1
|
Bates JHT, Kaczka DW, Kollisch-Singule M, Nieman GF, Gaver DP. Atelectrauma can be avoided if expiration is sufficiently brief: evidence from inverse modeling and oscillometry during airway pressure release ventilation. Crit Care 2024; 28:329. [PMID: 39380082 PMCID: PMC11462759 DOI: 10.1186/s13054-024-05112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, 13210, USA
| | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Geitner CM, Köglmeier LJ, Frerichs I, Langguth P, Lindner M, Schädler D, Weiler N, Becher T, Wall WA. Pressure- and time-dependent alveolar recruitment/derecruitment in a spatially resolved patient-specific computational model for injured human lungs. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3787. [PMID: 38037251 DOI: 10.1002/cnm.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms-such as cyclic RD and overdistension-and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).
Collapse
Affiliation(s)
- Carolin M Geitner
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| | - Lea J Köglmeier
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Patrick Langguth
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Lindner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| |
Collapse
|
3
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
4
|
Nieman GF, Herrmann J, Satalin J, Kollisch-Singule M, Andrews PL, Habashi NM, Tingay DG, Gaver DP, Bates JHT, Kaczka DW. Ratchet recruitment in the acute respiratory distress syndrome: lessons from the newborn cry. Front Physiol 2023; 14:1287416. [PMID: 38028774 PMCID: PMC10646689 DOI: 10.3389/fphys.2023.1287416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, United States
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, United States
| | | | - Penny L. Andrews
- Department of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nader M. Habashi
- Department of Medicine, University of Maryland, Baltimore, MD, United States
| | - David G. Tingay
- Neonatal Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Jason H. T. Bates
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - David W. Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Nieman GF, Kaczka DW, Andrews PL, Ghosh A, Al-Khalisy H, Camporota L, Satalin J, Herrmann J, Habashi NM. First Stabilize and then Gradually Recruit: A Paradigm Shift in Protective Mechanical Ventilation for Acute Lung Injury. J Clin Med 2023; 12:4633. [PMID: 37510748 PMCID: PMC10380509 DOI: 10.3390/jcm12144633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - David W. Kaczka
- Departments of Anesthesia, Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Penny L. Andrews
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Auyon Ghosh
- Department of Medicine, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hassan Al-Khalisy
- Brody School of Medicine, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Joshua Satalin
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Nader M. Habashi
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Miserocchi G. Early Endothelial Signaling Transduction in Developing Lung Edema. Life (Basel) 2023; 13:1240. [PMID: 37374024 DOI: 10.3390/life13061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The lung promptly responds to edemagenic conditions through functional adaptations that contrast the increase in microvascular filtration. This review presents evidence for early signaling transduction by endothelial lung cells in two experimental animal models of edema, hypoxia exposure, and fluid overload (hydraulic edema). The potential role of specialized sites of the plasma membranes considered mobile signaling platforms, referred to as membrane rafts, that include caveolae and lipid rafts, is presented. The hypothesis is put forward that early changes in the lipid composition of the bilayer of the plasma membrane might trigger the signal transduction process when facing changes in the pericellular microenvironment caused by edema. Evidence is provided that for an increase in the extravascular lung water volume not exceeding 10%, changes in the composition of the plasma membrane of endothelial cells are evoked in response to mechanical stimuli from the interstitial compartment as well as chemical stimuli relating with changes in the concentration of the disassembled portions of structural macromolecules. In hypoxia, thinning of endothelial cells, a decrease in caveolae and AQP-1, and an increase in lipid rafts are observed. The interpretation of this response is that it favors oxygen diffusion and hinder trans-cellular water fluxes. In hydraulic edema, which generates greater capillary water leakages, an increase in cell volume and opposite changes in membrane rafts were observed; further, the remarkable increase in caveolae suggests a potential abluminal-luminal vesicular-dependent fluid reabsorption.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, Università di Milano Bicocca, 20900 Monza, Italy
| |
Collapse
|
7
|
Miserocchi G. The impact of heterogeneity of the air-blood barrier on control of lung extravascular water and alveolar gas exchange. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1142245. [PMID: 37251706 PMCID: PMC10213913 DOI: 10.3389/fnetp.2023.1142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The architecture of the air-blood barrier is effective in optimizing the gas exchange as long as it retains its specific feature of extreme thinness reflecting, in turn, a strict control on the extravascular water to be kept at minimum. Edemagenic conditions may perturb this equilibrium by increasing microvascular filtration; this characteristically occurs when cardiac output increases to balance the oxygen uptake with the oxygen requirement such as in exercise and hypoxia (either due to low ambient pressure or reflecting a pathological condition). In general, the lung is well equipped to counteract an increase in microvascular filtration rate. The loss of control on fluid balance is the consequence of disruption of the integrity of the macromolecular structure of lung tissue. This review, merging data from experimental approaches and evidence in humans, will explore how the heterogeneity in morphology, mechanical features and perfusion of the terminal respiratory units might impact on lung fluid balance and its control. Evidence is also provided that heterogeneities may be inborn and they could actually get worse as a consequence of a developing pathological process. Further, data are presented how in humans inter-individual heterogeneities in morphology of the terminal respiratory hinder the control of fluid balance and, in turn, hamper the efficiency of the oxygen diffusion-transport function.
Collapse
|
8
|
Stroh JN, Smith BJ, Sottile PD, Hripcsak G, Albers DJ. Hypothesis-driven modeling of the human lung-ventilator system: A characterization tool for Acute Respiratory Distress Syndrome research. J Biomed Inform 2023; 137:104275. [PMID: 36572279 PMCID: PMC9788853 DOI: 10.1016/j.jbi.2022.104275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.
Collapse
Affiliation(s)
- J N Stroh
- Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA.
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA; Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter D Sottile
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - David J Albers
- Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Section of Informatics and Data Science, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Ramcharran H, Bates JHT, Satalin J, Blair S, Andrews PL, Gaver DP, Gatto LA, Wang G, Ghosh AJ, Robedee B, Vossler J, Habashi NM, Daphtary N, Kollisch-Singule M, Nieman GF. Protective ventilation in a pig model of acute lung injury: timing is as important as pressure. J Appl Physiol (1985) 2022; 133:1093-1105. [PMID: 36135956 PMCID: PMC9621707 DOI: 10.1152/japplphysiol.00312.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (∼0.45 s) and increased with a longer duration (∼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.
Collapse
Affiliation(s)
| | | | | | - Sarah Blair
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | - Guirong Wang
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Tsolaki V, Zakynthinos GE. Simulation to minimise patient self-inflicted lung injury: are we almost there? Br J Anaesth 2022; 129:150-153. [PMID: 35729011 PMCID: PMC9551385 DOI: 10.1016/j.bja.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Computational modelling has been used to enlighten pathophysiological issues in patients with acute respiratory distress syndrome (ARDS) using a sophisticated, integrated cardiopulmonary model. COVID-19 ARDS is a pathophysiologically distinct entity characterised by dissociation between impairment in gas exchange and respiratory system mechanics, especially in the early stages of ARDS. Weaver and colleagues used computational modelling to elucidate factors contributing to generation of patient self-inflicted lung injury, and evaluated the effects of various spontaneous respiratory efforts with different oxygenation and ventilatory support modes. Their findings indicate that mechanical forces generated in the lung parenchyma are only counterbalanced when the respiratory support mode reduces the intensity of respiratory efforts.
Collapse
Affiliation(s)
- Vasiliki Tsolaki
- Department of Intensive Care Medicine, General University of Larissa, University of Thessaly, Faculty of Medicine, Larissa, Thessaly, Greece.
| | - George E Zakynthinos
- Department of Intensive Care Medicine, General University of Larissa, University of Thessaly, Faculty of Medicine, Larissa, Thessaly, Greece
| |
Collapse
|
12
|
Yamaguchi E, Yao J, Aymond A, Chrisey DB, Nieman GF, Bates JHT, Gaver DP. Electric Cell-Substrate Impedance Sensing (ECIS) as a Platform for Evaluating Barrier-Function Susceptibility and Damage from Pulmonary Atelectrauma. BIOSENSORS 2022; 12:390. [PMID: 35735538 PMCID: PMC9221382 DOI: 10.3390/bios12060390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.
Collapse
Affiliation(s)
- Eiichiro Yamaguchi
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA; (J.Y.); (A.A.)
| | - Joshua Yao
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA; (J.Y.); (A.A.)
| | - Allison Aymond
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA; (J.Y.); (A.A.)
| | - Douglas B. Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA;
| | - Gary F. Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jason H. T. Bates
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA; (J.Y.); (A.A.)
| |
Collapse
|
13
|
A Ventilator Mode Cannot Set Itself, Nor Can It Be Solely Responsible for Outcomes. Crit Care Med 2022; 50:695-699. [PMID: 35311779 DOI: 10.1097/ccm.0000000000005403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
W Lyng J, Guyette FX, Levy M, Bosson N. Prehospital Manual Ventilation: An NAEMSP Position Statement and Resource Document. PREHOSP EMERG CARE 2022; 26:23-31. [PMID: 35001826 DOI: 10.1080/10903127.2021.1981506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Manual ventilation using a self-inflating bag device paired with a facemask (bag-valve-mask, or BVM ventilation) or invasive airway (bag-valve-device, or BVD ventilation) is a fundamental airway management skill for all Emergency Medical Services (EMS) clinicians. Delivery of manual ventilations is challenging. Several strategies and adjunct technologies can increase the effectiveness of manual ventilation. NAEMSP recommends:All EMS clinicians must be proficient in bag-valve-mask ventilation.BVM ventilation should be performed using a two-person technique whenever feasible.EMS clinicians should use available techniques and adjuncts to achieve optimal mask seal, improve airway patency, optimize delivery of the correct rate, tidal volume, and pressure during manual ventilation, and allow continual assessment of manual ventilation effectiveness.
Collapse
|
15
|
Beretta E, Romanò F, Sancini G, Grotberg JB, Nieman GF, Miserocchi G. Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Front Physiol 2021; 12:781874. [PMID: 34987415 PMCID: PMC8720972 DOI: 10.3389/fphys.2021.781874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
This review analyses the mechanisms by which lung fluid balance is strictly controlled in the air-blood barrier (ABB). Relatively large trans-endothelial and trans-epithelial Starling pressure gradients result in a minimal flow across the ABB thanks to low microvascular permeability aided by the macromolecular structure of the interstitial matrix. These edema safety factors are lost when the integrity of the interstitial matrix is damaged. The result is that small Starling pressure gradients, acting on a progressively expanding alveolar barrier with high permeability, generate a high transvascular flow that causes alveolar flooding in minutes. We modeled the trans-endothelial and trans-epithelial Starling pressure gradients under control conditions, as well as under increasing alveolar pressure (Palv) conditions of up to 25 cmH2O. We referred to the wet-to-dry weight (W/D) ratio, a specific index of lung water balance, to be correlated with the functional state of the interstitial structure. W/D averages ∼5 in control and might increase by up to ∼9 in severe edema, corresponding to ∼70% loss in the integrity of the native matrix. Factors buffering edemagenic conditions include: (i) an interstitial capacity for fluid accumulation located in the thick portion of ABB, (ii) the increase in interstitial pressure due to water binding by hyaluronan (the "safety factor" opposing the filtration gradient), and (iii) increased lymphatic flow. Inflammatory factors causing lung tissue damage include those of bacterial/viral and those of sterile nature. Production of reactive oxygen species (ROS) during hypoxia or hyperoxia, or excessive parenchymal stress/strain [lung overdistension caused by patient self-induced lung injury (P-SILI)] can all cause excessive inflammation. We discuss the heterogeneity of intrapulmonary distribution of W/D ratios. A W/D ∼6.5 has been identified as being critical for the transition to severe edema formation. Increasing Palv for W/D > 6.5, both trans-endothelial and trans-epithelial gradients favor filtration leading to alveolar flooding. Neither CT scan nor ultrasound can identify this initial level of lung fluid balance perturbation. A suggestion is put forward to identify a non-invasive tool to detect the earliest stages of perturbation of lung fluid balance before the condition becomes life-threatening.
Collapse
Affiliation(s)
- Egidio Beretta
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers, Centrale Lille, FRE 2017-LMFL-Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, Lille, France
| | - Giulio Sancini
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Gary F. Nieman
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
16
|
Herrmann J, Gerard SE, Shao W, Xin Y, Cereda M, Reinhardt JM, Christensen GE, Hoffman EA, Kaczka DW. Effects of Lung Injury on Regional Aeration and Expiratory Time Constants: Insights From Four-Dimensional Computed Tomography Image Registration. Front Physiol 2021; 12:707119. [PMID: 34393824 PMCID: PMC8355819 DOI: 10.3389/fphys.2021.707119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expiratory phase of pressure-controlled ventilation in pigs before and after acute lung injury using respiratory-gated 4DCT and image registration. Methods: Eleven pigs were mechanically ventilated in pressure-controlled mode under baseline conditions and following an oleic acid model of acute lung injury. Dynamic 4DCT scans were acquired without interrupting ventilation. Automated segmentation of lung parenchyma was obtained by a convolutional neural network. Respiratory structures were aligned using 4D image registration. Exponential regression was performed on the time-varying CT density in each aligned voxel during exhalation, resulting in regional estimates of intratidal aeration change and deaeration time constants. Regressions were also performed for regional and total exhaled gas volume changes. Results: Normally and poorly aerated lung regions demonstrated the largest median intratidal aeration changes during exhalation, compared to minimal changes within hyper- and non-aerated regions. Following lung injury, median time constants throughout normally aerated regions within each subject were greater than respective values for poorly aerated regions. However, parametric response mapping revealed an association between larger intratidal aeration changes and slower time constants. Lower aeration and faster time constants were observed for the dependent lung regions in the supine position. Regional gas volume changes exhibited faster time constants compared to regional density time constants, as well as better correspondence to total exhaled volume time constants. Conclusion: Mechanical time constants based on exhaled gas volume underestimate regional aeration time constants. After lung injury, poorly aerated regions experience larger intratidal changes in aeration over shorter time scales compared to normally aerated regions. However, the largest intratidal aeration changes occur over the longest time scales within poorly aerated regions. These dynamic 4DCT imaging data provide supporting evidence for the susceptibility of poorly aerated regions to ventilator-induced lung injury, and for the functional benefits of short exhalation times during mechanical ventilation of injured lungs.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sarah E Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Wei Shao
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph M Reinhardt
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David W Kaczka
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Guérin C, Bayat S, Noury N, Cour M, Argaud L, Louis B, Terzi N. Regional lung viscoelastic properties in supine and prone position in a porcine model of acute respiratory distress syndrome. J Appl Physiol (1985) 2021; 131:15-25. [PMID: 33982595 DOI: 10.1152/japplphysiol.00104.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regional viscoelastic properties of thoracic tissues in acute respiratory distress syndrome (ARDS) and their change with position and positive end-expiratory pressure (PEEP) are unknown. In an experimental porcine ARDS, dorsal and ventral lung (R2,L and E2,L) and chest wall (R2,cw and E2,cw) viscoelastic resistive (R) and elastic (E) parameters were measured at 20, 15, 10, and 5 cmH2O PEEP in supine and prone position. E2 and R2 were obtained by fitting the decay of pressure after end-inspiratory occlusion to the equation: Pviscmax (t) =R2 e-t/τ2, where t is the length of occlusion and τ2 time constant. E2 was equal to R2/τ2. R2,cw and E2,cw were measured from esophageal, dorsal, and ventral pleural pressures. Global R2,L and E2,L were obtained from the global transpulmonary pressure (airway pressure-esophageal pressure), and regional R2,L and E2,L from the dorsal and ventral airway pressure-pleural pressure difference. Lung ventilation was measured by electrical impedance tomography (EIT). Global R2,cw and E2,cw did not change with PEEP or position. Global R2,L [median(Q1-Q3)] was 37.1 (11.0-65.1), 5.1 (4.3-5.5), 12.1 (8.4-19.5), and 41.0 (26.6-53.5) cmH2O/L/s in supine, and 15.3 (9.1-41.9), 7.9 (5.7-11.0), 8.0 (5.1-12.1), and 12.9 (6.4-19.4) cmH2O/L in prone from 20 to 5 cmH2O PEEP (P = 0.06 for PEEP and P = 0.06 for position). Dorsal R2,L significantly and positively correlated with the amount of collapse measured with EIT. Global and regional lung and chest wall viscoelastic parameters can be described by a simple rheological model. Regional E2 and R2 were uninfluenced by PEEP and position except for PEEP on dorsal E2,L and position on dorsal E2,cw.NEW & NOTEWORTHY In a porcine model of acute respiratory distress syndrome, data were successfully fitted to a rheological model of the nonlinear behavior of viscoelastic properties of lung and chest wall at different positive end-expiratory pressure (PEEP) in the supine and prone position. Prone position tended to decrease lung viscoelastic resistive component. PEEP had a significant effect on dorsal lung viscoelastic elastance. Finally, lung viscoelastic resistance correlated with the amount of lung collapse assessed by electrical impedance tomography.
Collapse
Affiliation(s)
- Claude Guérin
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France.,Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France
| | - Sam Bayat
- Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France.,INSERM UA7 STROBE, Grenoble, France.,Université de Grenoble, Grenoble, France
| | | | - Martin Cour
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France
| | - Laurent Argaud
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France
| | - Bruno Louis
- Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France
| | - Nicolas Terzi
- Université de Grenoble, Grenoble, France.,Médecine intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,INSERM U1042, Grenoble, France
| |
Collapse
|
18
|
Arcos-Legarda J, Tovar A. Mechatronic Design and Active Disturbance Rejection Control of a Bag Valve-Based Mechanical Ventilator. J Med Device 2021. [DOI: 10.1115/1.4051064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
This paper presents the mechatronic (mechanical and control system) design of a functional prototype of a portable mechanical ventilator to treat patients with a compromised respiratory function. The portable ventilator ensures adequate oxygenation and carbon dioxide clearance while avoiding ventilator-induced lung injury (VILI). Oxygen is delivered through the compression of a bag valve (Ambu bag) using a moving strap. Carbon dioxide is cleared through the control of a pinch valve actuated by a low-torque servomotor. The positive end-expiratory pressure (PEEP) is controlled by an adjustable mechanical valve of the system. An Arduino Mega microcontroller board is used in this prototype to control the respiratory variables. All mechanical components as well as sensors, actuators, and control hardware are of common use in robotics and are very inexpensive. The total cost of the prototype built in this work is about $425 U.S. dollars. The design is meant to be replicated and utilized in emergency conditions that involve an overwhelming number of cases, such as COVID-19 treatment, in places with no access to commercial mechanical ventilation (MV) technologies. In order to account for variations in the prototype as built, the software developed for this portable MV applies an active disturbance rejection control (ADRC) strategy. This control strategy is presented as a universal control structure for any mechanical ventilator able to supply air flow with controlled pressure and volume.
Collapse
Affiliation(s)
- Jaime Arcos-Legarda
- Department of Mechatronics Engineering, Universidad de San Buenaventura, Cr. 8h 172-20, Bogotá 111156, Colombia
| | - Andres Tovar
- Department of Mechanical and Energy Engineering, Indiana University–Purdue University Indianapolis, 723 West Michigan Street, SL 260N Indianapolis, IN 46202-5132
| |
Collapse
|
19
|
Kaczka DW. Oscillatory ventilation redux: alternative perspectives on ventilator-induced lung injury in the acute respiratory distress syndrome. CURRENT OPINION IN PHYSIOLOGY 2021; 21:36-43. [PMID: 33898903 PMCID: PMC8056876 DOI: 10.1016/j.cophys.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For patients with the acute respiratory distress syndrome (ARDS), ventilation strategies that limit end-expiratory derecruitment and end-inspiratory overdistension are the only interventions to have significantly reduced the morbidity and mortality. For this reason, the use of high-frequency oscillatory ventilation (HFOV) was considered to be an ideal protective strategy, given its reliance on very low tidal volumes cycled at very high rates. However, results from clinical trials in adults with ARDS have demonstrated that HFOV does not improve clinical outcomes. Recent experimental and computational studies have shown that oscillation of a mechanically heterogeneous lung with multiple simultaneous frequencies can reduce parenchymal strain, improve gas exchange, and maintain lung recruitment at lower distending pressures compared to traditional ‘single-frequency’ HFOV. This review will discuss the theoretical rationale for the use of multiple oscillatory frequencies in ARDS, as well as the mechanisms by which it may reduce the risk for ventilator-induced lung injury.
Collapse
Affiliation(s)
- David W Kaczka
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Department of Radiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|