1
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
2
|
Cheng F, Zhang R, Sun C, Ran Q, Zhang C, Shen C, Yao Z, Wang M, Song L, Peng C. Oxaliplatin-induced peripheral neurotoxicity in colorectal cancer patients: mechanisms, pharmacokinetics and strategies. Front Pharmacol 2023; 14:1231401. [PMID: 37593174 PMCID: PMC10427877 DOI: 10.3389/fphar.2023.1231401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc.), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Hines RB, Schoborg C, Sumner T, Zhu X, Elgin EA, Zhang S. The association between sociodemographic, clinical, and potentially preventive therapies with oxaliplatin-induced peripheral neuropathy in colorectal cancer patients. Support Care Cancer 2023; 31:386. [PMID: 37294347 PMCID: PMC10680061 DOI: 10.1007/s00520-023-07850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE The purpose of this retrospective cohort study was to evaluate whether several potentially preventive therapies reduced the rate of oxaliplatin-induced peripheral neuropathy (OIPN) in colorectal cancer patients and to assess the relationship of sociodemographic/clinical factors with OIPN diagnosis. METHODS Data were obtained from the Surveillance, Epidemiology, and End Results database combined with Medicare claims. Eligible patients were diagnosed with colorectal cancer between 2007 and 2015, ≥ 66 years of age, and treated with oxaliplatin. Two definitions were used to denote diagnosis of OIPN based on diagnosis codes: OIPN 1 (specific definition, drug-induced polyneuropathy) and OIPN 2 (broader definition, additional codes for peripheral neuropathy). Cox regression was used to obtain hazard ratios (HR) with 95% confidence intervals (CI) for the relative rate of OIPN within 2 years of oxaliplatin initiation. RESULTS There were 4792 subjects available for analysis. At 2 years, the unadjusted cumulative incidence of OIPN 1 was 13.1% and 27.1% for OIPN 2. For both outcomes, no therapies reduced the rate of OIPN diagnosis. The anticonvulsants gabapentin and oxcarbazepine/carbamazepine were associated with an increased rate of OIPN (both definitions) as were increasing cycles of oxaliplatin. Compared to younger patients, those 75-84 years of age experienced a 15% decreased rate of OIPN. For OIPN 2, prior peripheral neuropathy and moderate/severe liver disease were also associated with an increased hazard rate. For OIPN 1, state buy-in health insurance coverage was associated with a decreased hazard rate. CONCLUSION Additional studies are needed to identify preventive therapeutics for OIPN in cancer patients treated with oxaliplatin.
Collapse
Affiliation(s)
- Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA.
| | - Christopher Schoborg
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| | - Timothy Sumner
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| | - Xiang Zhu
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA
- Office of Research, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Elizabeth A Elgin
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA
- Department of Medical Education, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Shunpu Zhang
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| |
Collapse
|
4
|
Efficacy of Traditional Chinese Medicine Injection in Preventing Oxaliplatin-Induced Peripheral Neurotoxicity: An Analysis of Evidence from 3598 Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6875253. [PMID: 35911148 PMCID: PMC9337932 DOI: 10.1155/2022/6875253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Background Oxaliplatin is an effective chemotherapeutic agent for the treatment of malignant tumors. However, severe oxaliplatin-induced peripheral neurotoxicity (OIPN) has been well documented. Traditional Chinese medicine injections (TCMIs) have shown significant efficacy in preventing OIPN. However, it is difficult for clinicians to determine the differences in the efficacy of various TCMIs in preventing OIPN. The aim of this study was to compare the efficacy of various TCMIs in preventing OIPN through a network meta-analysis (NMA) to further inform clinical decision-making. Methods The Chinese Journal Full Text Database, Chinese Biomedical Literature Database, Wanfang Data Knowledge Service Platform, Chinese Science and Technology Journal Full Text Database, the Cochrane Library, Web of Science, PubMed, and Embase databases were searched for randomized controlled trials (RCTs) of TCMIs for OIPN prevention. The retrieval time was from the establishment of the database to April 12, 2021. NMA was performed using Stata 14.0 software after 2 evaluators independently screened the literature, extracted information, and evaluated the risk of bias of the included studies. Results A total of 45 eligible RCTs involving 3598 cancer patients and 13 TCMIs were included. The 13 TCMIs included Xiaoaiping injection (XAPI), compound kushen injection (CKSI), Aidi injection (ADI), Brucea javanica oil emulsion injection (BJOEI), Shenmai injection (SMI), Kangai injection (KAI), Astragalus injection (AI), elemene emulsion injection (EEI), Shenfu injection (SFI), Shenqi Fuzheng injection (SIFZI), Kanglaite injection (KLEI), Huachansu injection (HCSI), and lentinan injection (LI). NMA results showed that AI was superior to AD and SIFZI was superior to ADI in reducing the incidence of grade I neurotoxicity. SIFZI was superior to EEI and ADI, and BJOEI was superior to chemotherapy alone in reducing the incidence of grade II neurotoxicity. SMI was superior to LI and CKSI in reducing the incidence of grade III neurotoxicity. SIFZI was superior to LI, BJOEI, XAPI, EEI, SMI, chemotherapy alone, HCSI, KLEI, and ADI in reducing the total incidence of grade I–IV neurotoxicity. SFI was superior to ADI. Based on the SUCRA values, AI was the most likely intervention to reduce the incidence of grade I neurotoxicity, SIFZI was the most likely intervention to reduce the total incidence of grade II and I–IV neurotoxicity, and SMI was the most likely intervention to reduce the incidence of grade III and IV neurotoxicity. Conclusion TCMIs can prevent OIPN to some extent, among which SIFZI, SMI, and AI may be the most promising TCMIs. However, given the limitations of current studies, more well-designed, high-quality clinical trials will be needed in the future to validate the benefits of TCMIs.
Collapse
|
5
|
Barth MC, Lange S, Häfner N, Ueberschaar N, Görls H, Runnebaum IB, Weigand W. Synthesis and characterization of thiocarbonato-linked platinum(IV) complexes. Dalton Trans 2022; 51:5567-5576. [PMID: 35311885 DOI: 10.1039/d2dt00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show the formation of new oxaliplatin-based platinum(IV) complexes by reaction with DSC-activated thiols via thiocarbonate linkage. Three model complexes based on aliphatic and aromatic thiols, as well as one complex with N-acetylcysteine as biologically active thiol were synthesized. This synthetic strategy affords the expansion of biologically active compounds other than those containing carboxylic, amine or hydroxy groups for coupling to the platinum(IV) center. The complexes were characterized by high-resolution mass spectrometry, NMR spectroscopy (1H, 13C, 195Pt) and elemental analysis. Their biological behavior was evaluated against two ovarian carcinoma cell lines and their cisplatin-resistant analogues. Remarkably, the platinum(IV) samples show modest in vitro cytotoxicity against A2780 cells and comparable effects against A2780cis cells. Two complexes in particular demonstrate improved activity against SKOV3cis cells. The reduction experiment of complex 8, investigated by UHPLC-HRMS, provides evidence of interesting platinum-species formed during reaction with ascorbic acid.
Collapse
Affiliation(s)
- Marie-Christin Barth
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Stefanie Lange
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
6
|
Peng S, Ying AF, Chan NJH, Sundar R, Soon YY, Bandla A. Prevention of Oxaliplatin-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:731223. [PMID: 35186722 PMCID: PMC8853097 DOI: 10.3389/fonc.2022.731223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 01/06/2023] Open
Abstract
Background Oxaliplatin-induced peripheral neuropathy (OIPN) has significant clinical impact on the quality of life for cancer patients and is a dose limiting toxicity. Trials studying preventive measures have been inconclusive. A systematic review and meta-analysis were conducted to evaluate the existing pharmacological and non-pharmacological interventions to prevent chronic OIPN. Methods Literature databases PubMed-MEDLINE, Embase and Scopus, were searched from 1 Jan 2005 to 08 Aug 2020 and major conferences’ abstracts were reviewed for randomized controlled trials that examined the efficacy of any preventive measure for OIPN. The primary outcome measure was the incidence of chronic OIPN with a preventive intervention as compared to placebo or no intervention. The pooled risk ratio and its 95% confidence interval were calculated using a random effects model. A network meta-analysis was conducted to derive indirect evidence of any preventive effect of an intervention against placebo when original trials compared one intervention against another. Results Forty-four trials were analyzed describing 29 chemoprotective interventions, including combinations, and 1 non-pharmacological intervention. Ratings were assessed via a combination of outcomes with quality assessment using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework. Of the 30 interventions examined, there were six interventions supporting potential efficacy, 11 interventions with insufficient evidence and 13 interventions not recommended. Conclusion Currently, there is insufficient certainty to support any intervention as effective in preventing OIPN. Of note is that most of these studies have focused on pharmacological interventions; non-pharmacological interventions are underexplored. Further research on ways to limit OIPN is needed. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=225095, Prospero Registration Number: CRD42021225095.
Collapse
Affiliation(s)
- Siyu Peng
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Ariel Fangting Ying
- Health Services and System Research, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | | | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore
| | - Aishwarya Bandla
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
8
|
Research design considerations for chronic pain prevention clinical trials: IMMPACT recommendations. Pain Rep 2021; 6:e895. [PMID: 33981929 PMCID: PMC8108588 DOI: 10.1097/pr9.0000000000000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/25/2022] Open
Abstract
Although certain risk factors can identify individuals who are most likely to develop chronic pain, few interventions to prevent chronic pain have been identified. To facilitate the identification of preventive interventions, an IMMPACT meeting was convened to discuss research design considerations for clinical trials investigating the prevention of chronic pain. We present general design considerations for prevention trials in populations that are at relatively high risk for developing chronic pain. Specific design considerations included subject identification, timing and duration of treatment, outcomes, timing of assessment, and adjusting for risk factors in the analyses. We provide a detailed examination of 4 models of chronic pain prevention (ie, chronic postsurgical pain, postherpetic neuralgia, chronic low back pain, and painful chemotherapy-induced peripheral neuropathy). The issues discussed can, in many instances, be extrapolated to other chronic pain conditions. These examples were selected because they are representative models of primary and secondary prevention, reflect persistent pain resulting from multiple insults (ie, surgery, viral infection, injury, and toxic or noxious element exposure), and are chronically painful conditions that are treated with a range of interventions. Improvements in the design of chronic pain prevention trials could improve assay sensitivity and thus accelerate the identification of efficacious interventions. Such interventions would have the potential to reduce the prevalence of chronic pain in the population. Additionally, standardization of outcomes in prevention clinical trials will facilitate meta-analyses and systematic reviews and improve detection of preventive strategies emerging from clinical trials.
Collapse
|
9
|
Based on Systematic Pharmacology: Molecular Mechanism of Siwei Jianbu Decoction in Preventing Oxaliplatin-Induced Peripheral Neuropathy. Neural Plast 2020; 2020:8880543. [PMID: 33082779 PMCID: PMC7559195 DOI: 10.1155/2020/8880543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect caused by chemotherapy drugs, and its existence seriously affects the quality of life of patients. We first established an oxaliplatin-induced peripheral neuropathy (OIPN) model and then measured and evaluated mechanical hyperalgesia, thermal nociception, cold allodynia, and intraepidermal nerve fiber (IENF) density to determine Siwei Jianbu Decoction's role in preventing OIPN. Then, we conducted a systematic pharmacological study that revealed important roles for the MAPK signaling pathway and proinflammatory immune pathway and confirmed these roles by western blot, immunofluorescence, and qPCR. The data show that Siwei Jianbu Decoction can effectively prevent oxaliplatin-induced neuroinflammation by inhibiting an increase in NF-κB expression via downregulation of p-ERK1/2 and p-p38. The present study showed that SWJB may be beneficial in preventing oxaliplatin-induced peripheral neuropathy.
Collapse
|
10
|
Kawashiri T, Kobayashi D, Egashira N, Tsuchiya T, Shimazoe T. Oral administration of Cystine and Theanine ameliorates oxaliplatin-induced chronic peripheral neuropathy in rodents. Sci Rep 2020; 10:12665. [PMID: 32728157 PMCID: PMC7391686 DOI: 10.1038/s41598-020-69674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 01/19/2023] Open
Abstract
Oxaliplatin frequently causes severe peripheral neuropathy as a dose-limiting toxicity. However, this toxicity lacks a strategy for prevention. Cystine/Theanine is a supplement, which includes precursors for the biosynthesis of glutathione. In this study, we investigated the effects of Cystine/Theanine on oxaliplatin-induced peripheral neuropathy using an in vivo model. Repeated injection of oxaliplatin (4 mg/kg intraperitoneally twice a week for 2 weeks) caused mechanical allodynia, cold hyperalgesia and axonal degeneration of the sciatic nerve in rats. Mechanical allodynia and axonal degeneration, but not cold hyperalgesia, were ameliorated by daily co-administration of Cystine [200 mg/kg orally (p.o.)] and Theanine (80 mg/kg p.o.). Moreover, co-administration of Cystine and Theanine to rats significantly increased the glutathione level in the sciatic nerve compared with the oxaliplatin group. Furthermore, Cystine and Theanine did not attenuate the tumour cytotoxicity of oxaliplatin in C-26 tumour cell-bearing mice. These findings suggest that Cystine and Theanine may be beneficial for preventing oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takashi Tsuchiya
- Department of Surgery, Sendai City Medical Center, Sendai City, Miyagi, 983-0824, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Protective effect of the oral administration of cystine and theanine on oxaliplatin-induced peripheral neuropathy: a pilot randomized trial. Int J Clin Oncol 2020; 25:1814-1821. [PMID: 32594273 PMCID: PMC7498479 DOI: 10.1007/s10147-020-01728-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxaliplatin, one of the key cytotoxic drugs for colorectal cancer, frequently causes peripheral neuropathy which leads to dose modification and decreased patients' quality of life. However, prophylactic or therapeutic measures have not yet been established. Orally administered amino acids, cystine and theanine, promoted the synthesis of glutathione which was one of the potential candidates for preventing the neuropathy. The aim of this study was to determine whether daily oral administration of cystine and theanine attenuated oxaliplatin-induced peripheral neuropathy (OXLIPN). METHODS Twenty-eight colorectal cancer patients who received infusional 5-fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) therapy were randomly and evenly assigned to the cystine and theanine group and the control group. OXLIPN was assessed up to the sixth course using original 7-item questionnaire as well as Common Terminology Criteria for Adverse Events (CTCAE) grading scale. RESULTS Neuropathy scores according to our original questionnaire were significantly smaller in the cystine and theanine group at the fourth (p = 0.026), fifth (p = 0.029), and sixth course (p = 0.038). Furthermore, significant differences were also observed in CTCAE neuropathy grades at the fourth (p = 0.037) and the sixth course (p = 0.017). There was one patient in each group who required dose reduction due to OXLIPN. Except for neurotoxicity, no significant differences were noted in the incidence of adverse events, and the total amount of administered oxaliplatin. CONCLUSION The results demonstrated the daily oral administration of cystine and theanine attenuated OXLIPN.
Collapse
|
12
|
Fu HT, Xu YY, Tian JJ, Fu JX, Nie SL, Tang YY, Chen P, Zong L. Long-term efficacy of capecitabine plus oxaliplatin chemotherapy on stage III colon cancer: A meta-analysis. World J Meta-Anal 2020; 8:27-40. [DOI: 10.13105/wjma.v8.i1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Many clinical studies for the long-term survival or efficacy of capecitabine plus oxaliplatin (XELOX) in colon cancer have already been studied, but its clinical benefit is controversial.
AIM To evaluate the long-term efficacy of XELOX regimen in comparison with other adjuvant chemotherapy protocols in colon cancer.
METHODS By searching the PubMed, EMBASE and Cochrane databases, a total of 12 randomized controlled trials involving 6698 stage III colon cancer cases (XELOX protocol: n = 3298 cases; other adjuvant chemotherapy protocol: n = 3268 cases) were included. The parameter outcomes included the overall survival and the disease-free survival. The quality control of selected literature was based on the Jadad scale and the GRADE system.
RESULTS In comparison to other adjuvant chemotherapy regimen, XELOX regimen showed a better overall survival (odds ratio = 1.29, 95% confidence interval: 1.15-1.44, P < 0.0001) and a better disease-free survival (odds ratio = 1.32, 95% confidence interval: 1.18-1.46, P < 0.0001) for colon cancer patients, suggesting the XELOX regimen can be a good option for postoperative treatment of stage III colon cancer.
CONCLUSION The XELOX regimen can be a preferred option for adjuvant treatment of stage III colon cancer after surgery.
Collapse
Affiliation(s)
- Hong-Tao Fu
- Department of Clinical Medicine, University of South China, Hengyang 421000, Hunan Province, China
| | - Ying-Ying Xu
- Department of General Surgery, Yizheng People’s Hospital, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Jing-Jing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Xin Fu
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Shao-Ling Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Yan-Yan Tang
- Department of Colorectal Surgery, Hunan Cancer Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Ping Chen
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Liang Zong
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
13
|
Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit Rev Oncol Hematol 2020; 145:102831. [PMID: 31783290 PMCID: PMC6982645 DOI: 10.1016/j.critrevonc.2019.102831] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect of chemotherapy that is frequently experienced by patients receiving treatment for cancer. CIPN is caused by many of the most commonly used chemotherapeutic agents, including taxanes, vinca alkaloids, and bortezomib. Pain and sensory abnormalities may persist for months, or even years after the cessation of chemotherapy. The management of CIPN is a significant challenge, as it is not possible to predict which patients will develop symptoms, the timing for the appearance of symptoms can develop anytime during the chemotherapy course, there are no early indications that warrant a reduction in the dosage to halt CIPN progression, and there are no drugs approved to prevent or alleviate CIPN. This review focuses on the etiology of CIPN and will highlight the various approaches developed for prevention and treatment. The goal is to guide studies to identify, test, and standardize approaches for managing CIPN.
Collapse
Affiliation(s)
- Eiman Y Ibrahim
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, USA.
| | - Barbara E Ehrlich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Smith EML, Knoerl R, Yang JJ, Kanzawa-Lee G, Lee D, Bridges CM. In Search of a Gold Standard Patient-Reported Outcome Measure for Use in Chemotherapy- Induced Peripheral Neuropathy Clinical Trials. Cancer Control 2018; 25:1073274818756608. [PMID: 29480026 PMCID: PMC5925747 DOI: 10.1177/1073274818756608] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: To test a reduced version—CIPN15—of the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy scale (QLQ-CIPN20) to establish a possible gold-standard patient-reported outcome measure for chemotherapy-induced peripheral neuropathy (CIPN). Methods: Using a prospective, longitudinal, case–control design, patients (n = 121) receiving neurotoxic chemotherapy completed the CIPN15 at baseline and 12 weeks and underwent objective neurological assessment using the 5-item Total Neuropathy Score-Clinical (TNSc). Healthy controls (n = 30) completed the CIPN15 once. Structural validity was evaluated using factor analysis. Because a stable factor structure was not found, a sum score was used to evaluate measures of the CIPN15’s psychometric properties—reliability, validity, sensitivity, and responsiveness—as follows: internal consistency via Cronbach’s α and item–item correlations; test–retest reliability via correlation between 2 CIPN15 scores from each patient; concurrent validity via correlation between CIPN15 and 5-item TNSc scores; contrasting group validity via comparison of CIPN15 scores from patients and healthy controls; sensitivity via descriptive statistics (means, standard deviation, ranges); and responsiveness via Cohen’s d effect size. Results: Most patients received single agent oxaliplatin (33.7%), paclitaxel (21.2%), or more than 1 neurotoxic drug concurrently (29.8%). Factor analysis revealed no stable factor structure. Cronbach’s α for the CIPN15 sum score was 0.91 (confidence interval [CI] = 0.89-0.93). Test–retest reliability was demonstrated based on strong correlations between the 2 scores obtained at the 12-week time point (r = 0.86; CI = 0.80-0.90). The CIPN15 and 5-item TNSc items reflecting symptoms (not signs) were moderately correlated (r range 0.57-0.72): concurrent validity. Statistically significant differences were found between patient and healthy control CIPN15 mean scores (P < .0001): contrasting group validity. All items encompassed the full score range but the CIPN15 linearly converted sum score did not: sensitivity. The CIPN15 was responsive based on a Cohen’s d of 0.52 (CI = 0.25-0.79). Conclusion: The sum-scored CIPN15 is reliable, valid, sensitive, and responsive when used to assess taxane- and platinum-induced CIPN.
Collapse
Affiliation(s)
| | - Robert Knoerl
- 2 Phylllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, MA, USA
| | - James J Yang
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| | | | - Deborah Lee
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| | - Celia M Bridges
- 1 University of Michigan School of Nursing, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Bakogeorgos M, Georgoulias V. Risk-reduction and treatment of chemotherapy-induced peripheral neuropathy. Expert Rev Anticancer Ther 2017; 17:1045-1060. [PMID: 28868935 DOI: 10.1080/14737140.2017.1374856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN), a common adverse effect of several chemotherapeutic agents, has a significant impact on quality of life and may even compromise treatment efficacy, requiring chemotherapy dose reduction or discontinuation. CIPN is predominantly related with sensory rather than motor symptoms and the most common related cytotoxic agents are platinum compounds, taxanes and vinca alkaloids. CIPN symptoms may resolve after treatment cessation, but they can also be permanent and continue for years. Areas covered: We present an overview of CIPN pathophysiology, clinical assessment, prevention and treatment identified through a Pubmed search. Expert commentary: No substantial progress has been made in the last few years within the field of prevention and/or treatment of CIPN, in spite of remarkable efforts. Continuous research could expand our knowledge about chemotherapeutic-specific neuropathic pathways and eventually lead to the conception of innovative and targeted agents for the prevention and/or treatment of this debilitating chemotherapy adverse effect.
Collapse
|
16
|
Fu X, Wu H, Li J, Wang C, Li M, Ma Q, Yang W. Efficacy of Drug Interventions for Chemotherapy-Induced Chronic Peripheral Neurotoxicity: A Network Meta-analysis. Front Neurol 2017. [PMID: 28642731 PMCID: PMC5462987 DOI: 10.3389/fneur.2017.00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peripheral neurotoxicity is a disturbing issue for cancer patients who are treated with chemotherapy. Several medications have been developed for preventing chemotherapy-induced chronic neurotoxicity (CICNT) however; their relative efficacies have not yet been studied. In this study, we conducted a network meta-analysis to give intervention recommendations. The literature was searched in a variety of databases and eligible studies were chosen based on predefined criteria. Data extraction and statistical analysis was performed, and the results are displayed using the odds ratio (OR) and corresponding 95% credible intervals (CrI) with respect to overall and severe neurotoxicity. The medications were ranked according to their surface under cumulative ranking curve values. The consistency of direct and indirect evidence was also evaluated. We found that patients with amifostine or vitamin E (VE) treatment exhibited a lower risk of overall neurotoxicity compared to those using the placebo (amifostine: OR = 0.10, 95% CrI: 0.02–0.46; VE: OR = 0.08, 95% CrI: 0.01–0.99). In regard to preventing severe neurotoxicity, glutathione and amifostine treatment appeared to be significantly more effective than the placebo (glutathione: OR = 0.19, 95% CrI: 0.04–0.64; amifostine: OR = 0.12, 95% CrI: 0.02–0.48). In summary, amifostine, VE, and glutathione treatment is considered to be effective in lowering the risk of CICNT. However, further studies which consider safety are required.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Huijie Wu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyao Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Can Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qianqian Ma
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Lifestyle-Related Factors in the Self-Management of Chemotherapy-Induced Peripheral Neuropathy in Colorectal Cancer: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7916031. [PMID: 28400846 PMCID: PMC5376448 DOI: 10.1155/2017/7916031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Background. Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect of chemotherapy treatment in colorectal cancer (CRC), negatively affecting the daily functioning and quality of life of CRC patients. Currently, there are no established treatments to prevent or reduce CIPN. The purpose of this systematic review was to identify lifestyle-related factors that can aid in preventing or reducing CIPN, as such factors may promote self-management options for CRC patients suffering from CIPN. Methods. A literature search was conducted through PubMed, Embase, and Google Scholar. Original research articles investigating oxaliplatin-related CIPN in CRC were eligible for inclusion. Results. In total, 22 articles were included, which suggested that dietary supplements, such as antioxidants and herbal extracts, as well as physical exercise and complementary therapies, such as acupuncture, may have beneficial effects on preventing or reducing CIPN symptoms. However, many of the reviewed articles presented various limitations, including small sample sizes and heterogeneity in study design and measurements of CIPN. Conclusions. No strong conclusions can be drawn regarding the role of lifestyle-related factors in the management of CIPN in CRC patients. Certain dietary supplements and physical exercise may be beneficial for the management of CIPN, but further research is warranted.
Collapse
|
18
|
Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav 2017; 7:e00558. [PMID: 28127506 PMCID: PMC5256170 DOI: 10.1002/brb3.558] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Chemotherapy-induced neuropathies are one of the most common side effects of cancer treatment, surpassing bone marrow suppression and kidney dysfunction. Chemotherapy effects on the nervous system vary between different classes of drugs and depend on specific chemical and physical properties of the drug used. The three most neurotoxic classes of anti-cancer drugs are: platinum-based drugs, taxanes, and thalidomide and its analogs; other, less neurotoxic but also commonly used drugs are: bortezomib, ixabepilone, and vinca alkaloids. METHODS Here, in this paper, based on our experience and current knowledge, we provide a short review of the most common, neuropathy-inducing anti-cancer drugs, describe the most prevalent neuropathy symptoms produced by each of them, and outline preventive measures and treatment guidelines for cancer patients suffering from neuropathy and for their health care providers. RESULTS Patients should be encouraged to report any signs of neuropathic pain, alteration in sensory perception, tingling, numbness, burning, increased hot/cold sensitivity and motor dysfunctions as early as possible. If known neurotoxic chemotherapeutics are used, a neurological examination with electrophysiological evaluation should be implemented early in the course of treatment so, both patients and physicians would be better prepared to cope with possible neurotoxic effects. CONCLUSIONS The use of neurotoxic chemotherapeutics should be closely monitored and if clinically permitted, that is, if a patient shows signs of cancer regression, drug doses should be reduced or combined with other less neurotoxic anti-cancer medication. If not counteractive, the use of over the counter antineuropathic supplements such as calcium or magnesium might be encouraged. If physically possible, patients should also be encouraged to exercise regularly and avoid factors that might increase nerve damage such as excessive drinking, smoking, or sitting in a cramped position.
Collapse
Affiliation(s)
- Marta Banach
- Department of Neurology Collegium Medicum Jagiellonian University Krakow Poland
| | - Judyta K Juranek
- Department of Medicine New York University Langone Medical Center New York NY USA; Department of Pathology Faculty of Medical Science University of Warmia and Mazury Olsztyn Poland
| | - Aneta L Zygulska
- Department of Oncology University Hospital Jagiellonian University Krakow Poland
| |
Collapse
|
19
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
20
|
Schloss JM, Colosimo M, Airey C, Masci P, Linnane AW, Vitetta L. A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN). Support Care Cancer 2016; 25:195-204. [PMID: 27612466 DOI: 10.1007/s00520-016-3404-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect resulting from neurotoxic chemotherapeutic agents. This study aimed to assess the efficacy and safety of an oral B group vitamin compared to placebo, in preventing the incidence of CIPN in cancer patients undergoing neurotoxic chemotherapy. METHODS A pilot, randomised, placebo-controlled trial was conducted. Newly diagnosed cancer patients prescribed with taxanes, oxaliplatin or vincristine were invited to participate. A total of 71 participants (female 68 %, male 32 %) were enrolled into the study and randomised to the B group vitamin (n = 38) arm or placebo (n = 33). The data from 47 participants were eligible for analysis (B group vitamins n = 27, placebo n = 22). The primary outcome measure was the total neuropathy score assessed by an independent neurologist. Secondary outcome measures included serum vitamin B levels, quality of life, pain inventory and the patient neurotoxicity questionnaires. Outcome measures were conducted at baseline, 12, 24 and 36 weeks. RESULTS The total neuropathy score (TNS) demonstrated that a B group vitamin did not significantly reduce the incidence of CIPN compared to placebo (p = 0.73). Statistical significance was achieved for patient perceived sensory peripheral neuropathy (12 weeks p = 0.03; 24 weeks p = 0.005; 36 weeks p = 0.021). The risk estimate for the Patient Neurotoxicity Questionnaire (PNQ) was also statistically significant (OR = 5.78, 95 % CI = 1.63-20.5). The European Organisation of Research and Treatment of Cancer (EORTC) quality of life, total pain score and pain interference showed no significance (p = 0.46, p = 0.9, p = 0.37 respectively). A trend was observed indicating that vitamin B12 may reduce the onset and severity of CIPN. CONCLUSION An oral B group vitamin as an adjunct to neurotoxic chemotherapy regimens was not superior to placebo (p > 0.05) for the prevention of CIPN. Patients taking the B group vitamin perceived a reduction in sensory peripheral neuropathy in the PNQ. Moreover, a robust clinical study is warranted given that vitamin B12 may show potential in reducing the onset and severity of CIPN. Trial number: ACTRN12611000078954 Protocol number: UH2010000749.
Collapse
Affiliation(s)
- Janet M Schloss
- The University of Queensland, School of Medicine, Level 5, TRI, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, 4102, Australia. .,Endeavour College of Natural Health, Brisbane, 4006, Australia.
| | - Maree Colosimo
- Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, 4000, Australia
| | - Caroline Airey
- Neurology Fellow at Queensland Health, Department of Neurology, Ned Hanlon Building, RBWH, Herston, Brisbane, 4006, Australia
| | - Paul Masci
- The University of Queensland, School of Medicine, Level 5, TRI, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, 4102, Australia
| | - Anthony W Linnane
- The University of Sydney, Sydney Medical School, Sydney, 2006, Australia.,Medlab Clinical Ltd, Sydney, 2015, Australia
| | - Luis Vitetta
- The University of Sydney, Sydney Medical School, Sydney, 2006, Australia.,Medlab Clinical Ltd, Sydney, 2015, Australia
| |
Collapse
|
21
|
Tsai YJ, Lin JK, Chen WS, Jiang JK, Teng HW, Yen CC, Lin TC, Yang SH. Adjuvant FOLFOX treatment for stage III colon cancer: how many cycles are enough? SPRINGERPLUS 2016; 5:1318. [PMID: 27563513 PMCID: PMC4980863 DOI: 10.1186/s40064-016-2976-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022]
Abstract
Purpose Adjuvant FOLFOX (5-fluorouracil and oxaliplatin) chemotherapy benefits stage III colon cancer patients. However, it still results in side effects and increased cost. Reducing cycles had been thought to decrease these problems. This retrospective study aimed to find the appropriate number of treatment cycles that are sufficient for treating these patients. Patients and methods A total of 213 stage III colon cancer patients receiving adjuvant FOLFOX therapy were retrospectively recruited. Demographic data were collected for analysis. Survival analyses were performed between all cases of patients receiving above and below a certain cycle number. If a significant difference was reached at that cycle number, multivariate Cox Regression was performed with those factors resulting in p < 0.2 to assess the independent prognostic factors. Results The 5-year overall survival rate of patients was 77.9 %, and the 3-year disease-free survival was 76.7 %. For overall survival, a significant benefit was noted for treatment of at least 8 cycles, for disease-free survival, significant differences were apparent from patient data of those who underwent from 7 to 12 treatment cycles. Multivariate survival analysis of that patient data at cycle 8 for overall survival and cycle 7 for disease free survival revealed cycle number as the only independent prognostic factor (p = 0.04, 0.048). Conclusion Cycle number of adjuvant FOLFOX is a significant prognostic factor for stage III colon cancer patients. At least 8 cycles are needed to have an overall survival benefit, and 7 to disease-free survival.
Collapse
Affiliation(s)
- Yi-Jian Tsai
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Wei Teng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan ; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chueh-Chuan Yen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan ; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, No 201,Sec 2, Shih-Pai Rd, Taipei, 11217 Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Research design considerations for chronic pain prevention clinical trials: IMMPACT recommendations. Pain 2016; 156:1184-1197. [PMID: 25887465 DOI: 10.1097/j.pain.0000000000000191] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although certain risk factors can identify individuals who are most likely to develop chronic pain, few interventions to prevent chronic pain have been identified. To facilitate the identification of preventive interventions, an IMMPACT meeting was convened to discuss research design considerations for clinical trials investigating the prevention of chronic pain. We present general design considerations for prevention trials in populations that are at relatively high risk for developing chronic pain. Specific design considerations included subject identification, timing and duration of treatment, outcomes, timing of assessment, and adjusting for risk factors in the analyses. We provide a detailed examination of 4 models of chronic pain prevention (ie, chronic postsurgical pain, postherpetic neuralgia, chronic low back pain, and painful chemotherapy-induced peripheral neuropathy). The issues discussed can, in many instances, be extrapolated to other chronic pain conditions. These examples were selected because they are representative models of primary and secondary prevention, reflect persistent pain resulting from multiple insults (ie, surgery, viral infection, injury, and toxic or noxious element exposure), and are chronically painful conditions that are treated with a range of interventions. Improvements in the design of chronic pain prevention trials could improve assay sensitivity and thus accelerate the identification of efficacious interventions. Such interventions would have the potential to reduce the prevalence of chronic pain in the population. Additionally, standardization of outcomes in prevention clinical trials will facilitate meta-analyses and systematic reviews and improve detection of preventive strategies emerging from clinical trials.
Collapse
|
23
|
Schloss J, Colosimo M, Vitetta L. New Insights into Potential Prevention and Management Options for Chemotherapy-Induced Peripheral Neuropathy. Asia Pac J Oncol Nurs 2016; 3:73-85. [PMID: 27981142 PMCID: PMC5123533 DOI: 10.4103/2347-5625.170977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Neurological complications such as chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain are frequent side effects of neurotoxic chemotherapy agents. An increasing survival rate and frequent administration of adjuvant chemotherapy treatments involving neurotoxic agents makes it imperative that accurate diagnosis, prevention, and treatment of these neurological complications be implemented. METHODS A consideration was undertaken of the current options regarding protective and treatment interventions for patients undergoing chemotherapy with neurotoxic chemotherapy agent or experience with CIPN. Current knowledge on the mechanism of action has also been identified. The following databases PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, CINAHL, CNKI, and Google Scholar were searched for relevant article retrieval. RESULTS A range of pharmaceutical, nutraceutical, and herbal medicine treatments were identified that either showed efficacy or had some evidence of efficacy. Duloxetine was the most effective pharmaceutical agent for the treatment of CIPN. Vitamin E demonstrated potential for the prevention of cisplatin-IPN. Intravenous glutathione for oxaliplatin, Vitamin B6 for both oxaliplatin and cisplatin, and omega 3 fatty acids for paclitaxel have shown protection for CIPN. Acetyl-L-carnitine may provide some relief as a treatment option. Acupuncture may be of benefit for some patients and Gosha-jinki-gan may be of benefit for protection from adverse effects of oxaliplatin induced peripheral neuropathy. CONCLUSIONS Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapeutic agents. New insights into mechanisms of action from chemotherapy agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.
Collapse
Affiliation(s)
- Janet Schloss
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Office of Research, Endeavour College of Natural Health, University of Technology, Brisbane, Australia
| | - Maree Colosimo
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney 2006, Sydney, Australia
- Medlab Clinical, Sydney, Australia
| |
Collapse
|
24
|
Majithia N, Temkin SM, Ruddy KJ, Beutler AS, Hershman DL, Loprinzi CL. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Support Care Cancer 2015; 24:1439-47. [PMID: 26686859 DOI: 10.1007/s00520-015-3063-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common and debilitating complications of cancer treatment. Due to a lack of effective management options for patients with CIPN, the National Cancer Institute (NCI) sponsored a series of trials aimed at both prevention and treatment. A total of 15 such studies were approved, evaluating use of various neuro-modulatory agents which have shown benefit in other neuropathic pain states. Aside from duloxetine, none of the pharmacologic methods demonstrated therapeutic benefit for patients with CIPN. Despite these disappointing results, the series of trials revealed important lessons that have informed subsequent work. Some examples of this include the use of patient-reported symptom metrics, the elimination of traditional--yet unsubstantiated--practice approaches, and the discovery of molecular genetic predictors of neuropathy. Current inquiry is being guided by the results from these large-scale trials, and as such, stands better chance of identifying durable solutions for this treatment-limiting toxicity.
Collapse
Affiliation(s)
- Neil Majithia
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Sarah M Temkin
- Community Oncology and Prevention Trials Research Group, Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Kathryn J Ruddy
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andreas S Beutler
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dawn L Hershman
- Department of Medicine, Department of Epidemiology, Mailman School of Public Health, Columbia University College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, 161 Fort Washington Ave #1068, New York, NY, 10032, USA
| | - Charles L Loprinzi
- Department of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
25
|
Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, Peters GJ. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 2015; 20:411-32. [PMID: 25765877 PMCID: PMC4391771 DOI: 10.1634/theoncologist.2014-0044] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023] Open
Abstract
Neurotoxicity is a burdensome side effect of platinum-based chemotherapy that prevents administration of the full efficacious dosage and often leads to treatment withdrawal. Peripheral sensory neurotoxicity varies from paresthesia in fingers to ataxic gait, which might be transient or irreversible. Because the number of patients being treated with these neurotoxic agents is still increasing, the need for understanding the pathogenesis of this dramatic side effect is critical. Platinum derivatives, such as cisplatin and carboplatin, harm mainly peripheral nerves and dorsal root ganglia neurons, possibly because of progressive DNA-adduct accumulation and inhibition of DNA repair pathways (e.g., extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase/stress-activated protein kinase, and p38 mitogen-activated protein kinass), which finally mediate apoptosis. Oxaliplatin, with a completely different pharmacokinetic profile, may also alter calcium-sensitive voltage-gated sodium channel kinetics through a calcium ion immobilization by oxalate residue as a calcium chelator and cause acute neurotoxicity. Polymorphisms in several genes, such as voltage-gated sodium channel genes or genes affecting the activity of pivotal metal transporters (e.g., organic cation transporters, organic cation/carnitine transporters, and some metal transporters, such as the copper transporters, and multidrug resistance-associated proteins), can also influence drug neurotoxicity and treatment response. However, most pharmacogenetics studies need to be elucidated by robust evidence. There are supportive reports about the effectiveness of several neuroprotective agents (e.g., vitamin E, glutathione, amifostine, xaliproden, and venlafaxine), but dose adjustment and/or drug withdrawal seem to be the most frequently used methods in the management of platinum-induced peripheral neurotoxicity. To develop alternative options in the treatment of platinum-induced neuropathy, studies on in vitro models and appropriate trials planning should be integrated into the future design of neuroprotective strategies to find the best patient-oriented solution.
Collapse
Affiliation(s)
- Abolfazl Avan
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tjeerd J Postma
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cecilia Ceresa
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Guido Cavaletti
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elisa Giovannetti
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Departments of Medical Oncology and Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy; Department of New Sciences and Technology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): a placebo-controlled, double-blind, randomized phase III study. Int J Clin Oncol 2015; 20:767-75. [PMID: 25627820 DOI: 10.1007/s10147-015-0784-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/07/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Peripheral sensory neurotoxicity is a frequent adverse effect of oxaliplatin therapy. Calcium and magnesium (Ca/Mg) infusions are frequently used as preventatives, but a recent phase III trial failed to show that they prevent neurotoxicity. We therefore conducted a multicenter randomized phase III trial to compare fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) with and without Goshajinkigan (GJG), a traditional Japanese herbal medicine (Kampo), to determine GJG's potential for reducing peripheral neuropathy in patients with colorectal cancer. METHODS Patients with colon cancer who were undergoing adjuvant therapy with infusional mFOLFOX6 were randomly assigned to GJG (7.5 mg three times daily) or placebo in a double-blind manner. The primary endpoint was the time to grade 2 or greater neuropathy, which was determined at any point during or after oxaliplatin-based therapy using version 3 of the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE). FINDINGS An interim analysis was performed when 142 of the planned 310 patients had been enrolled and the safety assessment committee recommended that the study be discontinued. One hundred eighty-two patients were evaluable for response. They included 89 patients in the GJG group and 93 patients in the placebo group. The incidence of grade 2 or greater neurotoxicity was 50.6 % in the GJG group and 31.2 % in the placebo group. A Cox proportional hazards analysis indicated that the use of GJG was significantly associated with the incidence of neuropathy (hazard ratio, 1.908; p = 0.007). CONCLUSION Goshajinkigan did not prevent oxaliplatin-associated peripheral neuropathy in this clinical trial. The clinical study was therefore terminated.
Collapse
|
27
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Sisignano M, Baron R, Scholich K, Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 2014; 10:694-707. [DOI: 10.1038/nrneurol.2014.211] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155:2461-2470. [PMID: 25261162 DOI: 10.1016/j.pain.2014.09.020] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition resulting from chemotherapy for cancer. Severe acute CIPN may require chemotherapy dose reduction or cessation. There is no effective CIPN prevention strategy; treatment of established chronic CIPN is limited, and the prevalence of CIPN is not known. Here we used a systematic review to identify studies reporting the prevalence of CIPN. We searched Embase, Medline, CAB Abstracts, CINAHL, PubMed central, Cochrane Library, and Web of Knowledge for relevant references and used random-effects meta-regression to estimate overall prevalence. We assessed study quality using the CONSORT and STROBE guidelines, and we report findings according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. We provide a qualitative summary of factors reported to alter the risk of CIPN. We included 31 studies with data from 4179 patients in our analysis. CIPN prevalence was 68.1% (57.7-78.4) when measured in the first month after chemotherapy, 60.0% (36.4-81.6) at 3months and 30.0% (6.4-53.5) at 6months or more. Different chemotherapy drugs were associated with differences in CIPN prevalence, and there was some evidence of publication bias. Genetic risk factors were reported in 4 studies. Clinical risk factors, identified in 4 of 31 studies, included neuropathy at baseline, smoking, abnormal creatinine clearance, and specific sensory changes during chemotherapy. Although CIPN prevalence decreases with time, at 6months 30% of patients continue to suffer from CIPN. Routine CIPN surveillance during post-chemotherapy follow-up is needed. A number of genetic and clinical risk factors were identified that require further study.
Collapse
|
30
|
Piccolo J, Kolesar JM. Prevention and treatment of chemotherapy-induced peripheral neuropathy. Am J Health Syst Pharm 2014; 71:19-25. [PMID: 24352178 DOI: 10.2146/ajhp130126] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The prevention and treatment of chemotherapy-induced peripheral neuropathy (CIPN) are reviewed. SUMMARY A number of agents, including amifostine, glutathione, and vitamin E, were evaluated as prevention strategies for CIPN, with no agent demonstrating efficacy. Calcium and magnesium are effective for the prevention of CIPN; however, concerns regarding reduced chemotherapy efficacy linger. Venlafaxine, a serotonin-norepinephrine reuptake inhibitor (SNRI), was evaluated for the prevention of neuropathy in a randomized, double-blind, placebo-controlled Phase III trial of patients receiving an oxaliplatin-based regimens every two weeks and demonstrated significantly less acute neurotoxicity compared with the control group. Treatment options for CIPN include reducing the dosage of the chemotherapy, changing the chemotherapy, and treating CIPN with adjunct therapy. Adjunct therapy with topical agents, tricyclic antidepressants, and anticonvulsants, such as pregabalin and gabapentin, have shown limited efficacy. However, a randomized, double-blind, crossover, Phase III trial of duloxetine versus placebo for the treatment of CIPN caused by paclitaxel or oxaliplatin found that patients treated with duloxetine 60 mg daily had a larger average decrease in pain score than those receiving placebo, regardless of the chemotherapy used. CONCLUSION Calcium and magnesium infusions and venlafaxine are effective in preventing CIPN but are not routinely used because of concerns related to decreased chemotherapy efficacy. Adjunct treatment options for CIPN include a topical analgesic, a tricyclic antidepressant, an anticonvulsant, or an SNRI. Duloxetine is more effective than placebo in treating oxaliplatin- or paclitaxel-induced CIPN, is well tolerated, and should be considered to be a first-line treatment option for CIPN.
Collapse
Affiliation(s)
- Jennifer Piccolo
- Jennifer Piccolo, Pharm.D., is Clinical Oncology Pharmacist, Froedert and The Medical College of Wisconsin, Milwaukee. Jill M. Kolesar, Pharm.D., BCPS, FCCP, is Professor of Pharmacy, School of Pharmacy, University of Wisconsin-Madison, and Director, 3P Analytical Laboratory, University of Wisconsin Carbone Comprehensive Cancer Center, Madison
| | | |
Collapse
|
31
|
Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, Chauhan C, Gavin P, Lavino A, Lustberg MB, Paice J, Schneider B, Smith ML, Smith T, Terstriep S, Wagner-Johnston N, Bak K, Loprinzi CL. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2014; 32:1941-67. [PMID: 24733808 DOI: 10.1200/jco.2013.54.0914] [Citation(s) in RCA: 807] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To provide evidence-based guidance on the optimum prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathies (CIPN) in adult cancer survivors. METHODS A systematic literature search identified relevant, randomized controlled trials (RCTs) for the treatment of CIPN. Primary outcomes included incidence and severity of neuropathy as measured by neurophysiologic changes, patient-reported outcomes, and quality of life. RESULTS A total of 48 RCTs met eligibility criteria and comprise the evidentiary basis for the recommendations. Trials tended to be small and heterogeneous, many with insufficient sample sizes to detect clinically important differences in outcomes. Primary outcomes varied across the trials, and in most cases, studies were not directly comparable because of different outcomes, measurements, and instruments used at different time points. The strength of the recommendations is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. RECOMMENDATIONS On the basis of the paucity of high-quality, consistent evidence, there are no agents recommended for the prevention of CIPN. With regard to the treatment of existing CIPN, the best available data support a moderate recommendation for treatment with duloxetine. Although the CIPN trials are inconclusive regarding tricyclic antidepressants (such as nortriptyline), gabapentin, and a compounded topical gel containing baclofen, amitriptyline HCL, and ketamine, these agents may be offered on the basis of data supporting their utility in other neuropathic pain conditions given the limited other CIPN treatment options. Further research on these agents is warranted.
Collapse
Affiliation(s)
- Dawn L Hershman
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Christina Lacchetti
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Robert H Dworkin
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Ellen M Lavoie Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Jonathan Bleeker
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Guido Cavaletti
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Cynthia Chauhan
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Patrick Gavin
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Antoinette Lavino
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Maryam B Lustberg
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Judith Paice
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Bryan Schneider
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Mary Lou Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Tom Smith
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Shelby Terstriep
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Nina Wagner-Johnston
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Kate Bak
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | - Charles L Loprinzi
- Dawn Hershman, Columbia University Medical Center, New York; Robert Dworkin, University of Rochester, Rochester, NY; Christina Lacchetti and Kate Bak, American Society of Clinical Oncology, Alexandria, VA; Ellen M. Lavoie Smith, University of Michigan, Ann Arbor; Patrick Gavin, Marne, MI; Jonathan Bleeker, Sanford University of South Dakota Medical Center, Sioux Falls, SD; Guido Cavaletti, University of Milano-Bicocca, Monza, Italy; Cynthia Chauhan, Wichita, KS; Antoinette Lavino, Massachusetts General North Shore Cancer Center, Danvers, MA; Maryam Lustberg, Ohio State University, Columbus, OH; Judith Paice, Northwestern University, Chicago, IL; Bryan Schneider, Indiana University, Indianapolis, IN; Mary Lou Smith, Research Advocacy Network, Plano, TX; Tom Smith, Johns Hopkins, Baltimore, MD; Shelby Terstriep, Sanford Health, Fargo, ND; Nina Wagner-Johnston, Washington University, St Louis, MO; and Charles Loprinzi, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
32
|
Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2014; 2014:CD005228. [PMID: 24687190 PMCID: PMC10891440 DOI: 10.1002/14651858.cd005228.pub4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cisplatin and several related antineoplastic drugs used to treat many types of solid tumours are neurotoxic, and most patients completing a full course of cisplatin chemotherapy develop a clinically detectable sensory neuropathy. Effective neuroprotective therapies have been sought. OBJECTIVES To examine the efficacy and safety of purported chemoprotective agents to prevent or limit the neurotoxicity of cisplatin and related drugs. SEARCH METHODS On 4 March 2013, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, and CINAHL Plus for randomised trials designed to evaluate neuroprotective agents used to prevent or limit neurotoxicity of cisplatin and related drugs among human patients. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs in which the participants received chemotherapy with cisplatin or related compounds, with a potential chemoprotectant (acetylcysteine, amifostine, adrenocorticotrophic hormone (ACTH), BNP7787, calcium and magnesium (Ca/Mg), diethyldithiocarbamate (DDTC), glutathione, Org 2766, oxcarbazepine, or vitamin E) compared to placebo, no treatment, or other treatments. We considered trials in which participants underwent evaluation zero to six months after completing chemotherapy using quantitative sensory testing (the primary outcome) or other measures including nerve conduction studies or neurological impairment rating using validated scales (secondary outcomes). DATA COLLECTION AND ANALYSIS Two review authors assessed each study, extracted the data and reached consensus, according to standard Cochrane methodology. MAIN RESULTS As of 2013, the review includes 29 studies describing nine possible chemoprotective agents, as well as description of two published meta-analyses. Among these trials, there were sufficient data in some instances to combine the results from different studies, most often using data from secondary non-quantitative measures. Nine of the studies were newly included at this update. Few of the included studies were at a high risk of bias overall, although often there was too little information to make an assessment. At least two review authors performed a formal review of an additional 44 articles but we did not include them in the final review for a variety of reasons.Of seven eligible amifostine trials (743 participants in total), one used quantitative sensory testing (vibration perception threshold) and demonstrated a favourable outcome in terms of amifostine neuroprotection, but the vibration perception threshold result was based on data from only 14 participants receiving amifostine who completed the post-treatment evaluation and should be regarded with caution. Furthermore the change measured was subclinical. None of the three eligible Ca/Mg trials (or four trials if a single retrospective study was included) described our primary outcome measures. The four Ca/Mg trials included a total of 886 participants. Of the seven eligible glutathione trials (387 participants), one used quantitative sensory testing but reported only qualitative analyses. Four eligible Org 2766 trials (311 participants) employed quantitative sensory testing but reported disparate results; meta-analyses of three of these trials using comparable measures showed no significant vibration perception threshold neuroprotection. The remaining trial reported only descriptive analyses. Similarly, none of the three eligible vitamin E trials (246 participants) reported quantitative sensory testing. The eligible single trials involving acetylcysteine (14 participants), diethyldithiocarbamate (195 participants), oxcarbazepine (32 participants), and retinoic acid (92 participants) did not perform quantitative sensory testing. In all, this review includes data from 2906 participants. However, only seven trials reported data for the primary outcome measure of this review, (quantitative sensory testing) and only nine trials reported our objective secondary measure, nerve conduction test results. Additionally, methodological heterogeneity precluded pooling of the results in most cases. Nonetheless, a larger number of trials reported the results of secondary (non-quantitative and subjective) measures such as the National Cancer Institute Common Toxicity Criteria (NCI-CTC) for neuropathy (15 trials), and these results we pooled and reported as meta-analysis. Amifostine showed a significantly reduced risk of developing neurotoxicity NCI-CTC (or equivalent) ≥ 2 compared to placebo (RR 0.26, 95% CI 0.11 to 0.61). Glutathione was also efficacious with an RR of 0.29 (95% CI 0.10 to 0.85). In three vitamin E studies subjective measures not suitable for combination in meta analysis each favoured vitamin E. For other interventions the qualitative toxicity measures were either negative (N-acetyl cysteine, Ca/Mg, DDTC and retinoic acid) or not evaluated (oxcarbazepine and Org 2766).Adverse events were infrequent or not reported for most interventions. Amifostine was associated with transient hypotension in 8% to 62% of participants, retinoic acid with hypocalcaemia in 11%, and approximately 20% of participantss withdrew from treatment with DDTC because of toxicity. AUTHORS' CONCLUSIONS At present, the data are insufficient to conclude that any of the purported chemoprotective agents (acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxcarbazepine, retinoic acid, or vitamin E) prevent or limit the neurotoxicity of platin drugs among human patients, as determined using quantitative, objective measures of neuropathy. Amifostine, calcium and magnesium, glutathione, and vitamin E showed modest but promising (borderline statistically significant) results favouring their ability to reduce the neurotoxicity of cisplatin and related chemotherapies, as measured using secondary, non-quantitative and subjective measures such as the NCI-CTC neuropathy grading scale. Among these interventions, the efficacy of only vitamin E was evaluated using quantitative nerve conduction studies; the results were negative and did not support the positive findings based on the qualitative measures. In summary, the present studies are limited by the small number of participants receiving any particular agent, a lack of objective measures of neuropathy, and differing results among similar trials, which make it impossible to conclude that any of the neuroprotective agents tested prevent or limit the neurotoxicity of platinum drugs.
Collapse
Affiliation(s)
- James W Albers
- Department of Neurology, University of Michigan, 1C325/0032 University Hospital, 1500 E. Medical Center Drive, Box 0316, Ann Arbor, USA, MI 48109-0032
| | | | | | | |
Collapse
|
33
|
Leal AD, Qin R, Atherton PJ, Haluska P, Behrens RJ, Tiber CH, Watanaboonyakhet P, Weiss M, Adams PT, Dockter TJ, Loprinzi CL. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer 2014; 120:1890-7. [PMID: 24619793 DOI: 10.1002/cncr.28654] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a significant side effect of taxane and platinum-based chemotherapy. Several studies have supported the potential benefit of glutathione for the prevention of platinum-induced CIPN. The current trial was designed to determine whether glutathione would prevent CIPN as a result of carboplatin/paclitaxel therapy. METHODS In total, 185 patients who received treatment with paclitaxel and carboplatin were accrued between December 4, 2009 and December 19, 2011. Patients were randomized to receive either placebo (n = 91) or 1.5 g/m(2) glutathione (n = 94) over 15 minutes immediately before chemotherapy. CIPN was assessed using the European Organization for Research and Treatment of Cancer Quality-of-Life (EORTC-QLQ) 20-item, CIPN-specific (CIPN20) sensory subscale and the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 4.0. RESULTS There were no statistically significant differences between the 2 study arms with regard to: 1) peripheral neurotoxicity, as assessed using both the EORTC-QLQ-CIPN20 (P = .21) and the CTCAE scales (P = .449 for grade ≥2 neurotoxicity; P = .039 for time to development of grade ≥2 neuropathy, in favor of the placebo); 2) the degree of paclitaxel acute pain syndrome (P = .30 for patients who received paclitaxel every 3-4 weeks and P = .002, in favor of the placebo, for patients who received weekly paclitaxel); 3) the time to disease progression (P = .63); or 4) apparent toxicities. Subgroup analyses did not reveal any evidence of benefit in any particular subgroup. CONCLUSIONS The results from this study do not support the use of glutathione for the prevention of paclitaxel/carboplatin-induced CIPN.
Collapse
Affiliation(s)
- Alexis D Leal
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support Care Cancer 2014; 22:1807-14. [PMID: 24531792 DOI: 10.1007/s00520-014-2158-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/30/2014] [Indexed: 02/04/2023]
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) occurs in as high as 70% of patients receiving certain types of chemotherapy agents. The FDA has yet to approve a therapy for CIPN. The aim of this multicenter, phase III, randomized, double-blind, placebo-controlled trial was to investigate the efficacy of 2% ketamine plus 4% amitriptyline (KA) cream for reducing CIPN. METHODS Cancer survivors who completed chemotherapy at least 1 month prior and had CIPN (>4 out of 10) were enrolled (N=462). CIPN was assessed using average scores from a 7-day daily diary that asks patients to rate the average "pain, numbness, or tingling in [their] hands and feet over the past 24 h" on an 11-point numeric rating scale at baseline and 6 weeks post intervention. ANCOVA was used to measure differences in 6-week CIPN with effects including baseline CIPN, KA treatment arm, and previous taxane therapy (Y/N). RESULTS The KA treatment showed no effect on 6-week CIPN scores (adjusted mean difference=-0.17, p=0.363). CONCLUSIONS This study suggests that KA cream does not decrease CIPN symptoms in cancer survivors.
Collapse
|
35
|
Pachman DR, Loprinzi CL, Grothey A, Ta LE. The search for treatments to reduce chemotherapy-induced peripheral neuropathy. J Clin Invest 2013; 124:72-4. [PMID: 24355918 DOI: 10.1172/jci73908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oxaliplatin, a commonly used chemotherapeutic agent, is associated with both acute and chronic neurotoxicity. Chronic sensory neuropathy can be dose limiting and may have detrimental effects on patients' quality of life. Preclinical studies provide an understanding of the pathophysiology of chemotherapy-induced peripheral neuropathy (CIPN) and may be important for developing effective preventative interventions. In this issue of the JCI, Coriat and colleagues used an animal model and a human pilot trial to evaluate the use of mangafodipir to reduce CIPN. Although many pilot clinical studies have reported promising data, larger clinical trials have repeatedly been unable to confirm these preliminary results. Thus, no agents are currently clinically recommended for the prevention of CIPN.
Collapse
|
36
|
Han Y, Smith MT. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol 2013; 4:156. [PMID: 24385965 PMCID: PMC3866393 DOI: 10.3389/fphar.2013.00156] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a "stocking and glove" distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves.
Collapse
Affiliation(s)
- Yaqin Han
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
37
|
Zedan AH, Hansen TF, Fex Svenningsen A, Vilholm OJ. Oxaliplatin-induced neuropathy in colorectal cancer: many questions with few answers. Clin Colorectal Cancer 2013; 13:73-80. [PMID: 24365057 DOI: 10.1016/j.clcc.2013.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Oxaliplatin is a chemotherapeutic agent effective against advanced colorectal cancer. Unlike with other platinum-based agents, the main side effect of oxaliplatin is polyneuropathy. Oxaliplatin-induced polyneuropathy (OIPN) has a unique profile, which can be divided into acute and chronic neurotoxicity. Early identification of the neurotoxicity and alterations in dose or schedule for the medication could prevent the development of chronic symptoms, which, once established, may take many months or years to resolve or even persist throughout life with a substantial effect on quality of life. There is no doubt that the use of pharmacogenomic methods to identify genetic bases of interindividual differences in drug response has led to what is called tailoring treatment. Yet there are some challenges regarding the application of these differences. Many efforts have been made to prevent or treat OIPN. Better understanding of the mechanisms underlying the acute and chronic forms of OIPN will be a key component of future advances in the prevention and treatment of OIPN. The aim of this review is to highlight the clinical presentation, assessment, and management of OIPN, as well as the underlying pathophysiologic and pharmacogenomic background.
Collapse
|
38
|
McWhinney-Glass S, Winham SJ, Hertz DL, Yen Revollo J, Paul J, He Y, Brown R, Motsinger-Reif AA, McLeod HL. Cumulative genetic risk predicts platinum/taxane-induced neurotoxicity. Clin Cancer Res 2013; 19:5769-76. [PMID: 23963862 PMCID: PMC3798385 DOI: 10.1158/1078-0432.ccr-13-0774] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The combination of a platinum and taxane are standard of care for many cancers, but the utility is often limited due to debilitating neurotoxicity. We examined whether single-nucleotide polymorphisms (SNP) from annotated candidate genes will identify genetic risk for chemotherapy-induced neurotoxicity. PATIENTS AND METHODS A candidate-gene association study was conducted to validate the relevance of 1,261 SNPs within 60 candidate genes in 404 ovarian cancer patients receiving platinum/taxane chemotherapy on the SCOTROC1 trial. Statistically significant variants were then assessed for replication in a separate 404 patient replication cohort from SCOTROC1. RESULTS Significant associations with chemotherapy-induced neurotoxicity were identified and replicated for four SNPs in SOX10, BCL2, OPRM1, and TRPV1. The population attributable risk for each of the four SNPs ranged from 5% to 35%, with a cumulative risk of 62%. According to the multiplicative model, the odds of developing neurotoxicity increase by a factor of 1.64 for every risk genotype. Patients possessing three risk variants have an estimated OR of 4.49 (2.36-8.54) compared to individuals with 0 risk variants. Neither the four SNPs nor the risk score were associated with progression-free survival or overall survival. CONCLUSIONS This study shows that SNPs in four genes have a significant cumulative association with increased risk for the development of chemotherapy-induced neurotoxicity, independent of patient survival.
Collapse
Affiliation(s)
- Sarah McWhinney-Glass
- Authors' Affiliations: Schools of Pharmacy and Medicine; Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill; Bioinformatics Research Center and Department of Statistics, North Carolina State University; The Beatson Oncology Centre, University of Glasgow, Glasgow; and Department of Oncology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moore RJ, Groninger H. Chemotherapy-Induced Peripheral Neuropathy in Pediatric Cancer Patients. Cureus 2013; 5:e124. [PMID: 25144779 PMCID: PMC4094363 DOI: 10.7759/cureus.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathies (CIPNs) are an increasingly common neuropathic and pain syndrome in adult and pediatric cancer patients and survivors [1-69]. However, symptoms associated with CIPNs are often undiagnosed, under-assessed, and communications problems between clinicians, family members, and patients have been observed [70-73]. Less is known about the prevalence and impact of CIPNs on pediatric cancer populations [70-71]. This article aims to provide a brief understanding of CIPNs in pediatric populations, and to review the evidence for both its prevention and treatment.
Collapse
Affiliation(s)
- Rhonda J Moore
- FDA, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Hunter Groninger
- FDA, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Schloss JM, Colosimo M, Airey C, Masci PP, Linnane AW, Vitetta L. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): a systematic review. Clin Nutr 2013; 32:888-93. [PMID: 23647723 DOI: 10.1016/j.clnu.2013.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
Abstract
Chemotherapy induced peripheral neuropathy [CIPN] is a common significant and debilitating side effect resulting from the administration of neurotoxic chemotherapeutic agents. These pharmaco-chemotherapeutics can include taxanes, vinca alkaloids and others. Moderate to severe CIPN significantly decreases the quality of life and physical abilities of cancer patients and current pharmacotherapy for CIPN e.g. Amifostine and antidepressants have had limited efficacy and may themselves induce adverse side effects. To determine the potential use of nutraceuticals i.e. vitamin E, acetyl-L-carnitine, glutamine, glutathione, vitamin B6, omega-3 fatty acids, magnesium, calcium, alpha lipoic acid and n-acetyl cysteine as adjuvants in cancer treatments a systematic literature review was conducted. Revised clinical studies comprised of randomized clinical trials that investigated the anti-CIPN effect of nutraceuticals as the adjuvant intervention in patients administered chemotherapy. Twenty-four studies were assessed on methodological quality and limitations identified. Studies were mixed in their recommendations for nutraceuticals. Currently no agent has shown solid beneficial evidence to be recommended for the treatment or prophylaxis of CIPN. The standard of care for CIPN includes dose reduction and/or discontinuation of chemotherapy treatment. The management of CIPN remains an important challenge and future studies are warranted before recommendations for the use of supplements can be made.
Collapse
Affiliation(s)
- Janet M Schloss
- The University of Queensland, School of Medicine, Centre for Integrative Clinical and Molecular Medicine, Level 5, TRI, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane 4102, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Cimino GD, Pan CX, Henderson PT. Personalized medicine for targeted and platinum-based chemotherapy of lung and bladder cancer. Bioanalysis 2013; 5:369-91. [PMID: 23394702 PMCID: PMC3644565 DOI: 10.4155/bio.12.325] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The personalized medicine revolution is occurring for cancer chemotherapy. Biomarkers are increasingly capable of distinguishing genotypic or phenotypic traits of individual tumors, and are being linked to the selection of treatment protocols. This review covers the molecular basis for biomarkers of response to targeted and cytotoxic lung and bladder cancer treatment with an emphasis on platinum-based chemotherapy. Platinum derivatives are a class of drugs commonly employed against solid tumors that kill cells by covalent attachment to DNA. Platinum-DNA adduct levels in patient tissues have been correlated to response and survival. The sensitivity and precision of adduct detection has increased to the point of enabling subtherapeutic dosing for diagnostics applications, termed diagnostic microdosing, prior to the initiation of full-dose therapy. The clinical status of this unique phenotypic marker for lung and bladder cancer applications is detailed along with discussion of future applications.
Collapse
Affiliation(s)
- George D Cimino
- Accelerated Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, CA 95618, USA
| | - Chong-xian Pan
- University of California Davis, Department of Internal Medicine, Division of Hematology & Oncology & the UC Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA 94568, USA
- Hematology/Oncology, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Paul T Henderson
- Accelerated Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, CA 95618, USA
- University of California Davis, Department of Internal Medicine, Division of Hematology & Oncology & the UC Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA 94568, USA
| |
Collapse
|
42
|
Allen J, Bradley RD. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J Altern Complement Med 2012; 17:827-33. [PMID: 21875351 DOI: 10.1089/acm.2010.0716] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The tripeptide glutathione (GSH) is the most abundant free radical scavenger synthesized endogenously in humans. Increasing mechanistic, clinical, and epidemiological evidence demonstrates that GSH status is significant in acute and chronic diseases. Despite ease of delivery, little controlled clinical research data exist evaluating the effects of oral GSH supplementation. OBJECTIVES The study objectives were to determine the effect of oral GSH supplementation on biomarkers of systemic oxidative stress in human volunteers. DESIGN This was a randomized, double-blind, placebo-controlled clinical trial. SETTING/LOCATION The study was conducted at Bastyr University Research Institute, Kenmore, WA and the Bastyr Center for Natural Health, Seattle, WA. SUBJECTS Forty (40) adult volunteers without acute or chronic disease participated in this study. INTERVENTION Oral GSH supplementation (500 mg twice daily) was given to the volunteers for 4 weeks. OUTCOME MEASURES Primary outcome measures included change in creatinine-standardized, urinary F2-isoprostanes (F2-isoP) and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). Changes in erythrocyte GSH concentrations, including total reduced glutathione (GSH), oxidized glutathione (GSSG), and their ratio (GSH:GSSG) were also measured by tandem liquid chromatography/mass spectrometry. Analysis of variance was used to evaluate differences between groups. RESULTS There were no differences in oxidative stress biomarkers between treatment groups at baseline. Thirty-nine (39) participants completed the study per protocol. Changes in creatinine standardized F2-isoP (ng/mg creatinine) (0.0±0.1 versus 0.0±0.1, p=0.38) and 8-OHdG (μg/g creatinine) (-0.2±3.3 versus 1.0±3.2, p=0.27) were nonsignificant between groups at week 4. Total reduced, oxidized, and ratio measures of GSH status were also unchanged. CONCLUSIONS No significant changes were observed in biomarkers of oxidative stress, including glutathione status, in this clinical trial of oral glutathione supplementation in healthy adults.
Collapse
Affiliation(s)
- Jason Allen
- Bastyr University Research Institute, Kenmore, WA, USA
| | | |
Collapse
|
43
|
Pachman DR, Barton DL, Watson JC, Loprinzi CL. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther 2011; 90:377-87. [PMID: 21814197 DOI: 10.1038/clpt.2011.115] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of many chemotherapeutic agents. Although many therapies have been investigated for the prevention and/or treatment of CIPN, there is no well-accepted proven therapy. In addition, there is no universally accepted, well-validated measure for the assessment of CIPN. The agents for which there are the strongest preliminary data regarding their potential efficacy in preventing CIPN are intravenous calcium and magnesium (Ca/Mg) infusions and glutathione. Agents with the strongest supporting evidence for efficacy in the treatment of CIPN include topical pain relievers, such as baclofen/amitriptyline/ketamine gel, and serotonin and norepinephrine reuptake inhibitors, such as venlafaxine and duloxetine. Other promising therapies are also reviewed in this paper. Cutaneous electrostimulation is a nonpharmacological therapy that appears, from an early pilot trial, to be potentially effective in the treatment of CIPN. Finally, there is a lack of evidence of effective treatments for the paclitaxel acute pain syndrome (P-APS), which appears to be caused by neurologic injury.
Collapse
Affiliation(s)
- D R Pachman
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
44
|
Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2011:CD005228. [PMID: 21328275 PMCID: PMC3715044 DOI: 10.1002/14651858.cd005228.pub3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cisplatin and several related antineoplastic agents used to treat many types of solid tumors are neurotoxic, and most patients completing a full course of cisplatin chemotherapy develop a clinically detectable sensory neuropathy. Effective neuroprotective therapies have been sought. OBJECTIVES To examine the efficacy of purported chemoprotective agents to prevent or limit the neurotoxicity of cisplatin and related agents. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialized Register (25 August 2010), the Cochrane Central Register of Controlled Trials (Issue 3, 2010 in The Cochrane Library), MEDLINE (January 1966 to August 2010), EMBASE (January 1980 to August 2010), LILACS (January 1982 to August 2010), CINAHL (January 1982 to August 2010) for randomized trials designed to evaluate neuroprotective agents used to prevent or limit neurotoxicity of cisplatin and related agents among human patients. SELECTION CRITERIA Quasi-randomized or randomized controlled trials whose participants received cisplatin (or related compounds) chemotherapy with or without a potential chemoprotectant (acetylcysteine, amifostine, ACTH, BNP7787, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxcarbazepine, or vitamin E) and were evaluated zero to six months after completing chemotherapy using quantitative sensory testing (primary) or other measures including nerve conduction studies or neurological impairment rating using validated scales (secondary). DATA COLLECTION AND ANALYSIS We identified 16 randomized trials involving five possible chemoprotective agents in the initial 2006 review. Each study was reviewed by two authors who extracted the data and reached consensus. The 2010 update identified 11 additional randomized trials consisting of nine possible chemoprotective agents, including three treatments (acetylcysteine, calcium and magnesium, and oxcarbazepine) not among those described in the 2006 review. The included trials in the updated review involved eight unrelated treatments and included many disparate measures of neuropathy, resulting in insufficient data for any one measure to combine the results in most instances. MAIN RESULTS One of four eligible amifostine trials (541 total participants in all four trials) used quantitative sensory testing and demonstrated a favorable outcome in terms of amifostine neuroprotection, but the vibration perception threshold result was based on data from only 14 participants receiving amifostine who completed the post-treatment evaluation and should be regarded with caution. Of the six eligible glutathione trials (354 participants), one used quantitative sensory testing but reported only qualitative analyses. Four eligible Org 2766 trials (311 participants) employed quantitative sensory testing reported disparate results; meta-analyses of three trials using comparable measures showed no significant vibration perception threshold neuroprotection. The remaining trial reported only descriptive analyses. The single eligible trials involving acetylcysteine (14 participants), diethyldithiocarbamate (195 participants), calcium and magnesium (33 participants), and oxcarbazepine (32 participants) and the two eligible trials involving vitamin E (57 participants) did not perform quantitative sensory testing. In all, data from 1,537 participants were included. AUTHORS' CONCLUSIONS At present, the data are insufficient to conclude that any of the purported chemoprotective agents (acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxycarbazepine, or Vitamin E) prevent or limit the neurotoxicity of platin drugs among human patients.
Collapse
Affiliation(s)
- James W Albers
- Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Vinay Chaudhry
- Neurology, Johns Hopkins Outpatient Center, Baltimore, Maryland, USA
| | - Guido Cavaletti
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Ross C Donehower
- Division of Medical Oncology, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
45
|
Ali BH. Amelioration of oxaliplatin neurotoxicity by drugs in humans and experimental animals: a minireview of recent literature. Basic Clin Pharmacol Toxicol 2009; 106:272-9. [PMID: 20050845 DOI: 10.1111/j.1742-7843.2009.00512.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The broad spectrum anti-neoplastic drug oxaliplatin is a third-generation platinum compound that inhibits DNA synthesis, mainly by causing intrastrandal cross-links in DNA. The drug is particularly useful alone and in combination with fluoruracil and leucovorin in colorectal cancer, but it is also used for other cancers such as those of the ovary, lung, breast and liver, as well as non-Hodgkin's lymphoma. The drug is known to cause neurological, gastrointestinal and haematological toxicities. Neurotoxicity occurs in most of the treated patients and is considered to be a serious limitation for the use of the drug. The mechanism of the neurotoxicity is not known with certainty but may involve prolongation of sodium channels opening. Strategies to ameliorate oxaliplatin neurotoxicity include the use of several 'neuroprotective' drugs. This MiniReview attempts to list and comment on the action and use of some of these agents, which include carbamazepine, gabapentin, calcium and magnesium salts, reduced glutathione, N-acetylcysteine and a few others. None of these drugs have been proven to be effective in large, controlled, clinical trials.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine, Sultan Qaboos University, Sultanate of Oman.
| |
Collapse
|