1
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
2
|
Yang Q, Wang L, Zhang X, Lu P, Pan D, Li S, Ling Y, Zhi X, Xia L, Zhu Y, Chen Y, Liu C, Jin W, Reinhardt JD, Wang X, Zheng Y. Impact of an enhanced recovery after surgery program integrating cardiopulmonary rehabilitation on post-operative prognosis of patients treated with CABG: protocol of the ERAS-CaRe randomized controlled trial. BMC Pulm Med 2024; 24:512. [PMID: 39402537 PMCID: PMC11476288 DOI: 10.1186/s12890-024-03286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Coronary artery bypass grafting is associated with a high occurrence of postoperative cardiopulmonary complications. Preliminary evidence suggested that enhanced recovery after surgery can effectively reduce the occurrence of postoperative cardiopulmonary complications. However, enhanced recovery after surgery with systematic integration of cardiopulmonary rehabilitation (ERAS-CaRe) into for Coronary artery bypass grafting has not been evaluated so far. We thus design the ERAS-CaRe randomized-controlled trial to evaluate possible superiority of embedding cardiopulmonary rehabilitation in ERAS over ERAS alone as well as to investigate effects of differential timing of cardiopulmonary rehabilitation within enhanced recovery after surgery (pre-, post-, perio-operative) on post-operative cardiopulmonary complications following Coronary artery bypass grafting surgery. METHODS ERAS-CaRe is a pragmatic, randomized-controlled, parallel four-arm, clinical trial. Three hundred sixty patients scheduled for Coronary artery bypass grafting in two Chinese hospitals will be grouped randomly into (i) Standard enhanced recovery after surgery or (ii) pre-operative ERAS-CaRe or (iii) post-operative ERAS-CaRe or (iv) perio-operative ERAS-CaRe. Primary outcome is the occurrence of cardiopulmonary complications at 10 days after Coronary artery bypass grafting. Secondary outcomes include the occurrence of other individual complications including cardiac, pulmonary, stroke, acute kidney injury, gastrointestinal event, ICU delirium rate, reintubation rate, early drainage tube removal rate, unplanned revascularization rate, all-cause mortality, ICU readmission rate, plasma concentration of myocardial infarction-related key biomarkers etc. DISCUSSION: The trial is designed to evaluate the hypothesis that a cardiopulmonary rehabilitation based enhanced recovery after surgery program reduces the occurrence of cardiopulmonary complications following Coronary artery bypass grafting and to determine optimal timing of cardiopulmonary rehabilitation within enhanced recovery after surgery. The project will contribute to increasing the currently limited knowledge base in the field as well as devising clinical recommendations. TRIAL REGISTRATION The trial was registered at the Chinese Clinical Trials Registry on 25 August 2023 (ChiCTR2300075125; date recorded: 25/8/2023, https://www.chictr.org.cn/ ).
Collapse
Affiliation(s)
- Qingyan Yang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Lu Wang
- Department of Rehabilitation Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xintong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Lu
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dijia Pan
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Shurui Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Yuewei Ling
- Institute for Disaster Management and Reconstruction, Sichuan University, No. 122 Huanghezhong Road First Section, Chengdu, Sichuan, 610207, China
- Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
| | - Xiaohui Zhi
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Lingfeng Xia
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Ye Zhu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Chaoyang Liu
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanjun Jin
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, No. 122 Huanghezhong Road First Section, Chengdu, Sichuan, 610207, China.
- Swiss Paraplegic Research, Nottwil, Switzerland.
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland.
- Rehabilitation Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaowei Wang
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yu Zheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
4
|
Waalders NJB, Jansen A, Pickkers P. Effect of CytoSorb on Interleukin-6. Crit Care Med 2024; 52:e152-e153. [PMID: 38381019 DOI: 10.1097/ccm.0000000000006120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Nicole J B Waalders
- Radboud university medical center, Department of Intensive Care Medicine, Nijmegen, The Netherlands
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Aron Jansen
- Radboud university medical center, Department of Intensive Care Medicine, Nijmegen, The Netherlands
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Peter Pickkers
- Radboud university medical center, Department of Intensive Care Medicine, Nijmegen, The Netherlands
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| |
Collapse
|
5
|
Jansen A, Waalders NJB, van Lier DPT, Kox M, Pickkers P. CytoSorb hemoperfusion markedly attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo. Crit Care 2023; 27:117. [PMID: 36945034 PMCID: PMC10029173 DOI: 10.1186/s13054-023-04391-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The CytoSorb hemoadsorption device has been demonstrated to be capable of clearing inflammatory cytokines, but has not yet been shown to attenuate plasma cytokine concentrations. We investigated the effects of CytoSorb hemoperfusion on plasma levels of various cytokines using the repeated human experimental endotoxemia model, a highly standardized and reproducible human in vivo model of systemic inflammation and immunological tolerance induced by administration of bacterial lipopolysaccharide (LPS). METHODS Twenty-four healthy male volunteers (age 18-35) were intravenously challenged with LPS (a bolus of 1 ng/kg followed by continuous infusion of 0.5 ng/kg/hr for three hours) twice: on day 0 to quantify the initial cytokine response and on day 7 to quantify the degree of endotoxin tolerance. Subjects either received CytoSorb hemoperfusion during the first LPS challenge (CytoSorb group), or no intervention (control group). Plasma cytokine concentrations and clearance rates were determined serially. This study was registered at ClinicalTrials.gov (NCT04643639, date of registration November 24th 2020). RESULTS LPS administration led to a profound increase in plasma cytokine concentrations during both LPS challenge days. Compared to the control group, significantly lower plasma levels of tumor necrosis factor (TNF, - 58%, p < 0.0001), interleukin (IL)-6 ( - 71%, p = 0.003), IL-8 ( - 48%, p = 0.02) and IL-10 ( - 26%, p = 0.03) were observed in the CytoSorb group during the first LPS challenge. No differences in cytokine responses were observed during the second LPS challenge. CONCLUSIONS CytoSorb hemoperfusion effectively attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo, whereas it does not affect long-term immune function. Therefore, CytoSorb therapy may be of benefit in conditions characterized by excessive cytokine release.
Collapse
Affiliation(s)
- Aron Jansen
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands.
| | - Nicole J B Waalders
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Dirk P T van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Habes QLM, Kant N, Beunders R, van Groenendael R, Gerretsen J, Kox M, Pickkers P. Relationships Between Systemic Inflammation, Intestinal Damage and Postoperative Organ Dysfunction in Adults Undergoing Low-Risk Cardiac Surgery. Heart Lung Circ 2023; 32:395-404. [PMID: 36621395 DOI: 10.1016/j.hlc.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/14/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Approximately half of patients who undergo cardiac surgery develop systemic inflammatory response syndrome. Extracorporeal circulation and intestinal injury may play a role in this inflammatory response, although their relative contributions remain elusive. Moreover, it is largely unknown to what extent these factors contribute to cardiac surgery-induced postoperative organ dysfunction. METHOD In this secondary analysis, we measured circulating levels of the intestinal damage marker intestinal fatty acid binding protein (I-FABP) and of the inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, IL-10, IL-1RA, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, and MIP-1β in 180 patients undergoing on-pump cardiac surgery. The average Z-score of levels of the different cytokines was used as an integral measure of the cytokine response. Relationships between duration of extracorporeal circulation, extent of intestinal injury, inflammation, and postoperative organ dysfunction were explored. RESULTS Plasma I-FABP levels increased during surgery, with peak levels observed at the end of cardiopulmonary bypass (CPB). Except for TNF-α, the levels of all cytokines increased during surgery, with peak levels observed either 2 (MCP-1, MIP-1α, and MIP-1β), 4 (IL-6, IL-8, and IL-1RA) or 6 (IL-10) hours after the end of CPB. While the duration of CPB significantly correlated with cytokine Z-score (r=0.544, p<0.05), no relationship with I-FABP levels was found. Furthermore, no significant correlations between I-FABP and cytokine levels were observed. The duration of CPB correlated with a deterioration in postoperative kidney function (estimated glomerular filtration rate [eGFR]) and troponin levels. Cytokine Z-score was associated with postoperative troponin levels, fluid administration, inotropic score, pulmonary alveolar-arterial gradient on the first postoperative morning, and deterioration of kidney function (eGFR). I-FABP levels did not correlate with any of the cardiovascular, pulmonary, or renal parameters. CONCLUSIONS In patients undergoing low-risk cardiac surgery, the duration of CPB represents an important determinant of the systemic cytokine response, whereas both the CPB duration and the systemic inflammatory response contribute to subsequent organ dysfunction. Intestinal damage does not appear to play a relevant role in the postoperative inflammatory response and development of postoperative organ dysfunction in these patients.
Collapse
Affiliation(s)
- Quirine L M Habes
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Niels Kant
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Remi Beunders
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Roger van Groenendael
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Matthijs Kox
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands.
| | - Peter Pickkers
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Luo X, Chen H, Song Y, Qin Z, Xu L, He N, Tan Y, Dessie W. Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides. Eur J Pharm Sci 2023; 181:106363. [PMID: 36529161 DOI: 10.1016/j.ejps.2022.106363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Among other health related issues, the rising concerns on drug resistance led to look for alternative pharmaceutical drugs that are effective both against infectious and noninfectious diseases. Antimicrobial peptides (AMPs) emerged as potential therapeutic molecule with wide range of applications. With their limitations, AMPs have gained reputable attentions in research as well as in the pharmaceutical industry. This review highlighted the historical background, research trends, technological advancements, challenges, and future perspectives in the development and applications of peptide drugs. Some vital questions related with the need for pharmaceutical production, factors for the slow and steady journey, the importance of oral bioavailability, and the drug resistance possibilities of AMPs were raised and addressed accordingly. Therefore, the current study is believed to provide a profound understanding in the past and current scenarios and future directions on the therapeutic impacts of peptide drugs.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Huifang Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Yannan Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China.
| |
Collapse
|
8
|
Chen JJ, Lee TH, Kuo G, Huang YT, Chen PR, Chen SW, Yang HY, Hsu HH, Hsiao CC, Yang CH, Lee CC, Chen YC, Chang CH. Strategies for post-cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960581. [PMID: 36247436 PMCID: PMC9555275 DOI: 10.3389/fcvm.2022.960581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Objects Cardiac surgery is associated with acute kidney injury (AKI). However, the effects of various pharmacological and non-pharmacological strategies for AKI prevention have not been thoroughly investigated, and their effectiveness in preventing AKI-related adverse outcomes has not been systematically evaluated. Methods Studies from PubMed, Embase, and Medline and registered trials from published through December 2021 that evaluated strategies for preventing post-cardiac surgery AKI were identified. The effectiveness of these strategies was assessed through a network meta-analysis (NMA). The secondary outcomes were prevention of dialysis-requiring AKI, mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. The interventions were ranked using the P-score method. Confidence in the results of the NMA was assessed using the Confidence in NMA (CINeMA) framework. Results A total of 161 trials (involving 46,619 participants) and 53 strategies were identified. Eight pharmacological strategies {natriuretic peptides [odds ratio (OR): 0.30, 95% confidence interval (CI): 0.19-0.47], nitroprusside [OR: 0.29, 95% CI: 0.12-0.68], fenoldopam [OR: 0.36, 95% CI: 0.17-0.76], tolvaptan [OR: 0.35, 95% CI: 0.14-0.90], N-acetyl cysteine with carvedilol [OR: 0.37, 95% CI: 0.16-0.85], dexmedetomidine [OR: 0.49, 95% CI: 0.32-0.76;], levosimendan [OR: 0.56, 95% CI: 0.37-0.84], and erythropoietin [OR: 0.62, 95% CI: 0.41-0.94]} and one non-pharmacological intervention (remote ischemic preconditioning, OR: 0.76, 95% CI: 0.63-0.92) were associated with a lower incidence of post-cardiac surgery AKI with moderate to low confidence. Among these nine strategies, five (fenoldopam, erythropoietin, natriuretic peptides, levosimendan, and remote ischemic preconditioning) were associated with a shorter ICU LOS, and two (natriuretic peptides [OR: 0.30, 95% CI: 0.15-0.60] and levosimendan [OR: 0.68, 95% CI: 0.49-0.95]) were associated with a lower incidence of dialysis-requiring AKI. Natriuretic peptides were also associated with a lower risk of mortality (OR: 0.50, 95% CI: 0.29-0.86). The results of a sensitivity analysis support the robustness and effectiveness of natriuretic peptides and dexmedetomidine. Conclusion Nine potentially effective strategies were identified. Natriuretic peptide therapy was the most effective pharmacological strategy, and remote ischemic preconditioning was the only effective non-pharmacological strategy. Preventive strategies might also help prevent AKI-related adverse outcomes. Additional studies are required to explore the optimal dosages and protocols for potentially effective AKI prevention strategies.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rung Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- Department of Nephrology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|