1
|
Aikawa A, Kozako T, Kato N, Ohsugi T, Honda SI. Anti-tumor activity of 5-aminoimidazole-4-carboxamide riboside with AMPK-independent cell death in human adult T-cell leukemia/lymphoma. Eur J Pharmacol 2023; 961:176180. [PMID: 37956732 DOI: 10.1016/j.ejphar.2023.176180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell leukemia/lymphoma caused by human T-cell lymphotropic virus type I (HTLV-1). Acadesine or 5-aminoimidazole-4-carboxamide riboside (AICAR) is an AMP-activated protein kinase (AMPK) activator that was recently shown to have tumor suppressive effects on B cell chronic lymphocytic leukemia, but not ATL. This study evaluated the cytotoxic effects of AICAR on ATL-related cell lines and its anti-tumor activity. Here, we demonstrated that AICAR induced cell death via apoptosis and the mitochondrial membrane depolarization of ATL-related cell lines (S1T, MT-1, and MT-2) but not non-HTLV-1-infected Jurkat cells. However, AICAR did not increase the phosphorylation levels of AMPKα. In addition, AICAR increased the expression of the death receptors (DR) DR4 and DR5, and necroptosis-related proteins including phosphorylated receptor-interacting protein family members and the mixed lineage kinase domain-like protein. Interestingly, HTLV-1 Tax, an HTLV-1-encoded oncogenic factor, did not affect AICAR-induced apoptosis. Furthermore, AICAR inhibited the growth of human ATL tumor xenografts in NOD/SCID/gamma mice in vivo. Together, these results suggest that AICAR induces AMPK-independent cell death in ATL-related cell lines and has anti-tumor activity, indicating that it might be a therapeutic agent for ATL.
Collapse
Affiliation(s)
- Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan.
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
2
|
Hiu JJ, Yap MKK. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon X 2022; 14:100123. [PMID: 35434602 PMCID: PMC9011113 DOI: 10.1016/j.toxcx.2022.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Cobra venom cytotoxin (CTX) is a non-enzymatic three-finger toxin that constitutes 40-60% of cobra venom. Thus, it plays an important role in the pathophysiology of cobra envenomation, especially in local dermonecrosis. The three-finger hydrophobic loops of CTX determine the cytotoxicity. Nevertheless, the actual mechanisms of cytotoxicity are not fully elucidated as they involve not only cytolytic actions but also intracellular signalling-mediated cell death pathways. Furthermore, the possible transition cell death pattern remains to be explored. The actual molecular mechanisms require further studies to unveil the relationship between different CTXs from different cobra species and cell types which may result in differential cell death patterns. Here, we discuss the biophysical interaction of CTX with the cell membrane involving four binding modes: electrostatic interaction, hydrophobic partitioning, isotropic phase, and oligomerisation. Oligomerisation of CTX causes pore formation in the membrane lipid bilayer. Additionally, the CTX-induced apoptotic pathway can be executed via death receptor-mediated extrinsic pathways and mitochondrial-mediated intrinsic pathways. We also discuss lysosomal-mediated necrosis and the occurrence of necroptosis following CTX action. Collectively, we provided an insight into concentration-dependent transition of cell death pattern which involves different mechanistic actions. This contributes a new direction for further investigation of cytotoxic pathways activated by the CTXs for future development of biotherapeutics targeting pathological effects caused by CTX.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Li F, Sun A, Cheng G, Liu D, Xiao J, Zhao Z, Dong Z. Compound C Protects Against Cisplatin-Induced Nephrotoxicity Through Pleiotropic Effects. Front Physiol 2021; 11:614244. [PMID: 33424637 PMCID: PMC7785967 DOI: 10.3389/fphys.2020.614244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.
Collapse
Affiliation(s)
- Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anbang Sun
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, Navarro-Villarán E, Requejo-Aguilar R, Castejón-Vega B, Negrete M, Gallego P, Vega-Ochoa Á, Victor VM, Cordero MD, Del Campo JA, Bárcena JA, Padilla CA, Muntané J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol 2020; 36:101510. [PMID: 32593127 PMCID: PMC7322178 DOI: 10.1016/j.redox.2020.101510] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - P de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Mª José López-Grueso
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - Álvaro Vega-Ochoa
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Victor M Victor
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Service of Endocrinology and Nutrition, Hospital University "Doctor Peset", Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - José A Del Campo
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - J Antonio Bárcena
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - C Alicia Padilla
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
5
|
Liu Z, Zhang G, Huang S, Cheng J, Deng T, Lu X, Adeshakin FO, Chen Q, Wan X. Induction of apoptosis in hematological cancer cells by dorsomorphin correlates with BAD upregulation. Biochem Biophys Res Commun 2020; 522:704-708. [PMID: 31787232 DOI: 10.1016/j.bbrc.2019.11.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
AMPK is generally a tumor suppressor. However, once cancer arises, AMPK becomes a tumor promoter instead, driving cancer development. For such AMPK-driven cancers, AMPK blockade may be a valuable therapeutic strategy. Here we show that AMPK is upregulated in a variety of hematological cancers and plays key roles in maintaining viability of tumor cells. Blockade of AMPK signaling by dorsomorphin markedly induces apoptosis in Jurkat, K562 cell lines as well as primary cancerous B cells. Mechanistically, dorsomorphin significantly upregulates the expression of BAD, a pro-apoptotic member of the Bcl-2 gene family involved in initiating apoptosis. Reduction of BAD expression by RNA interference prevents apoptosis in response to AMPK inhibition. Thus, our data found BAD integrates the pro-apoptotic effects of dorsomorphin and provided novel insights into the mechanisms by which AMPK facilitates survival signaling in hematologic tumor cells.
Collapse
Affiliation(s)
- Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Shiran Huang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jian Cheng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiaoxu Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Funmilayo Oladunni Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qian Chen
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Shenzhen BinDeBioTech Co., Ltd, Floor 5, Building 6, Tongfuyu Industrial City, Xili, Nanshan, Shenzhen, 518055, PR China.
| |
Collapse
|
6
|
Synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidines: Discovery of a selective inhibitor of JAK1 JH2 pseudokinase and VPS34. Bioorg Med Chem Lett 2020; 30:126813. [DOI: 10.1016/j.bmcl.2019.126813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
|
7
|
Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019; 24:133-152. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Collapse
Affiliation(s)
- Judith Lind
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Felix Czernilofsky
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| |
Collapse
|
8
|
Akimoto T, Umemura M, Nagasako A, Ohtake M, Fujita T, Yokoyama U, Eguchi H, Yamamoto T, Ishikawa Y. Alternating magnetic field enhances cytotoxicity of Compound C. Cancer Sci 2018; 109:3483-3493. [PMID: 30155931 PMCID: PMC6215876 DOI: 10.1111/cas.13781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
We previously reported the efficacy of anti-cancer therapy with hyperthermia using an alternating magnetic field (AMF) and a magnetic compound. In the course of the study, unexpectedly, we found that an AMF enhances the cytotoxicity of Compound C, an activated protein kinase (AMPK) inhibitor, although this compound is not magnetic. Therefore, we examined the cellular mechanism of AMF-induced cytotoxicity of Compound C in cultured human glioblastoma (GB) cells. An AMF (280 kHz, 250 Arms) for 30 minutes significantly enhanced the cytotoxicity of Compound C and promoted apoptosis towards several human GB cell lines in vitro. The AMF also increased Compound C-induced cell-cycle arrest of GB cells at the G2 phase and, thus, inhibited cell proliferation. The AMF increased Compound C-induced reactive oxygen species production. Furthermore, the AMF decreased ERK phosphorylation in the presence of Compound C and suppressed the protective autophagy induced by this compound. The application of an AMF in cancer chemotherapy may be a simple and promising method, which might reduce the doses of drugs used in future cancer treatment and, therefore, the associated side effects.
Collapse
Affiliation(s)
- Taisuke Akimoto
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Haruki Eguchi
- Research Laboratory, Corporate Research & Development, IHI Corporation, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
9
|
Zhao X, Luo G, Cheng Y, Yu W, Chen R, Xiao B, Xiang Y, Feng C, Fu W, Duan C, Yao F, Xia X, Tao Q, Wei M, Dai R. Compound C induces protective autophagy in human cholangiocarcinoma cells via Akt/mTOR‐independent pathway. J Cell Biochem 2018; 119:5538-5550. [DOI: 10.1002/jcb.26723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaofang Zhao
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Guosong Luo
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Ying Cheng
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Wenjing Yu
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Run Chen
- Department of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Bin Xiao
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Yuancai Xiang
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
| | - Chunhong Feng
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Wenguang Fu
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Chunyan Duan
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Fuli Yao
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Xianming Xia
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Qinghua Tao
- MOE Key Laboratory of Protein SciencesTsinghua University School of Life SciencesBeijingChina
| | - Mei Wei
- Department of Liver Diseases of the Affiliated Hospital of Chinese Traditional MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Rongyang Dai
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Liver Diseases of the Affiliated Hospital of Chinese Traditional MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
10
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol Lett 2018; 15:683-690. [PMID: 29422962 PMCID: PMC5772929 DOI: 10.3892/ol.2017.7412] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
Metformin is a standard clinical drug used to treat type 2 diabetes mellitus (T2DM) and polycystic ovary syndrome. Recently, epidemiological studies and meta-analyses have revealed that patients with T2DM have a lower incidence of tumor development than healthy controls and that patients diagnosed with cancer have a lower risk of mortality when treated with metformin, demonstrating an association between metformin and tumorigenesis. In vivo and in vitro studies have revealed that metformin has a direct antitumor effect, which may depress tumor proliferation and induce the apoptosis, autophagy and cell cycle arrest of tumor cells. The mechanism underpinning the antitumor effect of metformin has not been well established. Studies have demonstrated that reducing insulin and insulin-like growth factor levels in the peripheral blood circulation may lead to the inhibition of phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin (mTOR) signaling or activation of AMP-activated protein kinase, which inhibits mTOR signaling, a process that may be associated with the antitumor effect of metformin. The present review primarily focuses on the recent progress in understanding the function of metformin in tumor development.
Collapse
Affiliation(s)
- Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Huapu Zi
- Department of Oncology, Rizhao Traditional Chinese Medicine Hospital of Shandong Traditional Chinese Medicine University, Rizhao, Shandong 276800, P.R. China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qingzhi Shi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
12
|
Chang SH, Luo S, O'Brian KK, Thomas TS, Colditz GA, Carlsson NP, Carson KR. Association between metformin use and progression of monoclonal gammopathy of undetermined significance to multiple myeloma in US veterans with diabetes mellitus: a population-based retrospective cohort study. LANCET HAEMATOLOGY 2017; 2:e30-6. [PMID: 26034780 DOI: 10.1016/s2352-3026(14)00037-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Multiple myeloma is one of the most common haematological malignancies in the USA and is consistently preceded by monoclonal gammopathy of undetermined significance (MGUS). We aimed to assess the association between metformin use and progression of MGUS to multiple myeloma. METHODS We did a retrospective cohort study of patients registered in the US Veterans Health Administration database and diagnosed with MGUS between Oct 1, 1999, and Dec 31, 2009. We included patients (aged >18 years) with at least one International Classification of Diseases (9th revision) code for diabetes mellitus and one treatment for their diabetes before MGUS diagnosis. We reviewed patient-level clinical data to verify diagnoses and extract any available data for size of baseline M-protein and type of MGUS. We defined metformin users as patients with diabetes who were given metformin consistently for 4 years after their diabetes diagnosis and before multiple myeloma development, death, or censorship. Our primary outcome was time from MGUS diagnosis to multiple myeloma diagnosis. We used Kaplan-Meier curves and Cox models to analyse the association between metformin use and MGUS progression. FINDINGS We obtained data for 3287 patients, of whom 2003 (61%) were included in the final analytical cohort. Median follow-up was 69 months (IQR 49–96). 463 (23%) participants were metformin users and 1540 (77%) participants were non-users. 13 (3%) metformin users progressed to multiple myeloma compared with 74 (5%) non-users. After adjustment, metformin use was associated with a reduced risk of progression to multiple myeloma (hazard ratio 0·47, 95% CI 0·25–0·87). INTERPRETATION For patients with diabetes diagnosed with MGUS, metformin use for 4 years or longer was associated with a reduced risk of progression of MGUS to multiple myeloma. Prospective studies are needed to establish whether this association is causal and whether these results can be extrapolated to non-diabetic individuals. FUNDING Barnes-Jewish Hospital Foundation, National Institutes of Health, Agency for Healthcare Research and Quality, American Cancer Society.
Collapse
|
13
|
Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy: translational biology and rationale for current clinical trials. Oncotarget 2017; 8:57733-57754. [PMID: 28915708 PMCID: PMC5593680 DOI: 10.18632/oncotarget.17496] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most fatal malignancy worldwide, in part, due to high resistance to cytotoxic therapy. There is need for effective chemo-radio-sensitizers in lung cancer. In recent years, we began to understand the modulation of metabolism in cancer and its importance in tumor progression and survival after cytotoxic therapy. The activity of biosynthetic pathways, driven by the Growth Factor Receptor/Ras/PI3k/Akt/mTOR pathway, is balanced by the energy stress sensor pathway of LKB1/AMPK/p53. AMPK responds both to metabolic and genotoxic stress. Metformin, a well-tolerated anti-diabetic agent, which blocks mitochondria oxidative phosphorylation complex I, became the poster child agent to elicit AMPK activity and tumor suppression. Metformin sensitizes NSCLC models to chemotherapy and radiation. Here, we discuss the rationale for targeting metabolism, the evidence supporting metformin as an anti-tumor agent and adjunct to cytotoxic therapy in NSCLC and we review retrospective evidence and on-going clinical trials addressing this concept.
Collapse
|
14
|
The KSHV K1 Protein Modulates AMPK Function to Enhance Cell Survival. PLoS Pathog 2016; 12:e1005985. [PMID: 27829024 PMCID: PMC5102384 DOI: 10.1371/journal.ppat.1005985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Kaposi’s sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS) as well as two lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV encodes viral proteins, such as K1, that alter signaling pathways involved in cell survival. Expression of K1 has been reported to transform rodent fibroblasts, and K1 transgenic mice develop multiple tumors, suggesting that K1 has an important role in KSHV pathogenesis. We found that cells infected with a KSHV virus containing a WT K1 gene had a survival advantage under conditions of nutrient deprivation compared to cells infected with KSHV K1 mutant viruses. 5’ adenosine monophosphate-activated protein kinase (AMPK) responds to nutrient deprivation by maintaining energy homeostasis, and AMPK signaling has been shown to promote cell survival in various types of cancers. Under conditions of AMPK inhibition, we also observed that cells infected with KSHV containing a WT K1 gene had a survival advantage compared to KSHV K1 mutant virus infected cells. To explore the underpinnings of this phenotype, we identified K1-associated cellular proteins by tandem affinity purification and mass spectrometry. We found that the KSHV K1 protein associates with the gamma subunit of AMPK (AMPKγ1). We corroborated this finding by independently confirming that K1 co-immunoprecipitates with AMPKγ1. Co-immunoprecipitations of wild-type K1 (K1WT) or K1 domain mutants and AMPKγ1, revealed that the K1 N-terminus is important for the association between K1 and AMPKγ1. We propose that the KSHV K1 protein promotes cell survival via its association with AMPKγ1 following exposure to stress. Infectious agents such as Kaposi’s sarcoma associated herpesvirus (KSHV) are etiologic agents of human cancer. KSHV-infected cells must survive various environmental stresses. Cells infected with KSHV express viral proteins that alter normal cellular processes to promote cell survival and viral persistence. We found that the KSHV K1 protein promotes survival under conditions of cellular stress, and that this survival advantage is at least partially dependent on the association of K1 and the cellular protein AMP-activated protein kinase (AMPK). We also observed increased AMPK activity in K1-expressing cells compared to EV following exposure to metabolic stress. Several reports suggest that AMPK signaling may contribute to tumor development by promoting cell survival. Our results suggest that KSHV K1 modulates cellular AMPK function to enhance the survival of KSHV-infected cells in order to promote viral persistence.
Collapse
|
15
|
Ramesh M, Vepuri SB, Oosthuizen F, Soliman ME. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective. Appl Biochem Biotechnol 2015; 178:810-30. [DOI: 10.1007/s12010-015-1911-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
|
16
|
Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget 2015; 5:12358-70. [PMID: 25481044 PMCID: PMC4323002 DOI: 10.18632/oncotarget.2590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 01/20/2023] Open
Abstract
The proteasome inhibitor bortezomib is an effective anti-cancer agent for the plasma cell malignancy multiple myeloma but clinical response is hindered by the emergence of drug resistance through unknown mechanisms. Drug sensitive myeloma cells were exposed to bortezomib to generate drug resistant cells that displayed a significant increase in subunits of the energy sensor AMP-activated protein kinase (AMPK). AMPK activity in resistant cells was increased and bortezomib resistant cells contained a ~4-fold greater level of autophagosomes than drug sensitive cells. Real-time measurements indicated that bortezomib reduced the oxygen consumption rate in drug sensitive cells more readily than in resistant cells. Genetic ablation of AMPK activity reduced the bortezomib effect on autophagy. The autophagy-related gene (Atg)5 is required for autophagosome formation and enhances cellular susceptibility to apoptotic stimuli. Atg5 knockout eliminated bortezomib-induced autophagosome formation and reduced susceptibility to bortezomib. Bortezomib treatment of myeloma cells lead to ATG5 cleavage through a calpain-dependent manner while calpain inhibition or a calpain-insensitive Atg5 mutant promoted bortezomib-resistance. In contrast, AICAR, an AMPK activator, enhanced bortezomib-induced cleavage of ATG5 and increased bortezomib-induced killing. Taken together, the results demonstrate that ATG5 cleavage provokes apoptosis and represents a molecular link between autophagy and apoptosis with therapeutic implications.
Collapse
|
17
|
Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KUA, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST, Shanmugam M. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res 2014; 21:1161-71. [PMID: 25542900 DOI: 10.1158/1078-0432.ccr-14-1088] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE We have previously demonstrated that ritonavir targeting of glycolysis is growth inhibitory and cytotoxic in a subset of multiple myeloma cells. In this study, our objective was to investigate the metabolic basis of resistance to ritonavir and to determine the utility of cotreatment with the mitochondrial complex I inhibitor metformin to target compensatory metabolism. EXPERIMENTAL DESIGN We determined combination indices for ritonavir and metformin, impact on myeloma cell lines, patient samples, and myeloma xenograft growth. Additional evaluation in breast, melanoma, and ovarian cancer cell lines was also performed. Signaling connected to suppression of the prosurvival BCL-2 family member MCL-1 was evaluated in multiple myeloma cell lines and tumor lysates. Reliance on oxidative metabolism was determined by evaluation of oxygen consumption, and dependence on glutamine was assessed by estimation of viability upon metabolite withdrawal in the context of specific metabolic perturbations. RESULTS Ritonavir-treated multiple myeloma cells exhibited increased reliance on glutamine metabolism. Ritonavir sensitized multiple myeloma cells to metformin, effectively eliciting cytotoxicity both in vitro and in an in vivo xenograft model of multiple myeloma and in breast, ovarian, and melanoma cancer cell lines. Ritonavir and metformin effectively suppressed AKT and mTORC1 phosphorylation and prosurvival BCL-2 family member MCL-1 expression in multiple myeloma cell lines in vitro and in vivo. CONCLUSIONS FDA-approved ritonavir and metformin effectively target multiple myeloma cell metabolism to elicit cytotoxicity in multiple myeloma. Our studies warrant further investigation into repurposing ritonavir and metformin to target the metabolic plasticity of myeloma to more broadly target myeloma heterogeneity and prevent the reemergence of chemoresistant aggressive multiple myeloma.
Collapse
Affiliation(s)
- Sevim Dalva-Aydemir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Maylyn Martinez
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kehinde U A Adekola
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Irawati Kandela
- Chemistry Life Processes Institute, Northwestern University, Chicago, Illinois
| | - Changyong Wei
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Seema Singhal
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois. Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jennifer E Koblinski
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Noopur S Raje
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
18
|
Song X, Kim SY, Zhang L, Tang D, Bartlett DL, Kwon YT, Lee YJ. Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell Death Dis 2014; 5:e1504. [PMID: 25356873 PMCID: PMC4649537 DOI: 10.1038/cddis.2014.463] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/02/2023]
Abstract
Unresectable colorectal liver metastases remain a major unresolved issue and more effective novel regimens are urgently needed. While screening synergistic drug combinations for colon cancer therapy, we identified a novel multidrug treatment for colon cancer: chemotherapeutic agent melphalan in combination with proteasome inhibitor bortezomib and mTOR (mammalian target of rapamycin) inhibitor rapamycin. We investigated the mechanisms of synergistic antitumor efficacy during the multidrug treatment. All experiments were performed with highly metastatic human colon cancer CX-1 and HCT116 cells, and selected critical experiments were repeated with human colon cancer stem Tu-22 cells and mouse embryo fibroblast (MEF) cells. We used immunochemical techniques to investigate a cross-talk between apoptosis and autophagy during the multidrug treatment. We observed that melphalan triggered apoptosis, bortezomib induced apoptosis and autophagy, rapamycin caused autophagy and the combinatorial treatment-induced synergistic apoptosis, which was mediated through an increase in caspase activation. We also observed that mitochondrial dysfunction induced by the combination was linked with altered cellular metabolism, which induced adenosine monophosphate-activated protein kinase (AMPK) activation, resulting in Beclin-1 phosphorylated at Ser 93/96. Interestingly, Beclin-1 phosphorylated at Ser 93/96 is sufficient to induce Beclin-1 cleavage by caspase-8, which switches off autophagy to achieve the synergistic induction of apoptosis. Similar results were observed with the essential autophagy gene, autophagy-related protein 7, -deficient MEF cells. The multidrug treatment-induced Beclin-1 cleavage was abolished in Beclin-1 double-mutant (D133A/D146A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. These observations identify a novel mechanism for AMPK-induced apoptosis through interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
- X Song
- Department of Surgery, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - S-Y Kim
- Department of Surgery, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - L Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Tang
- Department of Surgery, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - D L Bartlett
- Department of Surgery, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Y T Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | - Y J Lee
- 1] Department of Surgery, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA 15213, USA [2] Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Ibe JCF, Zhou Q, Chen T, Tang H, Yuan JXJ, Raj JU, Zhou G. Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 49:609-18. [PMID: 23668615 DOI: 10.1165/rcmb.2012-0446oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.
Collapse
|
20
|
Implication of transcriptional repression in compound C-induced apoptosis in cancer cells. Cell Death Dis 2013; 4:e883. [PMID: 24157877 PMCID: PMC3920957 DOI: 10.1038/cddis.2013.419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 12/25/2022]
Abstract
Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to induce apoptosis in some types of cells. However, the underlying mechanisms remain largely unclear. Using a DNA microarray analysis, we found that the expression of many genes was downregulated upon treatment with compound C. Importantly, compound C caused transcriptional repression with the induction of p53, a well-known marker of transcriptional stress response, in several cancer cell lines. Compound C did not induce the phosphorylation of p53 but dramatically increased the protein level of p53 similar to some other transcriptional inhibitors, including 5,6-dichloro-1-β-D-ribobenzimidazole (DRB). Consistent with previous reports, we found that compound C initiated apoptotic death of cancer cells in an AMPK-independent manner. Similar to DRB and actinomycin D (ActD), two classic transcription inhibitors, compound C not only resulted in the loss of Bcl-2 and Bcl-xl protein but also induced the phosphorylation of eukaryotic initiation factor-alpha (eIF2α) on Ser51. Hence, the phosphorylation of eIF2α might be a novel marker of transcriptional inhibition. It is noteworthy that compound C-mediated apoptosis of cancer cells is correlated with decreased expression of Bcl-2 and Bcl-xl and the phosphorylation of eIF2α on Ser51. Remarkably, compound C exhibits potent anticancer activities in vivo. Taken together, our data suggest that compound C may be an attractive candidate for anticancer drug development.
Collapse
|
21
|
p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol 2013; 267:113-24. [DOI: 10.1016/j.taap.2012.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/23/2012] [Accepted: 12/05/2012] [Indexed: 12/19/2022]
|
22
|
Accordi B, Galla L, Milani G, Curtarello M, Serafin V, Lissandron V, Viola G, te Kronnie G, De Maria R, Petricoin EF, Liotta LA, Indraccolo S, Basso G. AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells. Leukemia 2012; 27:1019-27. [DOI: 10.1038/leu.2012.338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Duong HQ, Hwang JS, Kim HJ, Seong YS, Bae I. BML-275, an AMPK inhibitor, induces DNA damage, G2/M arrest and apoptosis in human pancreatic cancer cells. Int J Oncol 2012; 41:2227-36. [PMID: 23076030 PMCID: PMC3583630 DOI: 10.3892/ijo.2012.1672] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/07/2012] [Indexed: 12/13/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a principal intracellular energy sensor which regulates energy producing pathways and energy requiring pathways when the cellular AMP/ATP ratio is altered. BML-275 (compound C), a well-known inhibitor of AMPK, has been found to induce apoptosis in myeloma, glioma and prostate cancer cells. However, the mechanisms responsible for the selective apoptotic effect(s) by BML-275 in cancer cells remain unknown. In the present study, BML-275 was investigated for its antitumor effect(s) in human pancreatic cancer cell lines. BML-275 inhibited the cell proliferation of 4 human pancreatic cancer cell lines (MIA PaCa-2, Panc-1, Colo-357 and AsPC-1). In addition, BML-275 significantly increased the generation of intracellular reactive oxygen species (ROS), followed by induction of DNA damage signaling and apoptosis. Furthermore, BML-275 induced cell cycle arrest in the G2/M phase. The inhibition of ROS generation by N-acetyl cysteine (NAC) significantly prevented the induction of DNA damage and apoptosis, but failed to prevent the induction of G2/M arrest by BML-275. Small interfering RNA (siRNA)-mediated knockdown of AMPKα increased the generation of intracellular ROS, DNA damage signaling and apoptosis without cell cycle arrest at the G2/M phase. These findings suggest that BML-275 exerts its antitumor effects by inducing ROS generation, DNA damage and apoptosis via inhibition of the AMPK pathway and by inducing G2/M arrest via a pathway independent of AMPK, implicating its potential application as an antitumor agent for pancreatic cancer.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
24
|
Yang WL, Perillo W, Liou D, Marambaud P, Wang P. AMPK inhibitor compound C suppresses cell proliferation by induction of apoptosis and autophagy in human colorectal cancer cells. J Surg Oncol 2012; 106:680-8. [PMID: 22674626 DOI: 10.1002/jso.23184] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/14/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES AMP-activated protein kinase (AMPK) is a main regulator of energy metabolism through the inhibition of biosynthetic pathways and enhancement of ATP-generating pathways. However, targeting AMPK as anti-tumor therapy remains controversial. In this study, we examined the effect of compound C, a small molecule inhibitor of AMPK, on the proliferation of several human colorectal cancer cell lines with diverse characteristics. METHODS Four human colorectal cancer cell lines (HCT116, DLD-1, SW480, and KM12C) were treated with compound C. Cell viability was determined by MTS assay. Cell cycle prolife was analyzed by flow cytometry. Acidic vesicular organelles were detected by acridine orange staining. Protein levels were measured by western blotting. RESULTS Compound C inhibited the growth of four cell lines in a dose-dependent manner and caused G(2) /M arrest. Compound C increased sub-G(1) cell population and induced chromatin condensation and cleavage of PARP in HCT116 and KM12C cells, while it induced acidic vesicular formation and conversion of LC3-I to autophagosome-associated LC3-II in DLD-1 and SW480 cells. Survivin, an anti-apoptotic protein, was down-regulated in all cell lines treated with compound C. CONCLUSIONS Compound C induces apoptotic or autophagic death in colorectal cancer cells and the preferred death mode is cell type-dependent.
Collapse
Affiliation(s)
- Weng-Lang Yang
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, New York, USA.
| | | | | | | | | |
Collapse
|
25
|
Tsuji K, Kisu I, Banno K, Yanokura M, Ueki A, Masuda K, Kobayashi Y, Yamagami W, Nomura H, Susumu N, Aoki D. Metformin: A possible drug for treatment of endometrial cancer. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojog.2012.21001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Qin S, Rodrigues GA. Differential roles of AMPKα1 and AMPKα2 in regulating 4-HNE-induced RPE cell death and permeability. Exp Eye Res 2010; 91:818-24. [PMID: 21029733 DOI: 10.1016/j.exer.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/18/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
Lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE) cause dysfunction and death of retinal pigmented epithelial (RPE) cells, thereby leading to retinal degeneration. The molecular mechanisms underlying their action remain elusive however. In this study, the roles of AMP-activated protein kinase (AMPK) in 4-HNE-induced RPE cell dysfunction and viability were addressed. 4-HNE caused RPE cell death and down-regulated basal activity of AMPK as evidenced by decreased Thr(172) phosphorylation of AMPKα. Exposure of RPE cells to the AMPK inhibitor, compound C also led to cell death, indicating that RPE cell death is correlated with 4-HNE modulation of AMPK activity. ARPE19 cells express both AMPKα1 and AMPKα2 with predominant expression of the AMPKα1 isoform. siRNA studies revealed that knockdown of AMPKα1 expression sensitized RPE cells to 4-HNE. Intriguingly, knockdown of AMPKα2 protected RPE cells from 4-HNE injury. Sub-lethal doses of 4-HNE induced an increase in RPE monolayer permeability, as measured by reduction in trans-epithelial resistance (TER). Knockdown of AMPKα2 but not AMPKα1 significantly restored RPE cell barrier function. No further protection was observed by knockdown of both AMPKα1 and AMPKα2. In contrast, knockdown of AMPKα1 and/or AMPKα2 did not reverse the 4-HNE's inhibitory effects on production of IL-8 and MCP-1. These data demonstrate that AMPKα1 and AMPKα2 play distinct roles in regulating 4-HNE effects on RPE function and viability. Therefore, selective modulation of AMPKα activity may benefit patients with retinal degeneration associated with RPE cell atrophy.
Collapse
Affiliation(s)
- Suofu Qin
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | |
Collapse
|
27
|
Accordi B, Espina V, Giordan M, VanMeter A, Milani G, Galla L, Ruzzene M, Sciro M, Trentin L, De Maria R, te Kronnie G, Petricoin E, Liotta L, Basso G. Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 2010; 5:e13552. [PMID: 21042412 PMCID: PMC2958847 DOI: 10.1371/journal.pone.0013552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 09/27/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In spite of leukemia therapy improvements obtained over the last decades, therapy is not yet effective in all cases. Current approaches in Acute Lymphoblastic Leukemia (ALL) research focus on identifying new molecular targets to improve outcome for patients with a dismal prognosis. In this light phosphoproteomics seems to hold great promise for the identification of proteins suitable for targeted therapy. METHODOLOGY/PRINCIPAL FINDINGS We employed Reverse Phase Protein Microarrays to identify aberrantly activated proteins in 118 pediatric B-cell precursor (BCP)-ALL patients. Signal transduction pathways were assayed for activation/expression status of 92 key signalling proteins. We observed an increased activation/expression of several pathways involved in cell proliferation in poor clinical prognosis patients. MLL-rearranged tumours revealed BCL-2 hyperphosphorylation through AMPK activation, which indicates that AMPK could provide a functional role in inhibiting apoptosis in MLL-rearranged patients, and could be considered as a new potential therapeutic target. Second, in patients with poor clinical response to prednisone we observed the up-modulation of LCK activity with respect to patients with good response. This tyrosine-kinase can be down-modulated with clinically used inhibitors, thus modulating LCK activity could be considered for further studies as a new additional therapy for prednisone-resistant patients. Further we also found an association between high levels of CYCLIN E and relapse incidence. Moreover, CYCLIN E is more expressed in early relapsed patients, who usually show an unfavourable prognosis. CONCLUSIONS/SIGNIFICANCE We conclude that functional protein pathway activation mapping revealed specific deranged signalling networks in BCP-ALL that could be potentially modulated to produce a better clinical outcome for patients resistant to standard-of-care therapies.
Collapse
Affiliation(s)
- Benedetta Accordi
- Oncohematology Laboratory, Department of Pediatrics, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu M, Flynt L, Ghosh S, Mellema M, Banerjee A, Williams E, Panettieri RA, Shore SA. Anti-inflammatory effects of thiazolidinediones in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2010; 45:111-9. [PMID: 20870897 DOI: 10.1165/rcmb.2009-0445oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Airway smooth muscle (ASM) cells have been reported to contribute to the inflammation of asthma. Because the thiazolidinediones (TZDs) exert anti-inflammatory effects, we examined the effects of troglitazone and rosiglitazone on the release of inflammatory moieties from cultured human ASM cells. Troglitazone dose-dependently reduced the IL-1β-induced release of IL-6 and vascular endothelial growth factor, the TNF-α-induced release of eotaxin and regulated on activation, normal T expressed and secreted (RANTES), and the IL-4-induced release of eotaxin. Rosiglitazone also inhibited the TNF-α-stimulated release of RANTES. Although TZDs are known to activate peroxisome proliferator-activated receptor-γ (PPARγ), these anti-inflammatory effects were not affected by a specific PPARγ inhibitor (GW 9662) or by the knockdown of PPARγ using short hairpin RNA. Troglitazone and rosiglitazone each caused the activation of adenosine monophosphate-activated protein kinase (AMPK), as detected by Western blotting using a phospho-AMPK antibody. The anti-inflammatory effects of TZDs were largely mimicked by the AMPK activators, 5-amino-4-imidazolecarboxamide ribose (AICAR) and metformin. However, the AMPK inhibitors, Ara A and Compound C, were not effective in preventing the anti-inflammatory effects of troglitazone or rosiglitzone, suggesting that the effects of these TZDs are likely not mediated through the activation of AMPK. These data indicate that TZDs inhibit the release of a variety of inflammatory mediators from human ASM cells, suggesting that they may be useful in the treatment of asthma, and the data also indicate that the effects of TZDs are not mediated by PPARγ or AMPK.
Collapse
Affiliation(s)
- Ming Zhu
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115-6021, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dasgupta B, Milbrandt J. AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 2009; 16:256-70. [PMID: 19217427 DOI: 10.1016/j.devcel.2009.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 10/29/2008] [Accepted: 01/20/2009] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved metabolic sensor that responds to alterations in cellular energy levels to maintain energy balance. While its role in metabolic homeostasis is well documented, its role in mammalian development is less clear. Here we demonstrate that mutant mice lacking the regulatory AMPK beta1 subunit have profound brain abnormalities. The beta1(-/-) mice show atrophy of the dentate gyrus and cerebellum, and severe loss of neurons, oligodendrocytes, and myelination throughout the central nervous system. These abnormalities stem from reduced AMPK activity, with ensuing cell cycle defects in neural stem and progenitor cells (NPCs). The beta1(-/-) NPC deficits result from hypophosphorylation of the retinoblastoma protein (Rb), which is directly phosphorylated by AMPK at Ser(804). The AMPK-Rb axis is utilized by both growth factors and energy restriction to increase NPC growth. Our results reveal that AMPK integrates growth factor signaling with cell cycle control to regulate brain development.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Department of Pathology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
30
|
AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol 2009; 77:1684-93. [PMID: 19428322 DOI: 10.1016/j.bcp.2009.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/06/2009] [Accepted: 03/02/2009] [Indexed: 11/22/2022]
Abstract
We investigated the effect of compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), on proliferation and viability of human U251 and rat C6 glioma cell lines. Compound C caused G(2)/M cell cycle block, accompanied by apoptotic glioma cell death characterized by caspase activation, phosphatidylserine exposure and DNA fragmentation. The mechanisms underlying the pro-apoptotic action of compound C involved induction of oxidative stress and downregulation of antiapoptotic molecule Bcl-2, while no alteration of pro-apoptotic Bax was observed. Compound C diminished AMPK phosphorylation and enzymatic activity, resulting in reduced phosphorylation of its target acetyl CoA carboxylase. AMPK activators metformin and AICAR partly prevented the cell cycle block, oxidative stress and apoptosis induced by compound C. The small interfering RNA (siRNA) targeting of human AMPK mimicked compound C-induced G(2)/M cell cycle arrest, but failed to induce oxidative stress and apoptosis in U251 glioma cells. In conclusion, our data indicate that AMPK inhibition is required, but not sufficient for compound C-mediated apoptotic death of glioma cells.
Collapse
|
31
|
Paolino D, Cosco D, Licciardi M, Giammona G, Fresta M, Cavallaro G. Polyaspartylhydrazide Copolymer-Based Supramolecular Vesicular Aggregates as Delivery Devices for Anticancer Drugs. Biomacromolecules 2008; 9:1117-30. [DOI: 10.1021/bm700964a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Paolino
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - D. Cosco
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - M. Licciardi
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - G. Giammona
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - M. Fresta
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - G. Cavallaro
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, Campus Universitario, Building of Biosciences, Viale Europa, I-88100 Germaneto (CZ), Italy, and Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
32
|
Baumann P, Mandl-Weber S, Emmerich B, Straka C, Schmidmaier R. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res 2007; 313:3592-603. [PMID: 17669398 DOI: 10.1016/j.yexcr.2007.06.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
The role of adenosine monophosphate activated protein kinase (AMPK) in regulating multiple myeloma (MM) cell growth is not yet clear. In this study, we show that the AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAr) and D942 inhibit cell growth in MM cell lines. AICAr also induced an S-phase cell cycle arrest in all four tested cell lines and led to phosphorylation and thus activation of AMPK. Furthermore, the inhibition of a nucleoside transporter by nitrobenzyl-thio-9-beta-d-ribofuranosylpurine (NBTI), inhibition of the adenosine kinase by iodotubericidine and inhibition of AMPK by AMPKI Compound C reversed AICAr effects, indicating that the cellular effects of AICAr were mediated by AMPK. Activation of AMPK inhibited basal extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) as well as AKT phosphorylation, and blocked IL-6, IGF-1, and HS-5 stromal cell conditioned medium-induced increase of cell growth. Troglitazone, which has previously been shown to activate AMPK, similarly inhibited MM cell growth, activated AMPK, and decreased ERK and P70S6K phosphorylation. Our results suggest that activation of AMPK inhibits MM cell growth despite stimulation with IL-6, IGF-1, or HS-5 stromal cell conditioned medium and represents a potential new target in the therapy of MM.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Hematology and Oncology, Medizinische Klinik Innenstadt, Klinikum der Universität München, Germany.
| | | | | | | | | |
Collapse
|