Schwarz JJ, Holzwarth B, Warscheid B, Meisinger C, van Vugt MATM, Baumeister R, Hansen M, Thedieck K. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy 2017; 13:486-505. [PMID: 28102733 PMCID: PMC5361591 DOI: 10.1080/15548627.2016.1263781] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 02/08/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.
Collapse
Affiliation(s)
- Stefanie Ruf
- Department of Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Research Training Group (RTG) 1104, University of Freiburg, Freiburg, Germany
| | - Alexander Martin Heberle
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Sara Gelino
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepti Wilkinson
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carolin Gerbeth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- ZBMZ Centre for Biochemistry and Molecular Cell Research (Faculty of Medicine), University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology (Faculty of Medicine), University of Freiburg, Freiburg, Germany
| | - Jennifer Jasmin Schwarz
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Birgit Holzwarth
- Department of Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- ZBMZ Centre for Biochemistry and Molecular Cell Research (Faculty of Medicine), University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology (Faculty of Medicine), University of Freiburg, Freiburg, Germany
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, GZ Groningen, The Netherlands
| | - Ralf Baumeister
- Department of Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Research Training Group (RTG) 1104, University of Freiburg, Freiburg, Germany
- ZBMZ Centre for Biochemistry and Molecular Cell Research (Faculty of Medicine), University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Malene Hansen
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kathrin Thedieck
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
41
|
Awad MM, Chu QSC, Gandhi L, Stephenson JJ, Govindan R, Bradford DS, Bonomi PD, Ellison DM, Eaton KD, Fritsch H, Munzert G, Johnson BE, Socinski MA. An open-label, phase II study of the polo-like kinase-1 (Plk-1) inhibitor, BI 2536, in patients with relapsed small cell lung cancer (SCLC). Lung Cancer 2017; 104:126-130. [PMID: 28212994 DOI: 10.1016/j.lungcan.2016.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This phase II, open-label study was designed to evaluate the response rate to the polo-like kinase 1 (Plk-1) inhibitor BI 2536 in patients with sensitive-relapsed small cell lung cancer (SCLC). Secondary endpoints included progression-free survival (PFS), overall survival (OS), duration of response, and safety. MATERIALS AND METHODS Patients were treated with the recommended phase II dose of 200mg of BI 2536 intravenously every 21days. This was a two-stage design with an early stopping rule in place if responses were not seen in at least 2 of the first 18 enrolled patients. RESULTS AND CONCLUSION Twenty-three patients were enrolled in the study and 21 patients were evaluable for response. No responses were observed and all 23 patients have progressed. The median PFS was 1.4 months. Treatment was generally well tolerated and the most frequent adverse events were neutropenia, fatigue, nausea, vomiting, and constipation. BI 2536 is not effective in the treatment of sensitive relapsed SCLC. The criteria for expanding the trial to the second stage were not achieved, and the study was terminated for a lack of efficacy.
Collapse
Affiliation(s)
- Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Quincy S-C Chu
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Leena Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - David M Ellison
- Charleston Hematology Oncology Associates, Charleston, SC, USA
| | | | | | | | - Bruce E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
42
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
43
|
Ritter A, Friemel A, Kreis NN, Louwen F, Yuan J. Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget 2016; 7:84271-84285. [PMID: 27713178 PMCID: PMC5356661 DOI: 10.18632/oncotarget.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been established as one of the most promising targets for molecular anticancer intervention. In fact, various Plk1 inhibitors have been identified and characterized. While the data derived from the bench are prospective, the clinical outcomes are less encouraging by showing modest efficacy. One of the explanations for this discrepancy could be unintendedly targeting of non-malignant cells by Plk1 inhibitors. In this work, we have addressed the effect of Plk1 inhibition in adipose tissue-derived mesenchymal stem cells (ASCs). We show that both visceral and subcutaneous ASCs display monopolar spindles, reduced viability and strong apoptosis induction upon treatment with BI 2536 and BI 6727, the Plk1 kinase domain inhibitors, and with Poloxin, the regulatory Polo-box domain inhibitor. While Poloxin triggers quickly apoptosis, BI 2536 and BI 6727 result in mitotic arrest in ASCs. Importantly, survived ASCs exhibit DNA damage and a pronounced senescent phenotype. In addition, Plk1 inhibition impairs ASCs' motility and homing ability. These results show that Plk1 inhibitors target slowly proliferating ASCs, an important population of anti-inflammation and immune modulation. The toxic effects on primary cells like ASCs could be partially responsible for the reported moderate antitumor activity in patients treated with Plk1 inhibitors.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
44
|
Abstract
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
45
|
Gil VS, Bhagat G, Howell L, Zhang J, Kim CH, Stengel S, Vega F, Zelent A, Petrie K. Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice. Dis Model Mech 2016; 9:1483-1495. [PMID: 27799148 PMCID: PMC5200892 DOI: 10.1242/dmm.023366] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 9 (HDAC9) is expressed in B cells, and its overexpression has been observed in B-lymphoproliferative disorders, including B-cell non-Hodgkin lymphoma (B-NHL). We examined HDAC9 protein expression and copy number alterations in primary B-NHL samples, identifying high HDAC9 expression among various lymphoma entities and HDAC9 copy number gains in 50% of diffuse large B-cell lymphoma (DLBCL). To study the role of HDAC9 in lymphomagenesis, we generated a genetically engineered mouse (GEM) model that constitutively expressed an HDAC9 transgene throughout B-cell development under the control of the immunoglobulin heavy chain (IgH) enhancer (Eμ). Here, we report that the Eμ-HDAC9 GEM model develops splenic marginal zone lymphoma and lymphoproliferative disease (LPD) with progression towards aggressive DLBCL, with gene expression profiling supporting a germinal center cell origin, as is also seen in human B-NHL tumors. Analysis of Eμ-HDAC9 tumors suggested that HDAC9 might contribute to lymphomagenesis by altering pathways involved in growth and survival, as well as modulating BCL6 activity and p53 tumor suppressor function. Epigenetic modifications play an important role in the germinal center response, and deregulation of the B-cell epigenome as a consequence of mutations and other genomic aberrations are being increasingly recognized as important steps in the pathogenesis of a variety of B-cell lymphomas. A thorough mechanistic understanding of these alterations will inform the use of targeted therapies for these malignancies. These findings strongly suggest a role for HDAC9 in B-NHL and establish a novel GEM model for the study of lymphomagenesis and, potentially, preclinical testing of therapeutic approaches based on histone deacetylase inhibitors. Summary: This study demonstrates that aberrant expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma through altering expression of genes involved in the cell cycle and survival, and modulating the activity of key B-lineage factors such as BCL6 and p53.
Collapse
Affiliation(s)
- Veronica S Gil
- Division of Clinical Studies, Institute of Cancer Research, London SM2 5NG, UK
| | - Govind Bhagat
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Louise Howell
- Division of Molecular Pathology, Institute of Cancer Research, London SM2 5NG, UK
| | - Jiyuan Zhang
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Chae H Kim
- Division of Hematopathology, Sylvester Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Sven Stengel
- Division of Molecular Pathology, Institute of Cancer Research, London SM2 5NG, UK
| | - Francisco Vega
- Division of Hematopathology, Sylvester Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Arthur Zelent
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Kevin Petrie
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
46
|
Donizy P, Halon A, Surowiak P, Kaczorowski M, Kozyra C, Matkowski R. Augmented expression of Polo-like kinase 1 is a strong predictor of shorter cancer-specific overall survival in early stage breast cancer at 15-year follow-up. Oncol Lett 2016; 12:1667-1674. [PMID: 27602103 PMCID: PMC4998224 DOI: 10.3892/ol.2016.4890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine-threonine kinase that plays a crucial role in the regulation of cell division. In addition, it acts as a modulator of the DNA damage response and as a novel factor in the maintenance of genome stability during DNA replication. The present study aimed to reveal the associations between PLK1 expression and clinicopathological features of patients with breast cancer (BC), particularly patient survival at 5-, 10- and 15-year follow-up. PLK1 expression was evaluated immunohistochemically in routine diagnostic tissue specimens from 83 patients treated radically for stage II BC. Kaplan-Meier analysis revealed a correlation between PLK1 overexpression and long-term survival. High PLK1 immunoreactivity was associated with shorter cancer-specific overall survival (CSOS) and disease-free survival (P=0.00001 and 0.00013, respectively). Multivariate analysis confirmed the negative prognostic significance of PLK1 overexpression for CSOS in all 83 patients (P=0.00030). Furthermore, analogous correlations were observed in both subgroups with and without nodal metastases (P=0.01400 and 0.01200, respectively). The present results indicate that PLK1 expression has a prognostic role in early BC. Immunohistochemical assessment of PLK1 reactivity may potentially become a qualifier for inclusion of PLK1 inhibitor therapy.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Cyprian Kozyra
- Department of Statistics, Wroclaw University of Economics, Wroclaw 53-345, Poland
| | - Rafal Matkowski
- Department of Oncology and Surgical Oncology, Wroclaw Medical University, Wroclaw 50-556, Poland; Lower Silesian Oncology Centre, Breast Unit, Wroclaw 53-413, Poland
| |
Collapse
|
47
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Cirillo L, Thomas Y, Pintard L, Gotta M. BORA-dependent PLK1 regulation: A new weapon for cancer therapy? Mol Cell Oncol 2016; 3:e1199265. [PMID: 27857970 PMCID: PMC5068183 DOI: 10.1080/23723556.2016.1199265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/16/2022]
Abstract
The mitotic kinase polo like kinase 1 (PLK1) is overexpressed in many cancers and its inhibition slows down proliferation and increases apoptosis in cancer cell lines. Understanding how PLK1 is activated is therefore crucial for the development of novel PLK1 inhibitors with anticancer properties. We recently identified a conserved regulatory loop leading to PLK1 activation that involves cyclin-dependent kinase 1 (CDK1).
Collapse
Affiliation(s)
- Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| | - Yann Thomas
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Center National de la Recherche Scientifique , Paris, France
| | - Lionel Pintard
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Center National de la Recherche Scientifique , Paris, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| |
Collapse
|
49
|
Chen JLY, Chen JP, Huang YS, Tsai YC, Tsai MH, Jaw FS, Cheng JCH, Kuo SH, Shieh MJ. Radiosensitization in esophageal squamous cell carcinoma: Effect of polo-like kinase 1 inhibition. Strahlenther Onkol 2016; 192:260-8. [PMID: 26952039 DOI: 10.1007/s00066-016-0951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. METHODS AND MATERIALS Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. RESULTS Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. CONCLUSIONS The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jo-Pai Chen
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, No.7, Chung-Shan South Road, 100, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan.
| | - Yuan-Chun Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
50
|
Fu G, Somasundaram RT, Jessa F, Srivastava G, MacMillan C, Witterick I, Walfish PG, Ralhan R. ER maleate is a novel anticancer agent in oral cancer: implications for cancer therapy. Oncotarget 2016; 7:17162-81. [PMID: 26934445 PMCID: PMC4941378 DOI: 10.18632/oncotarget.7751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
ER maleate [10-(3-Aminopropyl)-3, 4-dimethyl-9(10H)-acridinone maleate] identified in a kinome screen was investigated as a novel anticancer agent for oral squamous cell carcinoma (OSCC). Our aim was to demonstrate its anticancer effects, identify putative molecular targets and determine their clinical relevance and investigate its chemosensitization potential for platinum drugs to aid in OSCC management. Biologic effects of ER maleate were determined using oral cancer cell lines in vitro and oral tumor xenografts in vivo. mRNA profiling, real time PCR and western blot revealed ER maleate modulated the expression of polo-like kinase 1 (PLK1) and spleen tyrosine kinase (Syk). Their clinical significance was determined in oral SCC patients by immunohistochemistry and correlated with prognosis by Kaplan-Meier survival and multivariate Cox regression analyses. ER maleate induced cell apoptosis, inhibited proliferation, colony formation, migration and invasion in oral cancer cells. Imagestream analysis revealed cell cycle arrest in G2/M phase and increased polyploidy, unravelling deregulation of cell division and cell death. Mechanistically, ER maleate decreased expression of PLK1 and Syk, induced cleavage of PARP, caspase9 and caspase3, and increased chemosensitivity to carboplatin; significantly suppressed tumor growth and increased antitumor activity of carboplatin in tumor xenografts. ER maleate treated tumor xenografts showed reduced PLK1 and Syk expression. Clinical investigations revealed overexpression of PLK1 and Syk in oral SCC patients that correlated with disease prognosis. Our in vitro and in vivo findings provide a strong rationale for pre-clinical efficacy of ER maleate as a novel anticancer agent and chemosensitizer of platinum drugs for OSCC.
Collapse
Affiliation(s)
- Guodong Fu
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
| | - Raj Thani Somasundaram
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
| | - Fatima Jessa
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
| | - Gunjan Srivastava
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Ian Witterick
- Department of Otolaryngology — Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Canada
- Department of Otolaryngology — Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Paul G. Walfish
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Otolaryngology — Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Canada
- Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Toronto, Canada
- Department of Otolaryngology — Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Ranju Ralhan
- Department of Medicine, Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Endocrine Division, Mount Sinai Hospital, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Otolaryngology — Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Canada
- Department of Otolaryngology — Head and Neck Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|