1
|
Zheng MH, Liu WJ, Yang J. Effect of early stepwise cardiopulmonary rehabilitation on function and quality of life in sepsis patients. World J Clin Cases 2024; 12:729-736. [PMID: 38322673 PMCID: PMC10841144 DOI: 10.12998/wjcc.v12.i4.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Sepsis, as a non-limiting host infection disease, can be accompanied by serious complications such as organ failure, which seriously threatens patient quality of life. AIM To investigate the effect of early stepwise cardiopulmonary rehabilitation on cardiopulmonary function and quality of life in patients evacuated from mechanical ventilation with sepsis. METHODS A total of 80 patients with sepsis who were hospitalized in our hospital from January 2021 to January 2022 were selected and divided into the observation group (n = 40) and the control group (n = 40) according to the random number table method. The observation group was treated with early stepwise cardiopulmonary rehabilitation, and the control group was treated with a conventional treatment regimen. Cardiac function indexes (central venous pressure, cardiac troponin I, B-type brain natriuretic peptide), lung function indicators (diaphragmatic mobility, changes in central venous oxygen saturation, oxygenation index), and quality of life (Quality of Life Evaluation Scale) were compared between the two groups after treatment. RESULTS After treatment, the central venous pressure, diaphragm mobility, central venous oxygen saturation, oxygenation index, and Quality of Life Evaluation Scale scores in the observation group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The observation group was less than that of the control group for other parameters, and the differences were statistically significant (P < 0.05). CONCLUSION Early stepwise cardiopulmonary rehabilitation can effectively enhance cardiac and pulmonary function and improve the quality of life in patients evacuated from mechanical ventilation with sepsis.
Collapse
Affiliation(s)
- Ming-Hui Zheng
- Division of Cardiovascular First Ward Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wen-Jun Liu
- Department of Respiratory Medicine, PuRen Hospital Affiliated to Wuhan University of Science and Technology/Respiratory Medicine, Wuhan 430000, Hubei Province, China
| | - Juan Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang 438000, Hubei Province, China
| |
Collapse
|
2
|
Mechanical Ventilation with Moderate Tidal Volume Exacerbates Extrapulmonary Sepsis-Induced Lung Injury via IL33-WISP1 Signaling Pathway. Shock 2020; 56:461-472. [PMID: 33394970 DOI: 10.1097/shk.0000000000001714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. Macrophages (Raw 264.7 and alveolar macrophages from wild-type or ST2-/- mice) were used to identify specific signaling components.CLP + MTV resulted in ALI that was partially sensitive to genetic ablation of IL-33 or ST2 or antibody neutralization of WISP1. Genetic ablation of IL-33 or ST2 significantly prevented ALI after CLP + MTV and reduced levels of WISP1 in the circulation and bronchoalveolar lung fluid. rIL-33 increased WISP1 in alveolar macrophages in an ST2, PI3K/AKT, and ERK dependent manner. This WISP1 upregulation and WNT β-catenin activation were sensitive to inhibition of the β-catenin/TCF/CBP/P300 nuclear pathway.We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.
Collapse
|
3
|
In-Depth Characterization of the Effects of Cigarette Smoke Exposure on the Acute Trauma Response and Hemorrhage in Mice. Shock 2020; 51:68-77. [PMID: 29424792 DOI: 10.1097/shk.0000000000001115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Hemorrhagic shock accounts for a large amount of trauma-related mortality. The severity of trauma can be further aggravated by an additional blunt chest trauma (TxT), which independently contributes to mortality upon the development of an acute lung injury (ALI). Besides, cigarette smoke (CS) exposure before TxT enhanced posttraumatic inflammation, thereby aggravating ALI. We therefore aimed to characterize the impact of an acute and/or chronic lung injury on organ dysfunction in a murine model of traumatic hemorrhagic shock (HS). METHODS After 3 weeks of CS exposure, anesthetized mice underwent HS with/without TxT. Hemorrhagic shock was implemented for 1 h followed by retransfusion of shed blood and intensive care therapy for 4 h including lung-protective mechanical ventilation, fluid resuscitation, and noradrenaline titrated to maintain mean arterial pressure ≥50 mmHg. Lung mechanics and gas exchange were assessed together with systemic hemodynamics, metabolism, and acid-base status. Postmortem blood and tissue samples were analyzed for cytokine and chemokine levels, protein expression, mitochondrial respiration, and histological changes. RESULTS CS exposure and HS alone coincided with increased inflammation, decreased whole blood sulfide concentrations, and decreased diaphragmatic mitochondrial respiration. CS-exposed mice, which were subjected to TxT and subsequent HS, showed hemodynamic instability, acute kidney injury, and high mortality. CONCLUSIONS Chronic CS exposure per se had the strongest impact on inflammatory responses. The degree of inflammation was similar upon an additional TxT, however, mice presented with organ dysfunction and increased mortality rates. Hence, in mice the degree of inflammation may be dissociated from the severity of organ dysfunction or injury.
Collapse
|
4
|
Ding X, Tong Y, Jin S, Chen Z, Li T, Billiar TR, Pitt BR, Li Q, Zhang LM. Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1-αvβ5 integrin pathway in TLR4-mediated inflammation and injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:302. [PMID: 30445996 PMCID: PMC6240278 DOI: 10.1186/s13054-018-2237-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. Methods We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4−/− mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4−/−, MyD88−/− and TRIF−/− mice were used to identify a WISP1–TLR4–integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. Results MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4−/− mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. Conclusions These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1–TLR4–integrin β5 pathway contributes to this phenomenon. Electronic supplementary material The online version of this article (10.1186/s13054-018-2237-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.,Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Tunliang Li
- Department of Anesthesiology, Xiangya 3rd Hospital, Central South University, Hunan, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, PA, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China. .,Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.
| |
Collapse
|
5
|
Physiological and immune-biological characterization of a long-term murine model of blunt chest trauma. Shock 2015; 43:140-7. [PMID: 25526372 DOI: 10.1097/shk.0000000000000277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blunt chest trauma causes pulmonary and systemic inflammation. It is still a matter of debate whether the long-term course of this inflammatory response is associated with persistent impairment of lung function. We hypothesized that an increase of inflammatory biomarkers may still be present at later time points after blunt chest trauma, eventually, despite normalized lung mechanics and gas exchange. Anesthetized spontaneously breathing male C57BL/6J mice underwent a blast wave-induced blunt chest trauma or sham procedure. Twelve and 24 h later, blood gases and lung mechanics were measured, together with blood, bronchoalveolar lavage (BAL), and tissue cytokine concentrations (multiplex cytokine kit); heme oxygenase 1 (HO-1), activated caspase-3, Bcl-xL, and Bax expression (Western blotting); nuclear factor-κB activation (electrophoretic mobility shift assay); nitrotyrosine formation; and purinergic (P2XR4 and P2XR7) receptor expression (immunohistochemistry). Histological damage was assessed by hematoxylin and eosin and periodic acid-Schiff staining. High-resolution respirometry allowed assessing mitochondrial respiration in diaphragm biopsies. Chest trauma significantly increased tissue and BAL cytokine levels, associated with a significant increase in HO-1, purinergic receptor expression, and tissue nitrotyrosine formation. In contrast, lung mechanics, gas exchange, and histological damage did not show any significant difference between sham and trauma groups. Activation of the immune response remains present at later time points after murine blunt chest trauma. Discordance of the increased local inflammatory response and preserved pulmonary function may be explained by a dissociation of the immune response and lung function, such as previously suggested after experimental sepsis.
Collapse
|
6
|
Wagner K, Gröger M, McCook O, Scheuerle A, Asfar P, Stahl B, Huber-Lang M, Ignatius A, Jung B, Duechs M, Möller P, Georgieff M, Calzia E, Radermacher P, Wagner F. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2. PLoS One 2015. [PMID: 26225825 PMCID: PMC4520521 DOI: 10.1371/journal.pone.0132810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post-traumatic inflammation, nitrosative stress and thereby organ dysfunction and injury; short-term, lung-protective, hyperoxic mechanical ventilation have no major beneficial effect despite attenuation of nitrosative stress, possibly due to compensation of by regional alveolar hypoxia and/or consecutive hypoxemia, resulting in down-regulation of HIF-1α expression.
Collapse
MESH Headings
- Acute Lung Injury/etiology
- Acute Lung Injury/physiopathology
- Acute Lung Injury/therapy
- Animals
- Disease Models, Animal
- Female
- Hyperoxia/complications
- Hyperoxia/pathology
- Hyperoxia/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidative Stress
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Reactive Nitrogen Species/metabolism
- Receptors, Purinergic P2X/metabolism
- Respiration, Artificial/adverse effects
- Smoking/adverse effects
- Thoracic Injuries/complications
- Thoracic Injuries/physiopathology
- Thoracic Injuries/therapy
- Wounds, Nonpenetrating/complications
- Wounds, Nonpenetrating/physiopathology
- Wounds, Nonpenetrating/therapy
Collapse
Affiliation(s)
- Katja Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | | | - Pierre Asfar
- Laboratoire HIFIH, UPRES EA 3859, PRES l’UNAM, IFR 132, CNRS UMR 6214, INSERM U1083, Université Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum, Ulm, Germany
| | - Anita Ignatius
- Institut für Unfallchirurgische Forschung und Biomechanik, Universitätsklinikum, Ulm, Germany
| | - Birgit Jung
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Matthias Duechs
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- * E-mail:
| | - Florian Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
7
|
Yehya N, Xin Y, Oquendo Y, Cereda M, Rizi RR, Margulies SS. Cecal ligation and puncture accelerates development of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 308:L443-51. [PMID: 25550313 DOI: 10.1152/ajplung.00312.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a leading cause of respiratory failure requiring mechanical ventilation, but the interaction between sepsis and ventilation is unclear. While prior studies demonstrated a priming role with endotoxin, actual septic animal models have yielded conflicting results regarding the role of preceding sepsis on development of subsequent ventilator-induced lung injury (VILI). Using a rat cecal ligation and puncture (CLP) model of sepsis and subsequent injurious ventilation, we sought to determine if sepsis affects development of VILI. Adult male Sprague-Dawley rats were subject to CLP or sham operation and, after 12 h, underwent injurious mechanical ventilation (tidal volume 30 ml/kg, positive end-expiratory pressure 0 cmH2O) for either 0, 60, or 120 min. Biochemical and physiological measurements, as well as computed tomography, were used to assess injury at 0, 60, and 120 min of ventilation. Before ventilation, CLP rats had higher levels of alveolar neutrophils and interleukin-1β. After 60 min of ventilation, CLP rats had worse injury as evidenced by increased alveolar inflammation, permeability, respiratory static compliance, edema, oxygenation, and computed tomography. By 120 min, CLP and sham rats had comparable levels of lung injury as assessed by many, but not all, of these metrics. CLP rats had an accelerated and worse loss of end-expiratory lung volume relative to sham, and consistently higher levels of alveolar interleukin-1β. Loss of aeration and progression of edema was more pronounced in dependent lung regions. We conclude that CLP initiated pulmonary inflammation in rats, and accelerated the development of subsequent VILI.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Yi Xin
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yousi Oquendo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio Cereda
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Anesthesiology and Critical Care Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Santos RS, Silva PL, de Oliveira GP, Santos CL, Cruz FF, de Assis EF, de Castro-Faria-Neto HC, Capelozzi VL, Morales MM, Pelosi P, Gattass CR, Rocco PRM. Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes. Respir Physiol Neurobiol 2013; 189:484-90. [PMID: 24012992 DOI: 10.1016/j.resp.2013.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/24/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023]
Abstract
We compared the effects of oleanolic acid (OA) vs. dexamethasone on lung mechanics and histology, inflammation, and apoptosis in lung and distal organs in experimental sepsis. Seventy-eight BALB/c mice were randomly divided into two groups. Sepsis was induced by cecal ligation and puncture, while the control group underwent sham surgery. 1h after surgery, all animals were further randomized to receive saline (SAL), OA and dexamethasone (DEXA) intraperitoneally. Both OA and DEXA improved lung mechanics and histology, which were associated with fewer lung neutrophils and less cell apoptosis in lung, liver, and kidney than SAL. However, only animals in the DEXA group had lower levels of interleukin (IL)-6 and KC (murine analog of IL-8) in bronchoalveolar lavage fluid than SAL animals. Conversely, OA was associated with lower inducible nitric oxide synthase expression and higher superoxide dismutase than DEXA. In the experimental sepsis model employed herein, OA and DEXA reduced lung damage and distal organ apoptosis through distinct anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Raquel Souza Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Asplund MB, Coelho C, Cordero RJB, Martinez LR. Alcohol impairs J774.16 macrophage-like cell antimicrobial functions in Acinetobacter baumannii infection. Virulence 2013; 4:467-72. [PMID: 23863607 DOI: 10.4161/viru.25641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acinetobacter baumannii (Ab) is a common cause of community-acquired pneumonia (CAP) in chronic alcoholics in tropical and sub-tropical climates and associated with a > 50% mortality rate. We demonstrated that exposure of J774.16 macrophage-like cells to physiological alcohol (EtOH) concentrations decreased phagocytosis and killing of Ab. EtOH-mediated macrophage phagocytosis dysfunction may be associated with reduced expression of GTPase-RhoA, a key regulator of the actin polymerization signaling cascade. EtOH inhibited nitric oxide (NO) generation via inducible NO-synthase inactivation, which enhanced Ab survival within macrophages. Additionally, EtOH alters cytokine production resulting in a dysregulated immune response. This study is a proof of principle which establishes that EtOH might exacerbate Ab infection and be an important factor enhancing CAP in individuals at risk.
Collapse
Affiliation(s)
- Melissa B Asplund
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, USA
| | | | | | | |
Collapse
|
10
|
Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury. PLoS One 2013; 8:e57374. [PMID: 23451215 PMCID: PMC3581459 DOI: 10.1371/journal.pone.0057374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/21/2013] [Indexed: 12/15/2022] Open
Abstract
Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI.
Collapse
|
11
|
Sepsis and Ventilator-Induced Lung Injury. Crit Care Med 2013; 41:354-5. [DOI: 10.1097/ccm.0b013e318270e3c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|