1
|
Chu DT, Bui NL, Le NH. Adrenoceptors and SCD1 in adipocytes/adipose tissues: The expression and variation in health and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:311-332. [PMID: 36631196 DOI: 10.1016/bs.pmbts.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of β-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
2
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
3
|
Gaitán-González P, Sánchez-Hernández R, Arias-Montaño JA, Rueda A. Tale of two kinases: Protein kinase A and Ca 2+/calmodulin-dependent protein kinase II in pre-diabetic cardiomyopathy. World J Diabetes 2021; 12:1704-1718. [PMID: 34754372 PMCID: PMC8554373 DOI: 10.4239/wjd.v12.i10.1704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations, including insulin resistance, visceral fat accumulation, and dyslipidemias, which increase the risk for developing cardiovascular disease. Metabolic syndrome is associated with augmented sympathetic tone, which could account for the etiology of pre-diabetic cardiomyopathy. This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustained β-adrenergic response in pre-diabetes, focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy. The research reviewed indicates that both protein kinase A and Ca2+/calmodulin-dependent protein kinase II play important roles in functional responses mediated by β1-adrenoceptors; therefore, alterations in the expression or function of these kinases can be deleterious. This review also outlines recent information on the role of protein kinase A and Ca2+/calmodulin-dependent protein kinase II in abnormal Ca2+ handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pamela Gaitán-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Rommel Sánchez-Hernández
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - José-Antonio Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Angélica Rueda
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| |
Collapse
|
4
|
Doghri Y, Dubreil L, Lalanne V, Hélissen O, Fleurisson R, Thorin C, Desfontis JC, Mallem MY. Soluble guanylate cyclase chronic stimulation effects on cardiovascular reactivity in cafeteria diet-induced rat model of metabolic syndrome. Eur J Pharmacol 2021; 899:173978. [PMID: 33691164 DOI: 10.1016/j.ejphar.2021.173978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Metabolic syndrome is linked to an increased risk of cardiovascular complications by a mechanism involving mainly decreased nitric oxide (NO) bioavailability and impaired NO-soluble guanylate cyclase (sGC)- cyclic guanosine monophosphate (cGMP) signalling (NO-sGC-cGMP). To further develop this scientific point, this study aimed to investigate the effects of long-term treatment with BAY 41-2272 (a sGC stimulator) on cardiovascular reactivity of spontaneously hypertensive rats (SHR) as a model of metabolic syndrome. SHR were randomly divided into 3 groups: control group, cafeteria diet (CD)-fed group and CD-fed group treated daily with BAY 41-2272 (5 mg/kg) by gastric gavage for 12 weeks. In vivo measurements of body weight, abdominal circumference, blood pressure and glucose tolerance test were performed. At the end of the feeding period, ex vivo cumulative concentration-response curves were performed on isolated perfused heart (isoproterenol (0.1 nM - 1 μM)) and thoracic aorta (phenylephrine (1 nM-10 μM), acetylcholine (1 nM-10 μM), and sodium nitroprusside (SNP) (0.1 nM-0.1 μM)). We showed that chronic CD feeding induced abdominal obesity, hypertriglyceridemia, glucose intolerance and exacerbated arterial hypertension in SHR. Compared to control group, CD-fed group showed a decrease in β-adrenoceptor-induced cardiac inotropy, in coronary perfusion pressure and in aortic contraction to phenylephrine. While relaxing effects of acetylcholine and SNP were unchanged. BAY 41-2272 long-term treatment markedly prevented arterial hypertension development and glucose intolerance, enhanced the α1-adrenoceptor-induced vasoconstriction, and restored cardiac inotropy and coronary vasodilation. These findings suggest that BAY 41-2272 may be a potential novel drug for preventing metabolic and cardiovascular complications of metabolic syndrome.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/physiopathology
- Cardiovascular Diseases/enzymology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/physiopathology
- Cardiovascular Diseases/prevention & control
- Coronary Circulation/drug effects
- Cyclic GMP/metabolism
- Disease Models, Animal
- Enzyme Activation
- Enzyme Activators/pharmacology
- Glucose Intolerance/enzymology
- Glucose Intolerance/etiology
- Glucose Intolerance/physiopathology
- Glucose Intolerance/prevention & control
- Hypertension/enzymology
- Hypertension/etiology
- Hypertension/physiopathology
- Hypertension/prevention & control
- Hypertriglyceridemia/enzymology
- Hypertriglyceridemia/etiology
- Hypertriglyceridemia/physiopathology
- Hypertriglyceridemia/prevention & control
- Isolated Heart Preparation
- Male
- Metabolic Syndrome/enzymology
- Metabolic Syndrome/etiology
- Metabolic Syndrome/physiopathology
- Metabolic Syndrome/prevention & control
- Nitric Oxide Synthase Type II/metabolism
- Obesity, Abdominal/enzymology
- Obesity, Abdominal/etiology
- Obesity, Abdominal/physiopathology
- Obesity, Abdominal/prevention & control
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- Rats, Inbred SHR
- Soluble Guanylyl Cyclase/metabolism
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Pressure/drug effects
- Rats
Collapse
Affiliation(s)
- Yosra Doghri
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Laurence Dubreil
- UMR PAnTher 703 INRA/Oniris Animal Pathophysiology and Bio Therapy for Muscle and Nervous System Diseases, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Valérie Lalanne
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Ophélie Hélissen
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Romain Fleurisson
- UMR PAnTher 703 INRA/Oniris Animal Pathophysiology and Bio Therapy for Muscle and Nervous System Diseases, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Chantal Thorin
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - Jean-Claude Desfontis
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France
| | - M Yassine Mallem
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, Nantes-Atlantic College of Veterinary Medicine Food Sciences and Engineering, 44307, Nantes Cedex 03, France.
| |
Collapse
|
5
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
6
|
Costa GC, Montagnoli TL, Da Silva JS, de Alencar AKN, Reina Gamba LE, Alves BEO, da Silva MMC, Trachez MM, do Nascimento JHM, Pimentel-Coelho PM, Mendez-Otero R, Lima LM, Barreiro EJ, Sudo RT, Zapata-Sudo G. New Benzofuran N-Acylhydrazone Reduces Cardiovascular Dysfunction in Obese Rats by Blocking TNF-Alpha Synthesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3337-3350. [PMID: 32884238 PMCID: PMC7443037 DOI: 10.2147/dddt.s258459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
Introduction Diabetic obese patients are susceptible to the development of cardiovascular disease, including hypertension and cardiac dysfunction culminating in diabetic cardiomyopathy (DC), which represents a life-threatening health problem with increased rates of morbidity and mortality. The aim of the study is to characterize the effects of a new benzofuran N-acylhydrazone compound, LASSBio-2090, on metabolic and cardiovascular alterations in Zucker diabetic fatty (ZDF) rats presenting DC. Methods Male non-diabetic lean Zucker rats (ZL) and ZDF rats treated with vehicle (dimethylsulfoxide) or LASSBio-2090 were used in this study. Metabolic parameters, cardiovascular function, left ventricle histology and inflammatory protein expression were analyzed in the experimental groups. Results LASSBio-2090 administration in ZDF rats reduced glucose levels to 85.0 ± 1.7 mg/dL (p < 0.05). LASSBio-2090 also lowered the cholesterol and triglyceride levels from 177.8 ± 31.2 to 104.8 ± 5.3 mg/dL and from 123.0 ± 11.4 to 90.9 ± 4.8 mg/dL, respectively, in obese diabetic rats (p < 0.05). LASSBio-2090 normalized plasma insulin, insulin sensitivity and endothelial function in aortas from diabetic animals (p < 0.05). It also enhanced systolic and diastolic left-ventricular function and reverted myocardial remodeling by blocking the threefold elevation of TNF-α levels in hearts from ZDF rats. Conclusion LASSBio-2090 alleviates metabolic disturbance and cardiomyopathy in an obese and diabetic rat model, thus representing a novel strategy for the treatment of cardiovascular complications in obesity-associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gizele Cabral Costa
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jaqueline Soares Da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Allan Kardec Nogueira de Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luis Eduardo Reina Gamba
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bryelle Eccard Oliveira Alves
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marina Moraes Carvalho da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Margarete Manhães Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Hamilton M do Nascimento
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lidia Moreira Lima
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliezer J Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Takashi Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
7
|
Dal Monte M, Evans BA, Arioglu-Inan E, Michel MC. Upregulation of β 3-adrenoceptors-a general marker of and protective mechanism against hypoxia? Naunyn Schmiedebergs Arch Pharmacol 2019; 393:141-146. [PMID: 31853614 DOI: 10.1007/s00210-019-01780-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
β3-Adrenoceptors exhibit a restricted expression pattern, particularly in humans. However, they have been found to be upregulated in various cancers and under several conditions associated with hypoperfusion such as congestive heart failure and diabetes for instance in the heart and other tissues. These conditions are frequently associated with hypoxia. Furthermore, direct induction of hypoxia has consistently been reported to cause upregulation of β3-adrenoceptors across various tissues of multiple species including humans, rats, dogs, and fish. While a canonical hypoxia-response element in the promoter of the human β3-adrenoceptor gene may play a role in this, no such sequence was found in rodent homologs. Moreover, not all upregulation of β3-adrenoceptor protein is accompanied by increased expression of corresponding mRNA, indicating that the upregulation may involve factors other than transcriptional changes. We propose that upregulation of β3-adrenoceptors at the mRNA and/or protein level is a general marker of hypoxic conditions. Moreover, it may be an additional pathway whereby cells and tissues adapt to reduced oxygen levels.
Collapse
Affiliation(s)
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ebru Arioglu-Inan
- Department. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department. of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Doghri Y, Chetaneau F, Rhimi M, Kriaa A, Lalanne V, Thorin C, Maguin E, Mallem MY, Desfontis JC. Sildenafil citrate long-term treatment effects on cardiovascular reactivity in a SHR experimental model of metabolic syndrome. PLoS One 2019; 14:e0223914. [PMID: 31697707 PMCID: PMC6837760 DOI: 10.1371/journal.pone.0223914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
Much evidence indicates that metabolic syndrome is strongly correlated with a decrease in nitric oxide and an increase in oxidative stress leading to cardiovascular alterations. In recent years, gut microbiota has emerged as a new contributor to the metabolic syndrome establishment and associated cardiovascular diseases, but the underlying mechanisms remain unclear. We hypothesized that a positive modulation of cyclic guanosine monophosphate (cGMP) pathway, through phosphodiesterase type 5 (PDE5) inhibition could prevent cardiovascular alterations and gut dysbiosis that may be associated to metabolic syndrome. Spontaneously hypertensive rats (SHR) were randomly divided into 4 groups: control, cafeteria diet (CD) and sildenafil citrate treated groups (5mg/kg per os) were given either a CD or a standard chow diet for 10 weeks. Body weight, arterial blood pressure and glucose tolerance test were monitored. At the 10th week, cardiac inotropy and coronary perfusion pressure were evaluated on isolated heart according to Langendorff method. Cumulative concentration response curves to phenylephrine and acetylcholine were determined on thoracic aorta rings for vascular reactivity evaluation. Faecal samples were collected for the gut microbiota analysis. Compared to the control group, CD-fed rats showed a significant increase in body weight gain, arterial blood pressure and were glucose intolerant. This group showed also a decrease in β-adrenoceptor-induced cardiac inotropy and coronary vasodilation. Gut microbiota analysis revealed a significant reduction in the abundance of Lactobocillus spp in cafeteria diet-fed rats when compared to the control ones. Sildenafil citrate long-term treatment decreased weight gain and arterial blood pressure, improved coronary vasodilation and reduced α1-adrenoceptor-induced vasoconstriction in CD group. However, it did not reverse gut dysbiosis induced by chronic CD feeding. These results suggest that cGMP pathway targeting may be a potential therapeutic strategy for the management of the metabolic syndrome and associated cardiovascular disorders.
Collapse
Affiliation(s)
- Yosra Doghri
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
- * E-mail:
| | - Fabien Chetaneau
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
| | - Moez Rhimi
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aicha Kriaa
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Valérie Lalanne
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
| | - Chantal Thorin
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
| | - Emmanuelle Maguin
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - M. Yassine Mallem
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
| | - Jean-Claude Desfontis
- UPSP NP3 (2017.B146), Nutrition, Pathophysiology and Pharmacology, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Atlanpôle—La Chantrerie, Route de Gachet, 5 BP, Nantes, France
| |
Collapse
|
9
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Okeke K, Angers S, Bouvier M, Michel MC. Agonist-induced desensitisation of β 3 -adrenoceptors: Where, when, and how? Br J Pharmacol 2019; 176:2539-2558. [PMID: 30809805 DOI: 10.1111/bph.14633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists have proven useful in the treatment of overactive bladder syndrome, but it is not known whether their efficacy during chronic administration may be limited by receptor-induced desensitisation. Whereas the β2 -adrenoceptor has phosphorylation sites that are important for desensitisation, the β3 -adrenoceptor lacks these; therefore, it had been assumed that β3 -adrenoceptors are largely resistant to agonist-induced desensitisation. While all direct comparative studies demonstrate that β3 -adrenoceptors are less susceptible to desensitisation than β2 -adrenoceptors, desensitisation of β3 -adrenoceptors has been observed in many models and treatment settings. Chimeric β2 - and β3 -adrenoceptors have demonstrated that the C-terminal tail of the receptor plays an important role in the relative resistance to desensitisation but is not the only relevant factor. While the evidence from some models, such as transfected CHO cells, is inconsistent, it appears that desensitisation is observed more often after long-term (hours to days) than short-term (minutes to hours) agonist exposure. When it occurs, desensitisation of β3 -adrenoceptors can involve multiple levels including down-regulation of its mRNA and the receptor protein and alterations in post-receptor signalling events. The relative contributions of these mechanistic factors apparently depend on the cell type under investigation. Which if any of these factors is applicable to the human urinary bladder remains to be determined. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Bussey CT, Thaung HPA, Hughes G, Bahn A, Lamberts RR. Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK. Exp Physiol 2018; 103:1067-1075. [PMID: 29873129 DOI: 10.1113/ep087054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023]
Abstract
NEW FINDINGS What is the central question of the study? Is the reduced signalling of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in the heart, responsible for the reduced β-adrenergic responsiveness of the heart in obesity? What is the main finding and its importance? Inhibition of AMPK in isolated hearts prevented the reduced cardiac β-adrenergic responsiveness of obese rats, which was accompanied by reduced phosphorylation of AMPK, a proxy of AMPK activity. This suggests a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart, and it suggests that AMPK might be an important target to restore the β-adrenergic responsiveness in the heart in obesity. ABSTRACT The obesity epidemic impacts heavily on cardiovascular health, in part owing to changes in cardiac metabolism. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in the heart and is regulated by β-adrenoceptors (β-ARs) in normal conditions. In obesity, chronic sympathetic overactivation leads to impaired cardiac β-AR responsiveness, although it is unclear whether AMPK signalling, downstream of β-ARs, contributes to this dysfunction. Therefore, we aimed to determine whether reduced AMPK signalling is responsible for the reduced β-AR responsiveness in obesity. In isolated hearts of lean and obese Zucker rats, we tested β-AR responsiveness to the β1 -AR agonist isoprenaline (ISO, 1 × 10-10 to 5 × 10-8 m) in the absence and presence of the AMPK inhibitor, compound C (CC, 10 μm). The β1 -AR expression and AMPK phosphorylation were assessed by Western blot. β-Adrenergic responsiveness was reduced in the hearts of obese rats (logEC50 of ISO-developed pressure dose-response curves: lean -8.53 ± 0.13 × 10x m versus obese -8.35 ± 0.10 × 10x m ; P < 0.05 lean versus obese, n = 6 per group). This difference was not apparent after AMPK inhibition (logEC50 of ISO-developed pressure curves: lean CC -8.19 ± 0.12 × 10x m versus obese CC 8.17 ± 0.13 × 10x m, P < 0.05, n = 6 per group). β1 -Adrenergic receptor expression and AMPK phosphorylation were reduced in hearts of obese rats (AMPK at Thr172 : lean 1.73 ± 0.17 a.u. versus lean CC 0.81 ± 0.13 a.u., and obese 1.18 ± 0.09 a.u. versus obese CC 0.81 ± 0.16 a.u., P < 0.05, n = 6 per group). Thus, a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart exists, and AMPK might be an important target to restore the reduced cardiac β-adrenergic responsiveness in obesity.
Collapse
Affiliation(s)
- Carol T Bussey
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - H P Aye Thaung
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Amour J, Kersten JR. Glycaemic control in diabetic patient: Towards a global care of glycaemia. Anaesth Crit Care Pain Med 2018; 37 Suppl 1:S1-S2. [PMID: 29572100 DOI: 10.1016/j.accpm.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Julien Amour
- Sorbonne University, department of anaesthesiology and intensive care, pitié-Salpetrière hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Judy R Kersten
- Department of Anesthesiology and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Carillion A, Feldman S, Na N, Biais M, Carpentier W, Birenbaum A, Cagnard N, Loyer X, Bonnefont-Rousselot D, Hatem S, Riou B, Amour J. Atorvastatin reduces β-Adrenergic dysfunction in rats with diabetic cardiomyopathy. PLoS One 2017; 12:e0180103. [PMID: 28727746 PMCID: PMC5519044 DOI: 10.1371/journal.pone.0180103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background In the diabetic heart the β-adrenergic response is altered partly by down-regulation of the β1-adrenoceptor, reducing its positive inotropic effect and up-regulation of the β3-adrenoceptor, increasing its negative inotropic effect. Statins have clinical benefits on morbidity and mortality in diabetic patients which are attributed to their “pleiotropic” effects. The objective of our study was to investigate the role of statin treatment on β-adrenergic dysfunction in diabetic rat cardiomyocytes. Methods β-adrenergic responses were investigated in vivo (echocardiography) and ex vivo (left ventricular papillary muscles) in healthy and streptozotocin-induced diabetic rats, who were pre-treated or not by oral atorvastatin over 15 days (50 mg.kg-1.day-1). Micro-array analysis and immunoblotting were performed in left ventricular homogenates. Data are presented as mean percentage of baseline ± SD. Results Atorvastatin restored the impaired positive inotropic effect of β-adrenergic stimulation in diabetic hearts compared with healthy hearts both in vivo and ex vivo but did not suppress the diastolic dysfunction of diabetes. Atorvastatin changed the RNA expression of 9 genes in the β-adrenergic pathway and corrected the protein expression of β1-adrenoceptor and β1/β3-adrenoceptor ratio, and multidrug resistance protein 4 (MRP4). Nitric oxide synthase (NOS) inhibition abolished the beneficial effects of atorvastatin on the β-adrenoceptor response. Conclusions Atorvastatin restored the positive inotropic effect of the β-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by multiple modifications in expression of proteins in the β-adrenergic signaling pathway, particularly through the NOS pathway.
Collapse
Affiliation(s)
- Aude Carillion
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Sarah Feldman
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Na Na
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Matthieu Biais
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care, Université Bordeaux Segalen, Hôpital Pellegrin, Bordeaux, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Post-Genomic Platform, Paris, France
| | - Aurélie Birenbaum
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Nicolas Cagnard
- Sorbonne Universités, Université Paris Descartes, Bioinformatics Platform, Paris, France
| | - Xavier Loyer
- Sorbonne Universités, Université Paris Descartes, UMRS INSERM U970, Cardiovascular Research center, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Dominique Bonnefont-Rousselot
- Sorbonne Paris Cité, Paris Descartes University, CNRS UMR8258—INSERM U1022, Faculty of Pharmacy, Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France
| | - Stéphane Hatem
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, Sorbonne Universités, UPMC Univ Paris 06, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Bruno Riou
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Julien Amour
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- * E-mail:
| |
Collapse
|
14
|
De Jong A, Carreira S, Na N, Carillion A, Jiang C, Beuvin M, Lacorte JM, Bonnefont-Rousselot D, Riou B, Coirault C. Diaphragmatic function is enhanced in fatty and diabetic fatty rats. PLoS One 2017; 12:e0174043. [PMID: 28328996 PMCID: PMC5362060 DOI: 10.1371/journal.pone.0174043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/02/2017] [Indexed: 11/24/2022] Open
Abstract
Background Obesity is associated with a decrease in mortality in the intensive care unit (ICU) (the "obesity paradox"). We hypothesized that obesity may paradoxically improve diaphragmatic function. Methods Diaphragm contractility was prospectively recorded in vitro in adult male Zucker lean (control), fatty, and diabetic fatty rats, at rest, after 12h mechanical ventilation and after fatigue. We analyzed diaphragm morphology, cytokines, and protein expression of the protein kinase signaling pathways. Results Diaphragm active-force (AF) was higher in fatty (96±7mN.mm-2,P = 0.02) but not in diabetic fatty rats (90±17mN.mm-2) when compared with controls (84±8mN.mm-2). Recovery from fatigue was improved in fatty and diabetic fatty groups compared with controls. Ventilator-induced diaphragmatic dysfunction was observed in each group, but AF remained higher in fatty (82±8mN.mm-2,P = 0.03) compared with controls (70±8mN.mm-2). There was neutral lipid droplet accumulation in fatty and diabetic fatty. There were shifts towards a higher cross-sectional-area (CSA) of myosin heavy chain isoforms (MyHC)-2A fibers in fatty and diabetic fatty compared with control rats (P = 0.002 and P<0.001, respectively) and a smaller CSA of MyHC-2X in fatty compared with diabetic fatty and control rats (P<0.001 and P<0.001, respectively). The phosphorylated total-protein-kinase-B (pAKT)/AKT ratio was higher in fatty (182±58%,P = 0.03), but not in diabetic fatty when compared with controls and monocarboxylate-transporter-1 was higher in diabetic fatty (147±36%,P = 0.04), but not in fatty. Conclusions Diaphragmatic force is increased in Zucker obese rats before and after mechanical ventilation, and is associated with activation of AKT pathway signaling and complex changes in morphology.
Collapse
Affiliation(s)
- Audrey De Jong
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Department of Anesthesia and Critical Care B, Hôpital Saint-Eloi, CHU de Montpellier, France
- * E-mail:
| | - Serge Carreira
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Na Na
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Aude Carillion
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Cheng Jiang
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Emergency Department, Zonghnan University Hospital, Wuhan University, Wuhan, The People’s Republic of China
| | - Maud Beuvin
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Jean-Marc Lacorte
- Department of Endocrinologic and Oncologic Biochemistry, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Bonnefont-Rousselot
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Metabolic Biochemistry, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Université Paris Descartes, Faculty of Pharmacy, Paris, France
| | - Bruno Riou
- Sorbonne Universités UPMC Univ Paris 06, UMR INSERM-UPMC 1166, IHU ICAN, Paris, France
- Department of Emergency Medicine and Surgery, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Catherine Coirault
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| |
Collapse
|
15
|
De Jong A, Deras P, Martinez O, Latry P, Jaber S, Capdevila X, Charbit J. Relationship between Obesity and Massive Transfusion Needs in Trauma Patients, and Validation of TASH Score in Obese Population: A Retrospective Study on 910 Trauma Patients. PLoS One 2016; 11:e0152109. [PMID: 27010445 PMCID: PMC4807035 DOI: 10.1371/journal.pone.0152109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
Background Prediction of massive transfusion (MT) is challenging in management of trauma patients. However, MT and its prediction were poorly studied in obese patients. The main objective was to assess the relationship between obesity and MT needs in trauma patients. The secondary objectives were to validate the Trauma Associated Severe Hemorrhage (TASH) score in predicting MT in obese patients and to use a grey zone approach to optimize its ability to predict MT. Methods and Findings An observational retrospective study was conducted in a Level I Regional Trauma Center Trauma in obese and non-obese patients. MT was defined as ≥10U of packed red blood cells in the first 24h and obesity as a BMI≥30kg/m². Between January 2008 and December 2012, 119 obese and 791 non-obese trauma patients were included. The rate of MT was 10% (94/910) in the whole population. The MT rate tended to be higher in obese patients than in non-obese patients: 15% (18/119, 95%CI 9‒23%) versus 10% (76/791, 95%CI 8‒12%), OR, 1.68 [95%CI 0.97‒2.92], p = 0.07. After adjusting for Injury Severity Score (ISS), obesity was significantly associated with MT rate (OR, 1.79[95%CI 1.00‒3.21], p = 0.049). The TASH score was higher in the obese group than in the non-obese group: 7(4–11) versus 5(2–10)(p<0.001). The area under the ROC curves of the TASH score in predicting MT was very high and comparable between the obese and non-obese groups: 0.93 (95%CI, 0.89‒0.98) and 0.94 (95%CI, 0.92‒0.96), respectively (p = 0.80). The grey zone ranged respectively from 10 to 13 and from 9 to 12 in obese and non obese patients, and allowed separating patients at low, intermediate or high risk of MT using the TASH score. Conclusions Obesity was associated with a higher rate of MT in trauma patients. The predictive performance of the TASH score and the grey zones were robust and comparable between obese and non-obese patients.
Collapse
Affiliation(s)
- Audrey De Jong
- Trauma Intensive Care & Critical Care Unit, Lapeyronie University Hospital, Montpellier, France.,Intensive Care Unit & Anesthesiology Department, Saint-Eloi University Hospital, Montpellier, France.,INSERM U1046 Montpellier, France
| | - Pauline Deras
- Trauma Intensive Care & Critical Care Unit, Lapeyronie University Hospital, Montpellier, France
| | - Orianne Martinez
- Trauma Intensive Care & Critical Care Unit, Lapeyronie University Hospital, Montpellier, France
| | | | - Samir Jaber
- Intensive Care Unit & Anesthesiology Department, Saint-Eloi University Hospital, Montpellier, France.,INSERM U1046 Montpellier, France
| | - Xavier Capdevila
- Trauma Intensive Care & Critical Care Unit, Lapeyronie University Hospital, Montpellier, France
| | - Jonathan Charbit
- Trauma Intensive Care & Critical Care Unit, Lapeyronie University Hospital, Montpellier, France
| |
Collapse
|
16
|
The Heart of Diabetes. Crit Care Med 2015; 43:1552-4. [PMID: 26079241 DOI: 10.1097/ccm.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|