1
|
Machado-Junior PA, Dias MSS, de Souza ABF, Lopes LSE, Menezes TP, Talvani A, Brochard L, Bezerra FS. A short duration of mechanical ventilation alters redox status in the diaphragm and aggravates inflammation in septic mice. Respir Physiol Neurobiol 2024; 331:104361. [PMID: 39433197 DOI: 10.1016/j.resp.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Mechanical ventilation (MV) is a life support method used to treat patients with respiratory failure. High tidal volumes during MV can cause ventilator-induced lung injury (VILI), but also affect other organs, such as the diaphragm (Dia) causing ventilator-induced diaphragmatic dysfunction (VIDD). VIDD is often associated with a complicated course on MV. Sepsis can induce inflammation and oxidative stress, contributing to the impairment of the Dia and worsening of the prognosis. This study evaluated the additive or synergistic effects of a short course of mechanical ventilation on Dia in healthy and septic adult mice. METHODS 32 adult male C57BL/6 mice were randomly into four groups: Control (CG), non-ventilated animals instilled with saline solution (PBS1x); Lipopolysaccharide (LPS), non-ventilated animals instilled with PBS solution containing lipopolysaccharide; Mechanical Ventilation (MV) for 1 h, ventilated animals instilled with PBS solution; and Mechanical Ventilation and LPS (MV+LPS), ventilated animals instilled with PBS solution containing LPS. At the end of the experimental protocol, the animals were euthanized, then blood and diaphragm tissue samples were collected. RESULTS Evaluation of leukocyte/blood parameters and diaphragm muscle showed that MV, LPS and the combination of both were able to increase neutrophil count, creatine kinase, inflammatory mediators and oxidative stress in all groups compared to the control. MV and sepsis combined had additive effects on inflammation and lipid peroxidation. CONCLUSIONS A short course of Mechanical ventilation promotes inflammation and oxidative stress and, its combination with sepsis further increases local and systemic inflammation.
Collapse
Affiliation(s)
- Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Marcelo Santiago Soares Dias
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leonardo Spinelli Estevão Lopes
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Wennen M, Claassen W, Heunks L. Setting positive end-expiratory pressure: role in diaphragm-protective ventilation. Curr Opin Crit Care 2024; 30:61-68. [PMID: 38085880 DOI: 10.1097/mcc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.
Collapse
Affiliation(s)
- Myrte Wennen
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
| | - Wout Claassen
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam
| | - Leo Heunks
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
- Department of intensive care medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Doerr V, Montalvo RN, Nguyen BL, Boeno FP, Sunshine MD, Bindi VE, Fuller DD, Smuder AJ. Effects of Hyperbaric Oxygen Preconditioning on Doxorubicin Cardiorespiratory Toxicity. Antioxidants (Basel) 2022; 11:antiox11102073. [PMID: 36290796 PMCID: PMC9598583 DOI: 10.3390/antiox11102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
| | - Franccesco P. Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Michael D. Sunshine
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Victoria E. Bindi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
4
|
Prolonged Mechanical Ventilation: Outcomes and Management. J Clin Med 2022; 11:jcm11092451. [PMID: 35566577 PMCID: PMC9103623 DOI: 10.3390/jcm11092451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
The number of patients requiring prolonged mechanical ventilation (PMV) is increasing worldwide, placing a burden on healthcare systems. Therefore, investigating the pathophysiology, risk factors, and treatment for PMV is crucial. Various underlying comorbidities have been associated with PMV. The pathophysiology of PMV includes the presence of an abnormal respiratory drive or ventilator-induced diaphragm dysfunction. Numerous studies have demonstrated that ventilator-induced diaphragm dysfunction is related to increases in in-hospital deaths, nosocomial pneumonia, oxidative stress, lung tissue hypoxia, ventilator dependence, and costs. Thus far, the pathophysiologic evidence for PMV has been derived from clinical human studies and experimental studies in animals. Moreover, recent studies have demonstrated the outcome benefits of pharmacological agents and rehabilitative programs for patients requiring PMV. However, methodological limitations affected these studies. Controlled prospective studies with an adequate number of participants are necessary to provide evidence of the mechanism, prognosis, and treatment of PMV. The great epidemiologic impact of PMV and the potential development of treatment make this a key research field.
Collapse
|
5
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
6
|
Magnesium sulfate ameliorates sepsis-induced diaphragm dysfunction in rats via inhibiting HMGB1/TLR4/NF-κB pathway. Neuroreport 2021; 31:902-908. [PMID: 32558672 PMCID: PMC7368847 DOI: 10.1097/wnr.0000000000001478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diaphragm dysfunction could be induced by sepsis with subsequent ventilatory pump failure that is associated with local infiltration of inflammatory factors in the diaphragm. It has been shown that the administration of anticonvulsant agent, magnesium sulfate (MgSO4) could decrease systematic inflammatory response. We recently reported that MgSO4 could inhibit macrophages high mobility group box 1 (HMGB1) secretion that confirms its anti-inflammatory properties. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway appears to be involved in the pathology of septic experimental animal’s inflammatory response and involve in the pathogenic mechanisms of sepsis-induced diaphragm dysfunction. Thus, in this study, we are aiming to explore whether MgSO4 could ameliorate sepsis-induced diaphragm dysfunction via TLR4/NF-κB pathway in a rodent model with controlled mechanical ventilation (CMV) and subsequent septic challenge.
Collapse
|
7
|
Sharma S, Chaudhary P, Sandhir R, Bharadwaj A, Gupta RK, Khatri R, Bajaj AC, Baburaj TP, Kumar S, Pal MS, Reddy PK, Kumar B. Heat-induced endoplasmic reticulum stress in soleus and gastrocnemius muscles and differential response to UPR pathway in rats. Cell Stress Chaperones 2021; 26:323-339. [PMID: 33210173 PMCID: PMC7925797 DOI: 10.1007/s12192-020-01178-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the differential response of oxidative (soleus) and glycolytic (gastrocnemius) muscles to heat-induced endoplasmic reticulum (ER) stress. It was hypothesized that due to compositional and functional differences, both muscles respond differently to acute heat stress. To address this, male Sprague Dawley rats (12/group) were subjected to thermoneutral (25 °C) or heat stress (42 °C) conditions for 1 h. Soleus and gastrocnemius muscles were removed for analysis post-exposure. A significant increase in body temperature and free radical generation was observed in both the muscles following heat exposure. This further caused a significant increase in protein carbonyl content, AOPP, and lipid peroxidation in heat-stressed muscles. These changes were more pronounced in heat-stressed soleus compared to the gastrocnemius muscle. Accumulation of unfolded, denatured proteins results in ER stress, causing activation of unfolded protein response (UPR) pathway. The expressions of UPR transducers were significantly higher in soleus as compared to the gastrocnemius muscle. A significant elevation in resting intracellular calcium ion was also observed in heat-stressed soleus muscle. Overloading of cells with misfolded proteins in soleus muscle activated ER-induced apoptosis as indicated by significant upregulation of C/EBP homologous protein and Caspase12. The study provides a detailed mechanistic representation of the differential response of muscles toward UPR under heat stress. Data suggests that soleus majorly being an oxidative muscle is more prone to heat stress-induced insult indicated by enhanced apoptosis. This study may aid in devising mitigation strategies to improve muscle performance under heat stress.
Collapse
Affiliation(s)
- Shivani Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
- Department of Biochemistry, Panjab University, sector 25, Chandigarh, India
| | - Pooja Chaudhary
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India.
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, sector 25, Chandigarh, India
| | - Abhishek Bharadwaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Rajinder K Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Rahul Khatri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Amir Chand Bajaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - T P Baburaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Sachin Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - M S Pal
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| |
Collapse
|
8
|
Baumfalk DR, Opoku-Acheampong AB, Caldwell JT, Butenas ALE, Horn AG, Kunkel ON, Copp SW, Ade CJ, Musch TI, Behnke BJ. Effects of high-intensity training on prostate cancer-induced cardiac atrophy. Am J Transl Res 2021; 13:197-209. [PMID: 33527018 PMCID: PMC7847523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent evidence suggests prostate cancer independent of treatment has atrophic effects on whole heart and left ventricular (LV) masses, associated with reduced endurance exercise capacity. In a pre-clinical model, we tested the hypothesis that high-intensity training could prevent cardiac atrophy with prostate cancer and alter cardiac protein degradation mechanisms. METHODS Dunning R-3327 AT-1 prostate cancer cells (1×105) were injected into the ventral prostate lobe of 5-6 mo immunocompetent Copenhagen rats (n=24). These animals were randomized into two groups, tumor-bearing exercise (TBEX, n=15) or tumor bearing sedentary (TBS, n=9). Five days after surgery, TBEX animals began exercise on a treadmill (25 m/min, 15° incline) for 45-60 min/day for 18±2 days. Pre-surgery (Pre), and post-exercise training (Post) echocardiographic evaluation (Vivid S6, GE Health Care), using the parasternal short axis view, was used to examine ventricle dimensions. Markers of protein degradation (muscle atrophy F-box, Cathepsin B, Cathepsin L) in the left ventricle were semi-quantified via Western Blot. RESULTS There were no significant differences in tumor mass between groups (TBEX 3.4±0.7, TBS 2.8±0.6 g, P=0.3), or body mass (TBEX 317±5, TBS 333±7 g, P=0.2). Heart-to-body mass ratio was lower in TBS group compared to TBEX (2.3±0.1 vs. 2.5±0.1 mg/g, P<0.05). LV/body mass ratio was also lower in the TBS group (1.6±0.1 vs. 1.8±0.1 mg/g, P<0.05). From Pre-Post, TBEX had significant increases in SV (~20% P<0.05) whereas TBS had no significant change. There were no significant differences between groups for markers of protein degradation. CONCLUSION This study suggests that high-intensity exercise can improve LV function and increase LV mass concurrent with prostate cancer development, versus sedentary counterparts. Given cardiac dysfunction often manifests with conventional anti-cancer treatments, a short-term high-intensity training program, prior to treatment, may improve cardiac function and fatigue resistance in cancer patients.
Collapse
Affiliation(s)
- Dryden R Baumfalk
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | | | - Jacob T Caldwell
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Alec L E Butenas
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Andrew G Horn
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Olivia N Kunkel
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
- Johnson Cancer Research Center, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
- Department of Anatomy and Physiology, Kansas State UniversityManhattan 66506, Kansas, USA
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State UniversityManhattan 66506, Kansas, USA
- Johnson Cancer Research Center, Kansas State UniversityManhattan 66506, Kansas, USA
| |
Collapse
|
9
|
Smuder AJ, Turner SM, Schuster CM, Morton AB, Hinkley JM, Fuller DD. Hyperbaric Oxygen Treatment Following Mid-Cervical Spinal Cord Injury Preserves Diaphragm Muscle Function. Int J Mol Sci 2020; 21:ijms21197219. [PMID: 33007822 PMCID: PMC7582297 DOI: 10.3390/ijms21197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative damage to the diaphragm as a result of cervical spinal cord injury (SCI) promotes muscle atrophy and weakness. Respiratory insufficiency is the leading cause of morbidity and mortality in cervical spinal cord injury (SCI) patients, emphasizing the need for strategies to maintain diaphragm function. Hyperbaric oxygen (HBO) increases the amount of oxygen dissolved into the blood, elevating the delivery of oxygen to skeletal muscle and reactive oxygen species (ROS) generation. It is proposed that enhanced ROS production due to HBO treatment stimulates adaptations to diaphragm oxidative capacity, resulting in overall reductions in oxidative stress and inflammation. Therefore, we tested the hypothesis that exposure to HBO therapy acutely following SCI would reduce oxidative damage to the diaphragm muscle, preserving muscle fiber size and contractility. Our results demonstrated that lateral contusion injury at C3/4 results in a significant reduction in diaphragm muscle-specific force production and fiber cross-sectional area, which was associated with augmented mitochondrial hydrogen peroxide emission and a reduced mitochondrial respiratory control ratio. In contrast, rats that underwent SCI followed by HBO exposure consisting of 1 h of 100% oxygen at 3 atmospheres absolute (ATA) delivered for 10 consecutive days demonstrated an improvement in diaphragm-specific force production, and an attenuation of fiber atrophy, mitochondrial dysfunction and ROS production. These beneficial adaptations in the diaphragm were related to HBO-induced increases in antioxidant capacity and a reduction in atrogene expression. These findings suggest that HBO therapy may be an effective adjunctive therapy to promote respiratory health following cervical SCI.
Collapse
Affiliation(s)
- Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
- Breathing Research and Therapeutics, University of Florida, Gainesville, FL 32610, USA;
- Correspondence:
| | - Sara M. Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
| | - Cassandra M. Schuster
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
| | - Aaron B. Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
| | - J. Matthew Hinkley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (A.B.M.); (J.M.H.)
| | - David D. Fuller
- Breathing Research and Therapeutics, University of Florida, Gainesville, FL 32610, USA;
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (S.M.T.); (C.M.S.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Effect of Long-Term Polytrauma on Ventilator-Induced Diaphragmatic Dysfunction in a Piglet Model. Shock 2020; 52:443-448. [PMID: 30300316 DOI: 10.1097/shk.0000000000001272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Mechanical ventilation is known to activate oxidative stress and proteolytic pathways in the diaphragm. Trauma by inducing inflammation and activating proteolytic pathways may potentiate the effects of mechanical ventilation on the diaphragm. In a blunt chest trauma with concomitant injuries we tested the hypothesis that trauma via inflammation further activates the proteolytic pathways and worsens atrophy in the diaphragm. MATERIAL AND METHODS Piglets were separated into two groups and underwent 72 h of mechanical ventilation. One group received a polytrauma (PT) by unilateral femur fracture, blunt chest trauma with lung contusion, laparotomy with standardized liver incision, and a predefined hemorrhagic shock. The second mechanically ventilated group (MV) did not receive any trauma. A non-ventilated group (Con) served as control.Diaphragmatic fiber dimensions, Western Blot analyses of proteolytic pathways, and lipid peroxidation and messenger ribonucleic acid (mRNA) levels of cytokines and nuclear factor kappa b subunit p65 were measured. RESULTS Active Caspase-3 was significantly increased in MV (P = 0.019), and in PT (P = 0.02) compared with Con. Nuclear factor kappa b subunit p65, was upregulated in PT (P = 0.010) compared with Con. IL-6 mRNA increased significantly in PT compared with Con (P = 0.0024) but did not differ between Con and MV. CONCLUSION Trauma and mechanical ventilation induced proteolysis and atrophy in the diaphragm, but only polytrauma induced an inflammatory response in the diaphragm. The additional traumatic inflammatory stimulus did not increase the levels of the prementioned variables. These data underline that inflammation is not a major contributor to ventilator-induced diaphragmatic dysfunction. TRIAL REGISTRY NUMBER AZ 84-02.04.2014.A265 (Landesamt für Natur-, Umwelt- und Verbraucherschutz, LANUV NRW, Germany).
Collapse
|
11
|
Wu Y, Wang Y, Liu B, Cheng Y, Qian H, Yang H, Li X, Yang G, Zheng X, Shen F. SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation. Respir Res 2020; 21:130. [PMID: 32460750 PMCID: PMC7251840 DOI: 10.1186/s12931-020-01372-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background It has been confirmed that NF-κB p65 signaling pathway is involved in the regulation of alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome (ARDS). Whether SN50, a NF-κB cell permeable inhibitor, could attenuate alveolar hypercoagulation and fibrinolysis inhibition in ARDS remains to be elucidated. Purpose We explored the efficacy and potential mechanism of SN50 on alveolar hypercoagulation and fibrinolysis inhibition in ARDS in mice. Materials and methods Mouse ARDS was made by 50 μl of lipopolysaccharide (LPS) (4 mg/ml) inhalation. Male BALB/c mice were intraperitoneally injected with different does of SN50 1 h before LPS inhalation. Lung tissues were collected for hematoxylin-eosin (HE) staining, wet/dry ratio. Pulmonary expressions of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), collagen III, as well as phosphorylated p65 (p-p65), p65 in nucleus (p’-p65), IκBα and IKKα/β were measured. Bronchoalveolar lavage fluid (BALF) was gathered to test the concentrations of TF, PAI-1, activated protein C (APC) and thrombinantithrombin complex (TAT). DNA binding activity of NF-κB p65 was also determined. Results After LPS stimulation, pulmonary edema and exudation and alveolar collapse occured. LPS also stimulated higher expressions of TF and PAI-1 in lung tissues, and higher secretions of TF, PAI-1, TAT and low level of APC in BALF. Pulmonary collagen III expression was obviously enhanced after LPS inhalation. At same time, NF-κB signaling pathway was activated with LPS injury, shown by higher expressions of p-p65, p’-p65, p-IKKα/β, p-Iκα in pulmonary tissue and higher level p65 DNA binding activity. SN50 dose-dependently inhibited TF, PAI-1 and collagen IIIexpressions, and decreased TF, PAI-1, TAT but increased APC in BALF. SN50 treatment attenuated pulmonary edema, exudation and reduced lung tissue damage as well. SN50 application significantly reduced p’-p65 expression and weakened p65 DNA binding activity, but expressions of p-p65, p-IKKα/β, p-Iκα in cytoplasm of pulmonary tissue were not affected. Conclusions SN 50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in ARDS via inhibition of NF-κB p65 translocation. Our data demonstrates that NF-κB p65 pathway is a viable new therapeutic target for ARDS treatment.
Collapse
Affiliation(s)
- Yanqi Wu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Yahui Wang
- The People's Hospital of Weining County, Bijie, 553100, Guizhou Province, China
| | - Bo Liu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Yumei Cheng
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Hong Qian
- Guizhou Medical University, Guiyang, 550001, China
| | - Huilin Yang
- Guizhou Medical University, Guiyang, 550001, China
| | - Xiang Li
- Guizhou Medical University, Guiyang, 550001, China
| | - Guixia Yang
- Guizhou Medical University, Guiyang, 550001, China
| | | | - Feng Shen
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China.
| |
Collapse
|
12
|
Doerr V, Montalvo RN, Kwon OS, Talbert EE, Hain BA, Houston FE, Smuder AJ. Prevention of Doxorubicin-Induced Autophagy Attenuates Oxidative Stress and Skeletal Muscle Dysfunction. Antioxidants (Basel) 2020; 9:antiox9030263. [PMID: 32210013 PMCID: PMC7139604 DOI: 10.3390/antiox9030263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Clinical use of the chemotherapeutic doxorubicin (DOX) promotes skeletal muscle atrophy and weakness, adversely affecting patient mobility and strength. Although the mechanisms responsible for DOX-induced skeletal muscle dysfunction remain unclear, studies implicate the significant production of reactive oxygen species (ROS) in this pathology. Supraphysiological ROS levels can enhance protein degradation via autophagy, and it is established that DOX upregulates autophagic signaling in skeletal muscle. To determine the precise contribution of accelerated autophagy to DOX-induced skeletal muscle dysfunction, we inhibited autophagy in the soleus via transduction of a dominant negative mutation of the autophagy related 5 (ATG5) protein. Targeted inhibition of autophagy prevented soleus muscle atrophy and contractile dysfunction acutely following DOX administration, which was associated with a reduction in mitochondrial ROS and maintenance of mitochondrial respiratory capacity. These beneficial modifications were potentially the result of enhanced transcription of antioxidant response element-related genes and increased antioxidant capacity. Specifically, our results showed significant upregulation of peroxisome proliferator-activated receptor gamma co-activator 1-alpha, nuclear respiratory factor-1, nuclear factor erythroid-2-related factor-2, nicotinamide-adenine dinucleotide phosphate quinone dehydrogenase-1, and catalase in the soleus with DOX treatment when autophagy was inhibited. These findings establish a significant role of autophagy in the development of oxidative stress and skeletal muscle weakness following DOX administration.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA;
| | - Erin E. Talbert
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Brian A. Hain
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fraser E. Houston
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL 33606, USA;
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
- Correspondence:
| |
Collapse
|
13
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
14
|
Li SP, Zhou XL, Zhao Y. Sedation with midazolam worsens the diaphragm function than dexmedetomidine and propofol during mechanical ventilation in rats. Biomed Pharmacother 2019; 121:109405. [PMID: 31810122 DOI: 10.1016/j.biopha.2019.109405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is identified as an independent contributor to diaphragmatic atrophy and contractile dysfunction. Appropriate sedation is also essential during MV, and anesthetics may have direct adverse effects on the diaphragm. However, there is a lack of research into the effects of different anesthetics on diaphragm function during MV. OBJECTIVES In the present study, we aim to examine the effect of midazolam, dexmedetomidine, and propofol on diaphragm function during MV. DESIGN Animal study. SETTING University research laboratory. SUBJECTS Male Wistar rats. INTERVENTIONS Animals were experienced 12 h of MV or spontaneous breathing (SB) with continuous anesthetics infusion. Diaphragm contractile properties, cross-sectional areas, microcirculation, oxidative stress, and proteolysis were examined. MEASUREMENTS AND MAIN RESULTS Diaphragmatic specific force was markedly reduced in the midazolam group compared with the dexmedetomidine (-60.4 ± 3.01%, p < 0.001) and propofol group (-58.3 ± 2.60%, p < 0.001) after MV. MV sedated with midazolam induced more atrophy of type II fibers compared with dexmedetomidine (-21.8 ± 2.11%, p = 0.0001) and propofol (-8.2 ± 1.53%, p = 0.003). No significant differences of these indices were found in the midazolam, dexmedetomidine, and propofol groups under SB condition (all p > 0.05, respectively). Twelve hours of MV resulted in a time dependent reduction in diaphragmatic functional capillary density (PB -25.1%, p = 0.0001; MZ -21.6%, p = 0.0003; DD -15.2%, p = 0.022; PP -24.8%, p = 0.0001, respectively), which did not occur in the gastrocnemius muscle. The diaphragmatic lipid peroxidation adducts 4-HNE and HIF-1α levels were significantly lower in dexmedetomidine group and propofol group compared to midazolam group (p < 0.05, respectively). Meanwhile, the catalase and SOD levels were also relatively lower (p < 0.05, respectively) in midazolam group compared to dexmedetomidine group and propofol group. CONCLUSIONS Twelve hours of mechanical ventilation during midazolam sedation led to a more severe diaphragm dysfunction than dexmedetomidine and propofol, possibly caused by its relative weaker antioxidant capacity.
Collapse
Affiliation(s)
- Shao-Ping Li
- 169 Donghu Road, Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xian-Long Zhou
- 169 Donghu Road, Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yan Zhao
- 169 Donghu Road, Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
15
|
Liu Y, Chen N, Chang C, Lin S, Kao K, Hu H, Chang G, Li L. Ethyl pyruvate attenuates ventilation-induced diaphragm dysfunction through high-mobility group box-1 in a murine endotoxaemia model. J Cell Mol Med 2019; 23:5679-5691. [PMID: 31339670 PMCID: PMC6652995 DOI: 10.1111/jcmm.14478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator-induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients. Elevated high-mobility group box-1 (HMGB1) levels are associated with patients requiring long-term MV. Ethyl pyruvate (EP) has been demonstrated to lengthen survival in patients with severe sepsis. We hypothesized that the administration of HMGB1 inhibitor EP or anti-HMGB1 antibody could attenuate sepsis-exacerbated VIDD by repressing HMGB1 signalling. Male C57BL/6 mice with or without endotoxaemia were exposed to MV (10 mL/kg) for 8 hours after administrating either 100 mg/kg of EP or 100 mg/kg of anti-HMGB1 antibody. Mice exposed to MV with endotoxaemia experienced augmented VIDD, as indicated by elevated proteolytic, apoptotic and autophagic parameters. Additionally, disarrayed myofibrils and disrupted mitochondrial ultrastructures, as well as increased HMGB1 mRNA and protein expression, and plasminogen activator inhibitor-1 protein, oxidative stress, autophagosomes and myonuclear apoptosis were also observed. However, MV suppressed mitochondrial cytochrome C and diaphragm contractility in mice with endotoxaemia (P < 0.05). These deleterious effects were alleviated by pharmacologic inhibition with EP or anti-HMGB1 antibody (P < 0.05). Our data suggest that EP attenuates endotoxin-enhanced VIDD by inhibiting HMGB1 signalling pathway.
Collapse
Affiliation(s)
- Yung‐Yang Liu
- Chest DepartmentTaipei Veterans General HospitalTaipeiTaiwan
- Institutes of Clinical MedicineSchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ning‐Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Respiratory TherapyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Chih‐Hao Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
| | - Shih‐Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Respiratory TherapyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Kuo‐Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Respiratory TherapyChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Respiratory Care, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Han‐Chung Hu
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Respiratory TherapyChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Respiratory Care, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Gwo‐Jyh Chang
- Graduate Institute of Clinical Medical SciencesChang Gung UniversityTaoyuanTaiwan
| | - Li‐Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care MedicineChang Gung Memorial HospitalTaoyuanTaiwan
- Department of Internal MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Respiratory TherapyChang Gung Memorial HospitalTaoyuanTaiwan
| |
Collapse
|
16
|
Smuder AJ, Morton AB, Hall SE, Wiggs MP, Ahn B, Wawrzyniak NR, Sollanek KJ, Min K, Kwon OS, Nelson WB, Powers SK. Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. J Cachexia Sarcopenia Muscle 2019; 10:767-781. [PMID: 30972953 PMCID: PMC6711411 DOI: 10.1002/jcsm.12427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, prolonged MV results in significant diaphragm atrophy and contractile dysfunction, a condition referred to as ventilator-induced diaphragm dysfunction (VIDD). While there are currently no clinically approved countermeasures to prevent VIDD, increased expression of heat shock protein 72 (HSP72) has been demonstrated to attenuate inactivity-induced muscle wasting. HSP72 elicits cytoprotection via inhibition of NF-κB and FoxO transcriptional activity, which contribute to VIDD. In addition, exercise-induced prevention of VIDD is characterized by an increase in the concentration of HSP72 in the diaphragm. Therefore, we tested the hypothesis that increased HSP72 expression is required for the exercise-induced prevention of VIDD. We also determined whether increasing the abundance of HSP72 in the diaphragm, independent of exercise, is sufficient to prevent VIDD. METHODS Cause and effect was determined by inhibiting the endurance exercise-induced increase in HSP72 in the diaphragm of exercise trained animals exposed to prolonged MV via administration of an antisense oligonucleotide targeting HSP72. Additional experiments were performed to determine if increasing HSP72 in the diaphragm via genetic (rAAV-HSP72) or pharmacological (BGP-15) overexpression is sufficient to prevent VIDD. RESULTS Our results demonstrate that the exercise-induced increase in HSP72 protein abundance is required for the protective effects of exercise against VIDD. Moreover, both rAAV-HSP72 and BGP-15-induced overexpression of HSP72 were sufficient to prevent VIDD. In addition, modification of HSP72 in the diaphragm is inversely related to the expression of NF-κB and FoxO target genes. CONCLUSIONS HSP72 overexpression in the diaphragm is an effective intervention to prevent MV-induced oxidative stress and the transcriptional activity of NF-κB and FoxO. Therefore, overexpression of HSP72 in the diaphragm is a potential therapeutic target to protect against VIDD.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Exercise Science, University of South Carolina, Columbia, USA
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Stephanie E Hall
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Nicholas R Wawrzyniak
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Kisuk Min
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - W Bradley Nelson
- Department of Natural Sciences, Ohio Dominican University, Columbus, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| |
Collapse
|
17
|
Horn AG, Davis RT, Baumfalk DR, Kunkel ON, Bruells CS, McCullough DJ, Opoku-Acheampong AB, Poole DC, Behnke BJ. Impaired diaphragm resistance vessel vasodilation with prolonged mechanical ventilation. J Appl Physiol (1985) 2019; 127:423-431. [PMID: 31161883 DOI: 10.1152/japplphysiol.00189.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention, yet with prolonged MV (i.e., ≥6 h) there are time-dependent reductions in diaphragm blood flow and an impaired hyperemic response of unknown origin. Female Sprague-Dawley rats (4-8 mo, n = 118) were randomized into two groups; spontaneous breathing (SB) and 6-h (prolonged) MV. After MV or SB, vasodilation (flow-induced, endothelium-dependent and -independent agonists) and constriction (myogenic and α-adrenergic) responses were measured in first-order (1A) diaphragm resistance arterioles in vitro, and endothelial nitric oxide synthase (eNOS) mRNA expression was quantified. Following prolonged MV, there was a significant reduction in diaphragm arteriolar flow-induced (SB, 34.7 ± 3.8% vs. MV, 22.6 ± 2.0%; P ≤ 0.05), endothelium-dependent (via acetylcholine; SB, 64.3 ± 2.1% vs. MV, 36.4 ± 2.3%; P ≤ 0.05) and -independent (via sodium nitroprusside; SB, 65.0 ± 3.1% vs. MV, 46.0 ± 4.6%; P ≤ 0.05) vasodilation. Compared with SB, there was reduced eNOS mRNA expression (P ≤ 0.05). Prolonged MV diminished phenylephrine-induced vasoconstriction (SB, 37.3 ± 6.7% vs. MV, 19.0 ± 1.9%; P ≤ 0.05) but did not alter myogenic or passive pressure responses. The severe reductions in diaphragmatic blood flow at rest and during contractions, with prolonged MV, are associated with diaphragm vascular dysfunction which occurs through both endothelium-dependent and endothelium-independent mechanisms.NEW & NOTEWORTHY Following prolonged mechanical ventilation, vascular alterations occur through both endothelium-dependent and -independent pathways. This is the first study, to our knowledge, demonstrating that diaphragm arteriolar dysfunction occurs consequent to prolonged mechanical ventilation and likely contributes to the severe reductions in diaphragmatic blood flow and weaning difficulties.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Robert T Davis
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida
| | - Dryden R Baumfalk
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Olivia N Kunkel
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Christian S Bruells
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Danielle J McCullough
- Department of Anatomy and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, Alabama
| | | | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
18
|
Structural differences in the diaphragm of patients following controlled vs assisted and spontaneous mechanical ventilation. Intensive Care Med 2019; 45:488-500. [PMID: 30790029 DOI: 10.1007/s00134-019-05566-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Ventilator-induced diaphragm dysfunction or damage (VIDD) is highly prevalent in patients under mechanical ventilation (MV), but its analysis is limited by the difficulty of obtaining histological samples. In this study we compared diaphragm histological characteristics in Maastricht III (MSIII) and brain-dead (BD) organ donors and in control subjects undergoing thoracic surgery (CTL) after a period of either controlled or spontaneous MV (CMV or SMV). METHODS In this prospective study, biopsies were obtained from diaphragm and quadriceps. Demographic variables, comorbidities, severity on admission, treatment, and ventilatory variables were evaluated. Immunohistochemical analysis (fiber size and type percentages) and quantification of abnormal fibers (a surrogate of muscle damage) were performed. RESULTS Muscle samples were obtained from 35 patients. MSIII (n = 16) had more hours on MV (either CMV or SMV) than BD (n = 14) and also spent more hours and a greater percentage of time with diaphragm stimuli (time in assisted and spontaneous modalities). Cross-sectional area (CSA) was significantly reduced in the diaphragm and quadriceps in both groups in comparison with CTL (n = 5). Quadriceps CSA was significantly decreased in MSIII compared to BD but there were no differences in the diaphragm CSA between the two groups. Those MSIII who spent 100 h or more without diaphragm stimuli presented reduced diaphragm CSA without changes in their quadriceps CSA. The proportion of internal nuclei in MSIII diaphragms tended to be higher than in BD diaphragms, and their proportion of lipofuscin deposits tended to be lower, though there were no differences in the quadriceps fiber evaluation. CONCLUSIONS This study provides the first evidence in humans regarding the effects of different modes of MV (controlled, assisted, and spontaneous) on diaphragm myofiber damage, and shows that diaphragm inactivity during mechanical ventilation is associated with the development of VIDD.
Collapse
|
19
|
Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med (Maywood) 2018; 243:1329-1337. [PMID: 30453774 DOI: 10.1177/1535370218811950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.
Collapse
Affiliation(s)
- Yung-Yang Liu
- 1 Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan.,2 Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Fu Li
- 3 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.,4 Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
20
|
Kaur N, Gupta P, Saini V, Sherawat S, Gupta S, Dua A, Kumar V, Injeti E, Mittal A. Cinnamaldehyde regulates H 2 O 2 -induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems. J Cell Physiol 2018; 234:6194-6208. [PMID: 30317570 DOI: 10.1002/jcp.27348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2 O 2 -induced atrophy is examined. Myotubes were treated with H 2 O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2 O 2 -induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.
Collapse
Affiliation(s)
- Nirmaljeet Kaur
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Prachi Gupta
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Sherawat
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Sanjeev Gupta
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Anita Dua
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Vinod Kumar
- Department of Chemistry, M.M. University, Ambala, India
| | - Elisha Injeti
- Department of Pharmaceutical Sciences, School of Pharmacy, Cedarville University, Cedarville, Ohio
| | - Ashwani Mittal
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
21
|
Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. J Transl Med 2018; 98:1170-1183. [PMID: 29925937 DOI: 10.1038/s41374-018-0081-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
Mechanical ventilation (MV) is often used to maintain life in patients with sepsis and sepsis-related acute lung injury. However, controlled MV may cause diaphragm weakness due to muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathways may elicit sepsis-related acute inflammatory responses and muscle protein degradation and mediate the pathogenic mechanisms of VIDD. However, the mechanisms regulating the interactions between VIDD and endotoxemia are unclear. We hypothesized that mechanical stretch with or without endotoxin treatment would augment diaphragmatic structural damage, the production of free radicals, muscle proteolysis, mitochondrial dysfunction, and autophagy of the diaphragm via the TLR4/NF-κB pathway. Male C57BL/6 mice, either wild-type or TLR4-deficient, aged between 6 and 8 weeks were exposed to MV (6 mL/kg or 10 mL/kg) with or without endotoxemia for 8 h. Nonventilated mice were used as controls. MV with endotoxemia aggravated VIDD, as demonstrated by the increases in the expression levels of TLR4, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. In addition, increased NF-κB phosphorylation and oxidative loads, disorganized myofibrils, disrupted mitochondria, autophagy, and myonuclear apoptosis were also observed. Furthermore, MV with endotoxemia reduced P62 levels and diaphragm muscle fiber size (P < 0.05). Endotoxin-exacerbated VIDD was attenuated by pharmacologic inhibition with a NF-κB inhibitor or in TLR4-deficient mice (P < 0.05). Our data indicate that endotoxin-augmented MV-induced diaphragmatic injury occurs through the activation of the TLR4/NF-κB signaling pathway.
Collapse
|
22
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
23
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Smuder AJ, Sollanek KJ, Nelson WB, Min K, Talbert EE, Kavazis AN, Hudson MB, Sandri M, Szeto HH, Powers SK. Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Free Radic Biol Med 2018; 115:179-190. [PMID: 29197632 PMCID: PMC5767544 DOI: 10.1016/j.freeradbiomed.2017.11.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Mechanical ventilation (MV) results in the rapid development of ventilator-induced diaphragm dysfunction (VIDD). While the mechanisms responsible for VIDD are not fully understood, recent data reveal that prolonged MV activates autophagy in the diaphragm, which may occur as a result of increased cellular reactive oxygen species (ROS) production. Therefore, we tested the hypothesis that (1) accelerated autophagy is a key contributor to VIDD; and that (2) oxidative stress is required to increase the expression of autophagy genes in the diaphragm. Our findings reveal that targeted inhibition of autophagy in the rat diaphragm prevented MV-induced muscle atrophy and contractile dysfunction. Attenuation of VIDD in these animals occurred as a result of increased diaphragm concentration of the antioxidant catalase and reduced mitochondrial ROS emission, which corresponded to reductions in the activity of calpain and caspase-3. To determine if increased ROS production is required for the upregulation of autophagy biomarkers in the diaphragm, rats that were administered the mitochondrial-targeted peptide SS-31 during MV. Results from this study demonstrated that mitochondrial ROS production in the diaphragm during MV is required for the increased expression of key autophagy genes (i.e. LC3, Atg7, Atg12, Beclin1 and p62), as well as for increased activity of cathepsin L. Together, these data reveal that autophagy is required for VIDD, and that autophagy inhibition reduces MV-induced diaphragm ROS production and prevents a positive feedback loop whereby increased autophagy is stimulated by oxidative stress, resulting in further increases in ROS and autophagy.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Exercise Science, University of South Carolina, Room 227, 921 Assembly St, Columbia, SC 29208, United States.
| | - Kurt J Sollanek
- Department of Kinesiology, Sonoma State University, Rohnert Park, CA 94928, United States
| | - W Bradley Nelson
- Department of Natural Sciences, Ohio Dominican University, Columbus, OH 43219, United States
| | - Kisuk Min
- Department of Pharmacology, Yale University, New Haven, CT 06520, United States
| | - Erin E Talbert
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, United States
| | - Matthew B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, United States
| | - Marco Sandri
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Hazel H Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, United States
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
25
|
Powers SK. Exercise: Teaching myocytes new tricks. J Appl Physiol (1985) 2017; 123:460-472. [PMID: 28572498 DOI: 10.1152/japplphysiol.00418.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as "exercise preconditioning." As few as 3-5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize and discuss recent research regarding the role of mechanical ventilation in producing weakness and atrophy of the diaphragm in critically ill patients, an entity termed ventilator-induced diaphragmatic dysfunction (VIDD). RECENT FINDINGS Severe weakness of the diaphragm is frequent in mechanically ventilated patients, in whom it contributes to poor outcomes including increased mortality. Significant progress has been made in identifying the molecular mechanisms responsible for VIDD in animal models, and there is accumulating evidence for occurrence of the same cellular processes in the diaphragms of human patients undergoing prolonged mechanical ventilation. SUMMARY Recent research is pointing the way to novel pharmacologic therapies as well as nonpharmacologic methods for preventing VIDD. The next major challenge in the field will be to move these findings from the bench to the bedside in critically ill patients.
Collapse
|
27
|
Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'Graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016; 7:403-12. [PMID: 27030815 PMCID: PMC4788634 DOI: 10.1002/jcsm.12108] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland; Department of Clinical Cardiology, Inselspital University Hospital of Bern Bern Switzerland
| | - Stephan von Haehling
- Department of Cardiology and Center for Innovative Clinical Trials University of Göttingen Göttingen Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charite Universitätsmedizin Berlin Berlin Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery and Dept. of Neurology, Inselspital University Hospital of Bern Bern Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| |
Collapse
|
28
|
Schellekens WJM, van Hees HWH, Doorduin J, Roesthuis LH, Scheffer GJ, van der Hoeven JG, Heunks LMA. Strategies to optimize respiratory muscle function in ICU patients. Crit Care 2016; 20:103. [PMID: 27091359 PMCID: PMC4835880 DOI: 10.1186/s13054-016-1280-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory muscle dysfunction may develop rapidly in critically ill ventilated patients and is associated with increased morbidity, length of intensive care unit stay, costs, and mortality. This review briefly discusses the pathophysiology of respiratory muscle dysfunction in intensive care unit patients and then focuses on strategies that prevent the development of muscle weakness or, if weakness has developed, how respiratory muscle function may be improved. We propose a simple strategy for how these can be implemented in clinical care.
Collapse
Affiliation(s)
- Willem-Jan M Schellekens
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Jonne Doorduin
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Lisanne H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
29
|
Talbert EE, Smuder AJ, Kwon OS, Sollanek KJ, Wiggs MP, Powers SK. Blockage of the Ryanodine Receptor via Azumolene Does Not Prevent Mechanical Ventilation-Induced Diaphragm Atrophy. PLoS One 2016; 11:e0148161. [PMID: 26849371 PMCID: PMC4744044 DOI: 10.1371/journal.pone.0148161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to protect against MV-induced diaphragmatic atrophy is important. MV-induced diaphragm atrophy is due, at least in part, to increased production of reactive oxygen species (ROS) from diaphragm mitochondria and the activation of key muscle proteases (i.e., calpain and caspase-3). In this regard, leakage of calcium through the ryanodine receptor (RyR1) in diaphragm muscle fibers during MV could result in increased mitochondrial ROS emission, protease activation, and diaphragm atrophy. Therefore, these experiments tested the hypothesis that a pharmacological blockade of the RyR1 in diaphragm fibers with azumolene (AZ) would prevent MV-induced increases in mitochondrial ROS production, protease activation, and diaphragmatic atrophy. Adult female Sprague-Dawley rats underwent 12 hours of full-support MV while receiving either AZ or vehicle. At the end of the experiment, mitochondrial ROS emission, protease activation, and fiber cross-sectional area were determined in diaphragm muscle fibers. Decreases in muscle force production following MV indicate that the diaphragm took up a sufficient quantity of AZ to block calcium release through the RyR1. However, our findings reveal that AZ treatment did not prevent the MV-induced increase in mitochondrial ROS emission or protease activation in the diaphragm. Importantly, AZ treatment did not prevent MV-induced diaphragm fiber atrophy. Thus, pharmacological inhibition of the RyR1 in diaphragm muscle fibers is not sufficient to prevent MV-induced diaphragm atrophy.
Collapse
Affiliation(s)
- Erin E. Talbert
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Kurt J. Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Michael P. Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
Smuder AJ, Gonzalez-Rothi EJ, Kwon OS, Morton AB, Sollanek KJ, Powers SK, Fuller DD. Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2016; 120:166-77. [PMID: 26472866 PMCID: PMC4719055 DOI: 10.1152/japplphysiol.00488.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023] Open
Abstract
Cervical spinal cord injury (SCI) can dramatically impair diaphragm muscle function and often necessitates mechanical ventilation (MV) to maintain adequate pulmonary gas exchange. MV is a life-saving intervention. However, prolonged MV results in atrophy and impaired function of the diaphragm. Since cervical SCI can also trigger diaphragm atrophy, it may create preconditions that exacerbate ventilator-induced diaphragm dysfunction (VIDD). Currently, no drug therapy or clinical standard of care exists to prevent or minimize diaphragm dysfunction following SCI. Therefore, we first tested the hypothesis that initiating MV acutely after cervical SCI will exacerbate VIDD and enhance proteolytic activation in the diaphragm to a greater extent than either condition alone. Rats underwent controlled MV for 12 h following acute (∼24 h) cervical spinal hemisection injury at C2 (SCI). Diaphragm tissue was then harvested for comprehensive functional and molecular analyses. Second, we determined if antioxidant therapy could mitigate MV-induced diaphragm dysfunction after cervical SCI. In these experiments, SCI rats received antioxidant (Trolox, a vitamin E analog) or saline treatment prior to initiating MV. Our results demonstrate that compared with either condition alone, the combination of SCI and MV resulted in increased diaphragm atrophy, contractile dysfunction, and expression of atrophy-related genes, including MuRF1. Importantly, administration of the antioxidant Trolox attenuated proteolytic activation, fiber atrophy, and contractile dysfunction in the diaphragms of SCI + MV animals. These findings provide evidence that cervical SCI greatly exacerbates VIDD, but antioxidant therapy with Trolox can preserve diaphragm contractile function following acute SCI.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Meduri GU, Schwingshackl A, Hermans G. Prolonged Glucocorticoid Treatment in ARDS: Impact on Intensive Care Unit-Acquired Weakness. Front Pediatr 2016; 4:69. [PMID: 27532030 PMCID: PMC4969316 DOI: 10.3389/fped.2016.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022] Open
Abstract
Systemic inflammation and duration of immobilization are strong independent risk factors for the development of intensive care unit-acquired weakness (ICUAW). Activation of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB) results in muscle wasting during disuse-induced skeletal muscle atrophy (ICU bed rest) and septic shock. In addition, NF-κB-mediated signaling plays a significant role in mechanical ventilation-induced diaphragmatic atrophy and contractile dysfunction. Older trials investigating high dose glucocorticoid treatment reported a lack of a sustained anti-inflammatory effects and an association with ICUAW. However, prolonged low-to-moderate dose glucocorticoid treatment of sepsis and ARDS is associated with a reduction in NF-κB DNA-binding, decreased transcription of inflammatory cytokines, enhanced resolution of systemic and pulmonary inflammation, leading to fewer days of mechanical ventilation, and lower mortality. Importantly, meta-analyses of a large number of randomized controlled trials investigating low-to-moderate glucocorticoid treatment in severe sepsis and ARDS found no increase in ICUAW. Furthermore, while the ARDS network trial investigating methylprednisolone treatment in persistent ARDS is frequently cited to support an association with ICUAW, a reanalysis of the data showed a similar incidence with the control group. Our review concludes that in patients with sepsis and ARDS, any potential direct harmful neuromuscular effect of glucocorticoids appears outweighed by the overall clinical improvement and reduced duration of organ failure, in particular ventilator dependency and associated immobilization, which are key risk factors for ICUAW.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Memphis Veterans Affairs Medical Center , Memphis, TN , USA
| | - Andreas Schwingshackl
- Department of Pediatrics, Division of Critical Care Medicine, Mattel Children's Hospital at UCLA , Los Angeles, CA , USA
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven and Medical Intensive-Care Unit, Department of General Internal Medicine University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
32
|
Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis. PLoS One 2015; 10:e0137693. [PMID: 26361212 PMCID: PMC4567376 DOI: 10.1371/journal.pone.0137693] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.
Collapse
|
33
|
Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction. Crit Care Med 2015; 43:e133-42. [PMID: 25746508 DOI: 10.1097/ccm.0000000000000928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. DESIGN This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. SETTING University research laboratory. SUBJECTS Young adult female Sprague-Dawley rats. INTERVENTIONS Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. MEASUREMENTS AND MAIN RESULTS Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. CONCLUSIONS Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Collapse
|
34
|
Abstract
Long periods of skeletal muscle inactivity (e.g. prolonged bed rest or limb immobilization) results in a loss of muscle protein and fibre atrophy. This disuse-induced muscle atrophy is due to both a decrease in protein synthesis and increased protein breakdown. Although numerous factors contribute to the regulation of the rates of protein breakdown and synthesis in skeletal muscle, it has been established that prolonged muscle inactivity results in increased radical production in the inactive muscle fibres. Further, this increase in radical production plays an important role in the regulation of redox-sensitive signalling pathways that regulate both protein synthesis and proteolysis in skeletal muscle. Indeed, it was suggested over 20 years ago that antioxidant supplementation has the potential to protect skeletal muscles against inactivity-induced fibre atrophy. Since this original proposal, experimental evidence has implied that a few compounds with antioxidant properties are capable of delaying inactivity-induced muscle atrophy. The objective of this review is to discuss the role that radicals play in the regulation of inactivity-induced skeletal muscle atrophy and to provide an analysis of the recent literature indicating that specific antioxidants have the potential to defer disuse muscle atrophy.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Survivors of a critical illness may experience poor physical function and quality of life as a result of reduced skeletal muscle mass and strength during their acute illness. Patients diagnosed with sepsis are particularly at risk, and mechanical ventilation may result in diaphragm dysfunction. Interest in the interaction of these conditions is both growing and important to understand for individualized patient care. RECENT FINDINGS This review describes developments in the presentation of both diaphragm and limb myopathy in critical illness, as measured from muscle biopsy and at the bedside with various imaging and strength-testing modalities. The influence of unloading of the diaphragm with mechanical ventilation and peripheral muscles with immobilization in septic patients has been recently questioned. Systemic inflammation appears to primarily accelerate and accentuate dysfunction, which may be remedied by early mobilization and augmented with developing muscle and/or nerve stimulation techniques. SUMMARY Many acute muscle changes in septic patients are likely to stem from pre-existing impairments, which should provide context for clinical evaluations of strength. During illness, sarcolemmal injury promotes a cascade of intra-cellular abnormalities. As unique characteristics of ICU-acquired weakness and differential effects on muscle groups are understood, early diagnosis and management should be facilitated.
Collapse
Affiliation(s)
- Claire E Baldwin
- aInternational Centre for Allied Health Evidence and School of Health Sciences, University of South Australia, Adelaide bPhysiotherapy Department, Flinders Medical Centre, Bedford Park cDepartment of Critical Care Medicine, School of Medicine, Faculty of Health Sciences, Flinders University, Bedford Park dIntensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | |
Collapse
|
36
|
Verona C, Hackenhaar FS, Teixeira C, Medeiros TM, Alabarse PV, Salomon TB, Shüller ÁK, Maccari JG, Condessa RL, Oliveira RP, Rios Vieira SR, Benfato MS. Blood markers of oxidative stress predict weaning failure from mechanical ventilation. J Cell Mol Med 2015; 19:1253-61. [PMID: 25854285 PMCID: PMC4459841 DOI: 10.1111/jcmm.12475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022] Open
Abstract
Patients undergoing mechanical ventilation (MV) often experience respiratory muscle dysfunction, which complicates the weaning process. There is no simple means to predict or diagnose respiratory muscle dysfunction because diagnosis depends on measurements in muscle diaphragmatic fibre. As oxidative stress is a key mechanism contributing to MV-induced respiratory muscle dysfunction, the aim of this study was to determine if differences in blood measures of oxidative stress in patients who had success and failure in a spontaneous breathing trial (SBT) could be used to predict the outcome of MV. This was a prospective analysis of MV-dependent patients (≥72 hrs; n = 34) undergoing a standard weaning protocol. Clinical, laboratory and oxidative stress analyses were performed. Measurements were made on blood samples taken at three time-points: immediately before the trial, 30 min. into the trial in weaning success (WS) patients, or immediately before return to MV in weaning failure (WF) patients, and 6 hrs after the trial. We found that blood measures of oxidative stress distinguished patients who would experience WF from patients who would experience WS. Before SBT, WF patients presented higher oxidative damage in lipids and higher antioxidant levels and decreased nitric oxide concentrations. The observed differences in measures between WF and WS patients persisted throughout and after the weaning trial. In conclusion, WF may be predicted based on higher malondialdehyde, higher vitamin C and lower nitric oxide concentration in plasma.
Collapse
Affiliation(s)
- Cléber Verona
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fernanda S Hackenhaar
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Cassiano Teixeira
- Department of Critical Care, Moinhos de Vento Hospital, Rio Grande do Sul, Brazil.,Federal University of Health Sciences of Porto Alegre - UFCSPA Medical School, Rio Grande do Sul, Brazil
| | - Tássia M Medeiros
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Paulo V Alabarse
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Tiago B Salomon
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Ártur K Shüller
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Juçara G Maccari
- Department of Critical Care, Moinhos de Vento Hospital, Rio Grande do Sul, Brazil
| | | | - Roselaine P Oliveira
- Department of Critical Care, Moinhos de Vento Hospital, Rio Grande do Sul, Brazil.,Federal University of Health Sciences of Porto Alegre - UFCSPA Medical School, Rio Grande do Sul, Brazil
| | | | - Mara S Benfato
- Biophysics Department, Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
37
|
Sollanek KJ, Smuder AJ, Wiggs MP, Morton AB, Koch LG, Britton SL, Powers SK. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2015; 118:849-57. [PMID: 25571991 DOI: 10.1152/japplphysiol.00797.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed "ventilator-induced diaphragm dysfunction" (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals.
Collapse
Affiliation(s)
- Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| |
Collapse
|
38
|
Bruells CS, Marx G, Rossaint R. [Ventilator-induced diaphragm dysfunction : clinically relevant problem]. Anaesthesist 2015; 63:47-53. [PMID: 24306096 DOI: 10.1007/s00101-013-2248-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mechanical ventilation is a life-saving intervention for patients with respiratory failure or during deep sedation. During continuous mandatory ventilation the diaphragm remains inactive, which activates pathophysiological cascades leading to a loss of contractile force and muscle mass (collectively referred to as ventilator-induced diaphragm dysfunction, VIDD). In contrast to peripheral skeletal muscles this process is rapid and develops after as little as 12 h and has a profound influence on weaning patients from mechanical ventilation as well as increased incidences of morbidity and mortality. In recent years, animal experiments have revealed pathophysiological mechanisms which have been confirmed in humans. One major mechanism is the mitochondrial generation of reactive oxygen species that have been shown to damage contractile proteins and facilitate protease activation. Besides atrophy due to inactivity, drug interactions can induce further muscle atrophy. Data from animal research concerning the influence of corticosteroids emphasize a dose-dependent influence on diaphragm atrophy and function although the clinical interpretation in intensive care patients (ICU) patients might be difficult. Levosimendan has also been proven to increase diaphragm contractile forces in humans which may prove to be helpful for patients experiencing difficult weaning. Additionally, antioxidant drugs that scavenge reactive oxygen species have been demonstrated to protect the diaphragm from VIDD in several animal studies. The translation of these drugs into the IUC setting might protect patients from VIDD and facilitate the weaning process.
Collapse
Affiliation(s)
- C S Bruells
- Klinik für Operative Intensivmedizin und Intermediate Care, Universitätsklinikum der RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland,
| | | | | |
Collapse
|
39
|
Sassoon CSH, Zhu E, Fang L, Sieck GC, Powers SK. Positive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:494. [PMID: 25212227 PMCID: PMC4210557 DOI: 10.1186/s13054-014-0494-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023]
Abstract
Introduction Immobilization of hindlimb muscles in a shortened position results in an accelerated rate of inactivity-induced muscle atrophy and contractile dysfunction. Similarly, prolonged controlled mechanical ventilation (CMV) results in diaphragm inactivity and induces diaphragm muscle atrophy and contractile dysfunction. Further, the application of positive end-expiratory airway pressure (PEEP) during mechanical ventilation would result in shortened diaphragm muscle fibers throughout the respiratory cycle. Therefore, we tested the hypothesis that, compared to CMV without PEEP, the combination of PEEP and CMV would accelerate CMV-induced diaphragm muscle atrophy and contractile dysfunction. To test this hypothesis, we combined PEEP with CMV or with assist-control mechanical ventilation (AMV) and determined the effects on diaphragm muscle atrophy and contractile properties. Methods The PEEP level (8 cmH2O) that did not induce lung overdistension or compromise circulation was determined. In vivo segmental length changes of diaphragm muscle fiber were then measured using sonomicrometry. Sedated rabbits were randomized into seven groups: surgical controls and those receiving CMV, AMV or continuous positive airway pressure (CPAP) with or without PEEP for 2 days. We measured in vitro diaphragmatic force, diaphragm muscle morphometry, myosin heavy-chain (MyHC) protein isoforms, caspase 3, insulin-like growth factor 1 (IGF-1), muscle atrophy F-box (MAFbx) and muscle ring finger protein 1 (MuRF1) mRNA. Results PEEP shortened end-expiratory diaphragm muscle length by 15%, 14% and 12% with CMV, AMV and CPAP, respectively. Combined PEEP and CMV reduced tidal excursion of segmental diaphragm muscle length; consequently, tidal volume (VT) decreased. VT was maintained with combined PEEP and AMV. CMV alone decreased maximum tetanic force (Po) production by 35% versus control (P < 0.01). Combined PEEP and CMV did not decrease Po further. Po was preserved with AMV, with or without PEEP. Diaphragm muscle atrophy did not occur in any fiber types. Diaphragm MyHC shifted to the fast isoform in the combined PEEP and CMV group. In both the CMV and combined PEEP and CMV groups compared to controls, IGF-1 mRNAs were suppressed, whereas Caspase-3, MAFbx and MuRF1 mRNA expression were elevated. Conclusions Two days of diaphragm muscle fiber shortening with PEEP did not exacerbate CMV-induced diaphragm muscle dysfunction.
Collapse
|
40
|
Smuder AJ, Nelson WB, Hudson MB, Kavazis AN, Powers SK. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm. Anesthesiology 2014; 121:115-26. [PMID: 24681580 DOI: 10.1097/aln.0000000000000245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) is a life-saving intervention in patients with acute respiratory failure. However, prolonged MV results in ventilator-induced diaphragm dysfunction (VIDD), a condition characterized by both diaphragm fiber atrophy and contractile dysfunction. Previous work has shown that calpain, caspase-3, and the ubiquitin-proteasome pathway (UPP) are all activated in the diaphragm during prolonged MV. However, although it is established that both calpain and caspase-3 are important contributors to VIDD, the role that the UPP plays in the development of VIDD remains unknown. These experiments tested the hypothesis that inhibition of the UPP will protect the diaphragm against VIDD. METHODS The authors tested this prediction in an established animal model of MV using a highly specific UPP inhibitor, epoxomicin, to prevent MV-induced activation of the proteasome in the diaphragm (n = 8 per group). RESULTS The results of this study reveal that inhibition of the UPP did not prevent ventilator-induced diaphragm muscle fiber atrophy and contractile dysfunction during 12 h of MV. Also, inhibition of the UPP does not affect MV-induced increases in calpain and caspase-3 activity in the diaphragm. Finally, administration of the proteasome inhibitor did not protect against the MV-induced increases in the expression of the E3 ligases, muscle ring finger-1 (MuRF1), and atrogin-1/MaFbx. CONCLUSION Collectively, these results indicate that proteasome activation does not play a required role in VIDD development during the first 12 h of MV.
Collapse
Affiliation(s)
- Ashley J Smuder
- From the Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida (A.J.S., S.K.P.); Division of Mathematics, Computer, and Natural Sciences, Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio (W.B.N.); Department of Medicine, Emory University, Atlanta, Georgia (M.B.H.); and School of Kinesiology, Auburn University, Auburn, Alabama (A.N.K.)
| | | | | | | | | |
Collapse
|
41
|
Montilla SIR, Johnson TP, Pearce SC, Gardan-Salmon D, Gabler NK, Ross JW, Rhoads RP, Baumgard LH, Lonergan SM, Selsby JT. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature (Austin) 2014; 1:42-50. [PMID: 27583280 PMCID: PMC4972518 DOI: 10.4161/temp.28844] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5-6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.
Collapse
Affiliation(s)
| | | | - Sarah C Pearce
- Department of Animal Science; Iowa State University; Ames, IA USA
| | | | | | - Jason W Ross
- Department of Animal Science; Iowa State University; Ames, IA USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences; Virginia Tech; Blacksburg, VA USA
| | - Lance H Baumgard
- Department of Animal Science; Iowa State University; Ames, IA USA
| | | | - Joshua T Selsby
- Department of Animal Science; Iowa State University; Ames, IA USA
| |
Collapse
|
42
|
Vitadello M, Germinario E, Ravara B, Libera LD, Danieli-Betto D, Gorza L. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma. J Physiol 2014; 592:2637-52. [PMID: 24710058 DOI: 10.1113/jphysiol.2013.268672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force-frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting.
Collapse
Affiliation(s)
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy Interuniversity Institute of Myology, Italy
| | - Barbara Ravara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, Padova, Italy Interuniversity Institute of Myology, Italy
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Chian CF, Chiang CH, Chuang CH, Liu SL. Inhibitor of nuclear factor-κB, SN50, attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model. Transl Res 2014; 163:211-20. [PMID: 24646628 DOI: 10.1016/j.trsl.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/25/2023]
Abstract
NF-κB cell permeable inhibitory peptide (SN50) inhibits translocation of nuclear factor-κB (NF-κB) and production of inflammatory cytokines that are implicated in lipopolysaccharide (LPS)-induced lung injury (LPSLI). However, the protective effect of SN50 in LPSLI is unclear. We explored the cellular and molecular mechanisms of SN50 treatment in LPSLI. LPSLI was induced by intratracheal instillation of 10 mg/kg LPS using an isolated and perfused rat lung model. SN50 was administered in the perfusate 15 minutes before LPS was administered. Hemodynamics, lung histologic change, inflammatory responses, and activation of apoptotic pathways were evaluated. After LPSLI, increased pulmonary vascular permeability and lung weight gain was observed. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase, and macrophage inflammatory protein-2 increased in bronchoalveolar lavage fluids. Lung-tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, p-AKT (serine-threonine kinase, also known as protein kinase B), and plasminogen activator inhibitor-1 (PAI-1) was greater in the LPS group compared with controls. Upregulation and activation of NF-κB was associated with increased lung injury in LPSLI. SN50 attenuated the inflammatory responses, including expression of IL-1β, TNF-α, myeloperoxidase, MAPKs, PAI-1, and NF-κB; downregulation of apoptosis indicated by caspase-3 and p-AKT expression was also observed. In addition, SN50 mitigated the increase in the lung weight, pulmonary vascular permeability, and lung injury. In conclusion, LPSLI is associated with inflammatory responses, apoptosis, and coagulation. NF-κB is an important therapeutic target in the treatment of LPSLI. SN50 inhibits translocation of NF-κB and attenuates LPSLI.
Collapse
Affiliation(s)
- Chih-Feng Chian
- Division of Pulmonary and Critical Care Medicine, Internal Medicine Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Huei Chiang
- Division of Pulmonary and Critical Care Medicine, Internal Medicine Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chiao-Hui Chuang
- Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiou-Ling Liu
- Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Abstract
Human skeletal muscles are continually remodeled to match the function required of them. Diameter, strength, and vascular supply are altered when a muscle group experiences contraction and resistance. The purpose of this article is to describe selected muscle signaling pathways that contribute to muscle remodeling. Multiple factors affect the cellular and molecular remodeling of muscles and at least 2 of them-exercise and protein/calorie delivery-are under the direct care of intensive care unit (ICU) clinicians. Activating signaling pathways may promote preservation of muscle mass and function. Interventions to prevent muscle atrophy have potential to reduce ICU-acquired weakness and positively affect quality of life in survivors after ICU hospitalization. Exploring information generated by genomic and proteomic investigations about muscle signaling pathways can help the ICU clinician evaluate the benefits and risks of interventions to maintain muscle health early in critical illness.
Collapse
|
45
|
Bruells C, Goetzenich A, Rossaint R. Ventilatorinduzierte diaphragmale Dysfunktion in der Kardiochirurgie. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2013. [DOI: 10.1007/s00398-013-1028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Powers SK, Wiggs MP, Sollanek KJ, Smuder AJ. Ventilator-induced diaphragm dysfunction: cause and effect. Am J Physiol Regul Integr Comp Physiol 2013; 305:R464-77. [DOI: 10.1152/ajpregu.00231.2013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanical ventilation (MV) is used clinically to maintain gas exchange in patients that require assistance in maintaining adequate alveolar ventilation. Common indications for MV include respiratory failure, heart failure, drug overdose, and surgery. Although MV can be a life-saving intervention for patients suffering from respiratory failure, prolonged MV can promote diaphragmatic atrophy and contractile dysfunction, which is referred to as ventilator-induced diaphragm dysfunction (VIDD). This is significant because VIDD is thought to contribute to problems in weaning patients from the ventilator. Extended time on the ventilator increases health care costs and greatly increases patient morbidity and mortality. Research reveals that only 18–24 h of MV is sufficient to develop VIDD in both laboratory animals and humans. Studies using animal models reveal that MV-induced diaphragmatic atrophy occurs due to increased diaphragmatic protein breakdown and decreased protein synthesis. Recent investigations have identified calpain, caspase-3, autophagy, and the ubiquitin-proteasome system as key proteases that participate in MV-induced diaphragmatic proteolysis. The challenge for the future is to define the MV-induced signaling pathways that promote the loss of diaphragm protein and depress diaphragm contractility. Indeed, forthcoming studies that delineate the signaling mechanisms responsible for VIDD will provide the knowledge necessary for the development of a pharmacological approach that can prevent VIDD and reduce the incidence of weaning problems.
Collapse
Affiliation(s)
- Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Michael P. Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kurt J. Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
47
|
Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bleilevens C, Bergs I, Loetscher U, Dreier A, Gayan-Ramirez G, Behnke BJ, Weis J. Prolonged mechanical ventilation alters the expression pattern of angio-neogenetic factors in a pre-clinical rat model. PLoS One 2013; 8:e70524. [PMID: 23950950 PMCID: PMC3738548 DOI: 10.1371/journal.pone.0070524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/19/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Mechanical ventilation (MV) is a life saving intervention for patients with respiratory failure. Even after 6 hours of MV, diaphragm atrophy and dysfunction (collectively referred to as ventilator-induced diaphragmatic dysfunction, VIDD) occurs in concert with a blunted blood flow and oxygen delivery. The regulation of hypoxia sensitive factors (i.e. hypoxia inducible factor 1α, 2α (HIF-1α,-2α), vascular endothelial growth factor (VEGF)) and angio-neogenetic factors (angiopoietin 1-3, Ang) might contribute to reactive and compensatory alterations in diaphragm muscle. METHODS Male Wistar rats (n = 8) were ventilated for 24 hours or directly sacrificed (n = 8), diaphragm and mixed gastrocnemius muscle tissue was removed. Quantitative real time PCR and western blot analyses were performed to detect changes in angio-neogenetic factors and inflammatory markers. Tissues were stained using Isolectin (IB 4) to determine capillarity and calculate the capillary/fiber ratio. RESULTS MV resulted in up-regulation of Ang 2 and HIF-1α mRNA in both diaphragm and gastrocnemius, while VEGF mRNA was down-regulated in both tissues. HIF-2α mRNA was reduced in both tissues, while GLUT 4 mRNA was increased in gastrocnemius and reduced in diaphragm samples. Protein levels of VEGF, HIF-1α, -2α and 4 did not change significantly. Additionally, inflammatory cytokine mRNA (Interleukin (IL)-6, IL-1β and TNF α) were elevated in diaphragm tissue. CONCLUSION The results demonstrate that 24 hrs of MV and the associated limb disuse induce an up-regulation of angio-neogenetic factors that are connected to HIF-1α. Changes in HIF-1α expression may be due to several interactions occurring during MV.
Collapse
Affiliation(s)
- Christian S Bruells
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Calcineurin: a poorly understood regulator of muscle mass. Int J Biochem Cell Biol 2013; 45:2173-8. [PMID: 23838168 DOI: 10.1016/j.biocel.2013.06.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 01/14/2023]
Abstract
This review will discuss the existing literature that has examined the role of calcineurin (CnA) in the regulation of skeletal muscle mass in conditions associated with hypertrophic growth or atrophy. Muscle mass is determined by the balance between protein synthesis and degradation which is controlled by a number of intracellular signaling pathways, most notably the insulin/IGF/phosphatidylinositol 3-kinase (PI3K)/Akt system. Despite being activated by IGF-1 and having well-described functions in the determination of muscle fiber phenotypes, calcineurin (CnA), a Ca(2+)-activated serine/threonine phosphatase, and its downstream signaling partners have garnered little attention as a regulator of muscle mass. Compared to other signaling pathways, the relatively few studies that have examined the role of CnA in the regulation of muscle size have produced discordant results. The reasons for these differences is not obvious but may be due to the selective nature of the genetic models studied, fluctuations in the endogenous level of CnA activity in various muscles, and the variable use of CnA inhibitors to inhibit CnA signaling. Despite the inconsistent nature of the outcomes, there is sufficient direct and indirect evidence to conclude that CnA plays a role in the regulation of skeletal muscle mass. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
|
49
|
Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol (1985) 2013; 115:529-38. [PMID: 23766499 DOI: 10.1152/japplphysiol.00471.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long periods of skeletal muscle disuse result in muscle fiber atrophy, and mitochondrial production of reactive oxygen species (ROS) appears to be a required signal for the increase in protein degradation that occurs during disuse muscle atrophy. The experiments detailed here demonstrate for the first time in limb muscle that the inactivity-induced increases in E3 ligase expression and autophagy biomarkers result from increases in mitochondrial ROS emission. Treatment of animals with a mitochondrial-targeted antioxidant also prevented the disuse-induced decrease in anabolic signaling (Akt/mammalian target of rapamycin signaling) that is normally associated with prolonged inactivity in skeletal muscles. Additionally, our results confirm previous findings that treatment with a mitochondrial-targeted antioxidant is sufficient to prevent casting-induced skeletal muscle atrophy, mitochondrial dysfunction, and activation of the proteases calpain and caspase-3. Collectively, these data reveal that inactivity-induced increases in mitochondrial ROS emission play a required role in activation of key proteolytic systems and the downregulation of important anabolic signaling molecules in muscle fibers exposed to prolonged inactivity.
Collapse
|
50
|
Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol (1985) 2013; 114:1482-9. [DOI: 10.1152/japplphysiol.00925.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 may also play key roles in inactivity-induced atrophy of respiratory muscles, but it remains unknown if these proteases are essential for disuse atrophy in limb skeletal muscles. Therefore, we tested the hypothesis that activation of both calpain and caspase-3 is required for locomotor muscle atrophy induced by hindlimb immobilization. Seven days of immobilization (i.e., limb casting) promoted significant atrophy in type I muscle fibers of the rat soleus muscle. Independent pharmacological inhibition of calpain or caspase-3 prevented this casting-induced atrophy. Interestingly, inhibition of calpain activity also prevented caspase-3 activation, and, conversely, inhibition of caspase-3 prevented calpain activation. These findings indicate that a regulatory cross talk exists between these proteases and provide the first evidence that the activation of calpain and caspase-3 is required for inactivity-induced limb muscle atrophy.
Collapse
Affiliation(s)
- Erin E. Talbert
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kisuk Min
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|