1
|
Yang J, Xu J, Xu S, Fan Z, Zhu C, Wan J, Yang J, Xing X. Oxidative stress in acute pulmonary embolism: emerging roles and therapeutic implications. Thromb J 2024; 22:9. [PMID: 38216919 PMCID: PMC10785361 DOI: 10.1186/s12959-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/25/2023] [Indexed: 01/14/2024] Open
Abstract
Oxidative stress is an imbalance between the body's reactive oxygen species and antioxidant defense mechanisms. Oxidative stress is involved in the development of several cardiovascular diseases, such as pulmonary hypertension, atherosclerosis, and diabetes mellitus. A growing number of studies have suggested the potential role of oxidative stress in the pathogenesis of pulmonary embolism. Biomarkers of oxidative stress in pulmonary embolism have also been explored, such as matrix metalloproteinases, asymmetric dimethylarginine, and neutrophil/lymphocyte ratio. Here, we comprehensively summarize some oxidative stress mechanisms and biomarkers in the development of acute pulmonary embolism and summarize related treatments based on antioxidant stress to explore effective treatment strategies for acute pulmonary embolism.
Collapse
Affiliation(s)
- Jingchao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jinzhu Xu
- Department of Pulmonary and Critical Care Medicine, Yuxi Municipal Hospital of T.C. M, 653100, Yuxi, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Chenshao Zhu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jianyuan Wan
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China.
| |
Collapse
|
2
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
3
|
Nitrite and tempol combination promotes synergic effects and alleviates right ventricular wall stress during acute pulmonary thromboembolism. Nitric Oxide 2021; 115:23-29. [PMID: 34133975 DOI: 10.1016/j.niox.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The mechanical obstruction and pulmonary vasoconstriction are major determinants of the sudden right ventricular (RV) afterload increases observed during acute pulmonary thromboembolism (APT). Vasodilators and antioxidants agents have been shown to mitigate pulmonary hypertension. We examined whether sodium nitrite and the antioxidant tempol combination could be advantageous in an APT sheep model. METHODS APT was induced in anesthetized sheep by autologous blood clots (250 mg/kg) into the right atrium. Thirty minutes after APT induction, the animals received a continuous infusion of tempol (1.0 mg/kg/min), increasing sodium nitrite infusion (5, 15, and 50 μmol/kg), or a simultaneous combination of both drugs. Saline was used as a control treatment. Hemodynamic measurements were carried out every 15 min. Also, whole blood nitrite and serum 8-isoprostanes levels were measured. RESULTS APT induced sustained pulmonary hypertension, increased dp/dtmax, and rate pressure product (RPP). Nitrite or tempol treatments attenuated these increases (P < 0.05). When both drugs were combined, we found a robust reduction in the RV RPP compared with the treatments alone (P < 0.05). The sole nitrite infusion increased blood nitrite concentrations by 35 ± 6 μM (P < 0.05), whereas the nitrite and tempol combination produced higher blood nitrite concentrations by approximately 54 ± 7 μM. Tempol or nitrite infusions, both alone or combined, blunted the increases in 8-isoprostane concentrations observed after APT. CONCLUSIONS Nitrite and tempol combination protects against APT-induced RV wall stress. The association of both drugs may offer an advantage to treat RV failure during severe APT.
Collapse
|
4
|
Andersen A, van der Feen DE, Andersen S, Schultz JG, Hansmann G, Bogaard HJ. Animal models of right heart failure. Cardiovasc Diagn Ther 2020; 10:1561-1579. [PMID: 33224774 PMCID: PMC7666958 DOI: 10.21037/cdt-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Right heart failure may be the ultimate cause of death in patients with acute or chronic pulmonary hypertension (PH). As PH is often secondary to other cardiovascular diseases, the treatment goal is to target the underlying disease. We do however know, that right heart failure is an independent risk factor, and therefore, treatments that improve right heart function may improve morbidity and mortality in patients with PH. There are no therapies that directly target and support the failing right heart and translation from therapies that improve left heart failure have been unsuccessful, with the exception of mineralocorticoid receptor antagonists. To understand the underlying pathophysiology of right heart failure and to aid in the development of new treatments we need solid animal models that mimic the pathophysiology of human disease. There are several available animal models of acute and chronic PH. They range from flow induced to pressure overload induced right heart failure and have been introduced in both small and large animals. When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models.
Collapse
Affiliation(s)
- Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Diederik E. van der Feen
- Center for Congenital Heart Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Lyhne MD, Kline JA, Nielsen-Kudsk JE, Andersen A. Pulmonary vasodilation in acute pulmonary embolism - a systematic review. Pulm Circ 2020; 10:2045894019899775. [PMID: 32180938 PMCID: PMC7057411 DOI: 10.1177/2045894019899775] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023] Open
Abstract
Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ventricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the mechanical obstruction caused by the embolism, but pulmonary vasoconstriction is a significant contributor to the increased right ventricular afterload and is often left untreated. Pulmonary thromboembolism causes mechanical obstruction of the pulmonary vasculature coupled with a complex interaction between humoral factors from the activated platelets, endothelial effects, reflexes and hypoxia to cause pulmonary vasoconstriction that worsens right ventricular afterload. Vasoconstrictors include serotonin, thromboxane, prostaglandins and endothelins, counterbalanced by vasodilators such as nitric oxide and prostacyclins. Exogenous administration of pulmonary vasodilators in acute pulmonary embolism seems attractive but all come with a risk of systemic vasodilation or worsening of pulmonary ventilation-perfusion mismatch. In animal models of acute pulmonary embolism, modulators of the nitric oxide-cyclic guanosine monophosphate-protein kinase G pathway, endothelin pathway and prostaglandin pathway have been investigated. But only a small number of clinical case reports and prospective clinical trials exist. The aim of this review is to give an overview of the causes of pulmonary embolism-induced pulmonary vasoconstriction and of experimental and human investigations of pulmonary vasodilation in acute pulmonary embolism.
Collapse
Affiliation(s)
- Mads Dam Lyhne
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeffrey Allen Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Endogenously released adenosine causes pulmonary vasodilation during the acute phase of pulmonary embolization in dogs. IJC HEART & VASCULATURE 2019; 24:100396. [PMID: 31334333 PMCID: PMC6620623 DOI: 10.1016/j.ijcha.2019.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
Background Endogenous adenosine levels increase under stress in various organs. Exogenously administered adenosine is a well-known pulmonary vasodilator. However, the physiology and therapeutic potential of endogenous adenosine during alteration in pulmonary hemodynamics such as pulmonary embolism is not elucidated. We hypothesized that the adenosine level increases following an acute elevation of pulmonary resistance, resulting in pulmonary vasodilation. Methods We induced acute pulmonary embolization by injecting plastic beads in anesthetized dogs. Plasma adenosine levels, defined as the product of plasma adenosine concentration and simultaneous cardiac output, were assessed from blood samples from the superior vena cava, main pulmonary artery (MPA), and ascending aorta 1 and 10 min following injection. Hemodynamics were assessed with (n = 3) and without (n = 8) administration of the adenosine receptor blocker, 8-(p-sulfophenyl)theophylline (8SPT). Results Mean pulmonary arterial pressure (PAP) increased from 11 ± 1 mmHg, peaking at 28 ± 4 mmHg at 52 ± 13 s after injection. During this period, total pulmonary resistance (TPR) elevated from 11 ± 1 to 33 ± 6 Wood unit. Plasma adenosine levels increased in the MPA from 14.5 ± 2 to 38.8 ± 7 nmol/min 1 min after injection. TPR showed greater elevation under 8SPT treatment, to 96 ± 12 Wood unit at PAP peak. Conclusions Endogenously released adenosine after acute pulmonary embolization is one of the initial pulmonary vasodilators. The immediate surge in plasma adenosine levels in the MPA could lead to a hypothesis that adenosine is released by the right heart in response to pressure overload. Adenosine levels increased after experimental acute pulmonary embolization. Plasma adenosine levels immediately rose in the main pulmonary artery. Adenosine is one of the initial pulmonary vasodilators after embolization. Released adenosine could originate from the right heart following pressure overload.
Collapse
|
7
|
Nilsson KF, Gustafsson LE. Treatment with new organic nitrites in pulmonary hypertension of acute experimental pulmonary embolism. Pharmacol Res Perspect 2019; 7:e00462. [PMID: 30693089 PMCID: PMC6343054 DOI: 10.1002/prp2.462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Acute pulmonary embolism may cause right heart failure due to increased pulmonary vascular resistance and arterial hypoxemia. Effective vasodilator therapy of the pulmonary hypertension is highly needed. Therefore, we investigated the effects of a newly developed effective pulmonary vasodilator, the organic mononitrites of 1,2-propanediol (PDNO), in a rabbit model of acute pulmonary embolism. In anesthetized and ventilated rabbits, systemic and pulmonary hemodynamics, exhaled nitric oxide (NO), plasma nitrite concentration, and blood gases were monitored. First, dose-response experiments with intravenous and left heart ventricle infusions of PDNO and inorganic nitrite were done in naive animals and in pulmonary hypertension induced by a thromboxane A2 analogue. Second, acute pulmonary embolism was induced and either PDNO or placebo were administered intravenously within 20 minutes and evaluated within 1 hour after pulmonary embolization. PDNO intravenously, in contrast to inorganic nitrite intravenously, increased exhaled NO and counteracted pulmonary hypertension and vasodilated the systemic circulation, dose-dependently, thereby showing efficient NO donation. Pulmonary embolization induced pulmonary hypertension and gas exchange disturbances. PDNO significantly decreased and normalized pulmonary vascular resistance and the right ventricle rate-pressure product, without causing tolerance, with no significant side effects on the systemic circulation, nor on blood-gas values or on methemoglobin formation. In conclusion, PDNO is a NO donor and an efficient vasodilator in the pulmonary circulation. Treatment with this or similar organic nitrites intravenously may be a future option to avoid right heart failure in life-threatening acute pulmonary embolism.
Collapse
Affiliation(s)
- Kristofer F. Nilsson
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Department of Cardiothoracic and Vascular SurgeryFaculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Lars E. Gustafsson
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
| |
Collapse
|
8
|
Zayat R, Ahmad U, Stoppe C, Khattab MA, Arab F, Moza A, Tewarie L, Goetzenich A, Autschbach R, Schnoering H. Sildenafil Reduces the Risk of Thromboembolic Events in HeartMate II Patients with Low-Level Hemolysis and Significantly Improves the Pulmonary Circulation. Int Heart J 2018; 59:1227-1236. [DOI: 10.1536/ihj.18-001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rashad Zayat
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Usaama Ahmad
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | | | | | - Fateh Arab
- Department of Cardiovascular Medicine, Dr. Hamid Center, Dubai Health City
| | - Ajay Moza
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | | | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Rüdiger Autschbach
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Heike Schnoering
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| |
Collapse
|
9
|
Guo D, Zhu Z, Zhong C, Peng H, Xu T, Wang A, Peng Y, Xu T, Chen CS, Li Y, Ju Z, Chen J, Zhang Y, He J. Hemoglobin level and three-month clinical outcomes among ischemic stroke patients with elevated systolic blood pressure. J Neurol Sci 2018; 396:256-261. [PMID: 30530284 DOI: 10.1016/j.jns.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Previous studies have reported that extreme low and high hemoglobin levels are positively associated with the risk of ischemic stroke. However, there are few reports on the relationship between hemoglobin at acute phase and clinical outcomes after ischemic stroke and the results of their association to date are inconsistent. We aimed to investigate the association between them in a large prospective cohort of ischemic stroke patients. METHODS Baseline hemoglobin levels were measured in 3881 patients with acute ischemic stroke. The primary outcome was defined as composite outcome of major disability and death (modified Rankin Scale score ≥ 3) at 3 months after stroke onset. Secondary outcomes were separately those of major disability and death. RESULTS Compared with the lowest quartile of hemoglobin, the multivariate adjusted odds ratios (95% confidence intervals) associated with the highest quartile were 1.38 (1.03-1.86), 1.49 (1.11-1.99), 0.79 (0.41-1.52) for primary outcome, major disability and death, respectively. Multiple-adjusted spline regression model showed linear associations of hemoglobin levels with primary outcome (P for linearity =0.037) and major disability (P for linearity =0.004). Subgroup analyses further confirmed the positive association between high hemoglobin and poor prognosis of ischemic stroke. CONCLUSIONS Elevated hemoglobin levels in the acute phase were associated with poor prognosis at 3 months after ischemic stroke. Further prospective studies from other samples of ischemic stroke patients are needed to validate our findings.
Collapse
Affiliation(s)
- Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tian Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China; Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of Hebei United University, Hebei, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Yongqiu Li
- Department of Neurology, Tangshan Worker's Hospital, Hebei, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
10
|
Rezoagli E, Ichinose F, Strelow S, Roy N, Shelton K, Matsumine R, Chen L, Bittner EA, Bloch DB, Zapol WM, Berra L. Pulmonary and Systemic Vascular Resistances After Cardiopulmonary Bypass: Role of Hemolysis. J Cardiothorac Vasc Anesth 2017; 31:505-515. [PMID: 27590461 DOI: 10.1053/j.jvca.2016.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Prolonged cardiopulmonary bypass (CPB) is associated with hemolysis, resulting in increased plasma oxyhemoglobin and vascular nitric oxide depletion. The authors hypothesized that hemolysis associated with CPB would reduce nitric oxide bioavailability, resulting in high pulmonary and systemic vascular resistances that after CPB would normalize gradually over time, due to clearance of plasma oxyhemoglobin. The authors also investigated whether prolonged CPB (≥140 min) produced increased levels of hemolysis and greater pulmonary and systemic vasoconstriction. DESIGN Prospective cohort study. SETTING Single-center university hospital. PATIENTS The study comprised 50 patients undergoing elective cardiac surgery requiring CPB. INTERVENTIONS Plasma hemoglobin and plasma nitric oxide consumption were measured before surgery and after CPB. Pulmonary and systemic hemodynamics were measured after CPB. The effects of short (<140 min) and prolonged (≥140 min) CPB on these parameters were considered. MEASUREMENTS AND MAIN RESULTS Pulmonary and systemic vascular resistances and plasma hemoglobin and nitric oxide consumption were highest at 15 minutes after CPB and then decreased over time. Pulmonary and systemic vascular resistances and plasma hemoglobin and plasma nitric oxide consumption were higher in patients requiring prolonged CPB. The reduction in plasma nitric oxide consumption from 15 minutes to 4 hours after CPB was correlated independently with the reductions in pulmonary and systemic vascular resistances. CONCLUSIONS Prolonged CPB was associated with increased plasma hemoglobin and plasma nitric oxide consumption and pulmonary and systemic vascular resistances. The reduction in plasma nitric oxide consumption at 4 hours after CPB was an independent predictor of the concomitant reductions in pulmonary and systemic vascular resistances.
Collapse
|
11
|
Sodium nitrite attenuates MMP-9 production by endothelial cells and may explain similar effects of atorvastatin. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:223-31. [PMID: 26614570 DOI: 10.1007/s00210-015-1192-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/11/2015] [Indexed: 12/27/2022]
Abstract
Imbalanced matrix metalloproteinase (MMP) activity promotes cardiovascular alterations that are attenuated by statins. These drugs exert pleiotropic effects independent of cholesterol concentrations, including upregulation of nitric oxide (NO) formation and MMP downregulation. However, statins also increase tissue concentrations of nitrites, which activate new signaling pathways independent of NO. We examined whether atorvastatin attenuates MMP-9 production by human umbilical vein endothelial cells (HUVEC) stimulated with phorbol 12-myristate 13-acetate (PMA) by mechanisms possibly involving increased nitrite, and whether this effect results of NO formation. We also examined whether such an effect is improved by sildenafil, an inhibitor of phosphodiesterase-5 which potentiates NO-induced increases in cyclic GMP. MMP activity and nitrite concentrations were measured by gelatin zymography and ozone-based reductive chemiluminescence, respectively, in the conditioned medium of HUVECs incubated for 24 h with these drugs. Phospho-NFκB p65 concentrations were measured in cell lysate to assess NFκB activation. Atorvastatin attenuated PMA-induced MMP-9 gelatinolytic activity by mechanisms not involving NO, although it increased nitrite concentrations, whereas sildenafil had no effects. Combining both drugs showed no improved responses compared to atorvastatin alone. While sodium nitrite attenuated MMP-9 production by HUVECs, adding hemoglobin (NO scavenger) did not affect the responses to nitrite. Neither atorvastatin nor nitrite inhibited PMA-induced increases in phospho-NFκB p65 concentrations. These findings show that sodium nitrite attenuates MMP-9 production by endothelial cells and may explain similar effects exerted by atorvastatin. With both drugs, the inhibitory effects on MMP-9 production are not dependent on NO formation or on inhibition of NFκB activation. Our findings may help to elucidate important new nitrite-mediated mechanisms by which statins affect imbalanced MMP activity in a variety of cardiovascular disease.
Collapse
|
12
|
Lagos-Carvajal AP, Teixeira-Neto FJ, Becerra-Velásquez DR, Diniz MS, Klein AV, Rocha TLA, Dias-Junior CA. Adrenomedullin induces pulmonary vasodilation but does not attenuate pulmonary hypertension in a sheep model of acute pulmonary embolism. Life Sci 2015; 139:139-44. [PMID: 26316450 DOI: 10.1016/j.lfs.2015.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
Abstract
AIMS The pulmonary vasodilation induced by adrenomedullin may be beneficial in the acute pulmonary embolism (APE) setting. This study examined effects of adrenomedullin in sheep with microsphere-induced APE. MAIN METHODS Twenty four anesthetized, mechanically ventilated sheep were randomly assigned into 3 groups (n=8 per group): animals not subjected to any intervention (Sham), animals with APE induced by microspheres (500 mg, intravenously) treated 30 min later by intravenous physiological saline (Emb group) or intravenous adrenomedullin (50 ng/kg/min) during 30 min (Emb+Adm group). Plasma concentrations of cyclic adenosine (cAMP) and guanosine monophosphate (cGMP) were determined by enzyme immunoassay. KEY FINDINGS Variables did not change over time in sham animals. In both embolized groups, microsphere injection significantly (P<0.05) increased pulmonary vascular resistance index (PVRI) and mean pulmonary artery pressure (MPAP) from baseline by 181% and 111-142%, respectively (% change in mean values). Adrenomedullin significantly decreased PVRI (18%-25%) and significantly increased cardiac index (22%-25%) from values recorded 30 min after APE (E30), without modifying MPAP. Adrenomedullin decreased mean arterial pressure (18%-24%) and systemic vascular resistance index (32%-40%). Embolization significantly increased arterial-to-end tidal CO2 gradient, alveolar-to-arterial O2 gradient, and pulmonary shunt fraction from baseline, but these variables were unaffected by adrenomedullin. While adrenomedullin significantly increased plasma cAMP, cGMP levels were unaltered. SIGNIFICANCE Adrenomedullin induces systemic and pulmonary vasodilation, possibly via a cAMP mediated mechanism, without modifying the gas exchange impairment associated with APE. The pulmonary anti-hypertensive effect of adrenomedullin may be offset by increases in cardiac index.
Collapse
Affiliation(s)
- Angie Paola Lagos-Carvajal
- Departamento de Anestesiologia, Faculdade de Medicina, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Francisco José Teixeira-Neto
- Departamento de Anestesiologia, Faculdade de Medicina, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil; Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Diana Rocío Becerra-Velásquez
- Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Miriely Steim Diniz
- Departamento de Anestesiologia, Faculdade de Medicina, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Adriana Vieira Klein
- Departamento de Anestesiologia, Faculdade de Medicina, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Thalita Leone Alves Rocha
- Departamento de Farmacologia, Instituto de Biociências de Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Carlos Alan Dias-Junior
- Departamento de Anestesiologia, Faculdade de Medicina, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil; Departamento de Farmacologia, Instituto de Biociências de Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
13
|
Dahan I, Farber E, Thauho N, Nakhoul N, Francis A, Awawde M, Levy AP, Kim-Shapiro DB, Basu S, Nakhoul F. Interaction between the Haptoglobin 2 Phenotype and Diabetes Mellitus on Systolic Pulmonary Arterial Pressure and Nitric Oxide Bioavailability in Hemodialysis Patients. J Diabetes Res 2015; 2015:613860. [PMID: 26171400 PMCID: PMC4481085 DOI: 10.1155/2015/613860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
Elevated systolic pulmonary artery pressure (s-PAP, ≥35 mmHg) serves as an independent predictor of mortality in hemodialysis (HD) and diabetic (DM) patients. A polymorphism in the antioxidant Haptoglobin (Hp) gene has been shown to regulate the bioavailability of nitric oxide (NO), a major mediator of pulmonary vascular tone. We therefore set out to test the hypothesis that the Hp polymorphism may be a determinant of developing elevated s-PAP specifically in the DM state due to a decreased bioavailability of NO. To test our hypothesis we Hp typed and performed transthoracic echocardiography on a series of HD patients and stratified them into elevated and normal s-PAP groups and then evaluated whether there was a significant association between the Hp type, elevated s-PAP, and decreased NO bioavailability as defined by low plasma nitrite. We found a statistically significant interaction between the Hp type and DM on the prevalence of elevated s-PAP and lower mean nitrite levels with the combination of elevated s-PAP and low nitrite levels being significantly more prevalent in Hp 2-2 DM individuals. We conclude that the Hp 2 type is associated with elevated s-PAP levels and low plasma nitrite levels in HD patients specifically in the DM state.
Collapse
Affiliation(s)
- Inbal Dahan
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Evgeny Farber
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Nadia Thauho
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Nakhoul Nakhoul
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Adi Francis
- Division of Vascular Medicine, Holy Family Hospital, 16234 Nazareth, Israel
| | - Mohamad Awawde
- Division of Vascular Medicine, Holy Family Hospital, 16234 Nazareth, Israel
| | - Andrew P. Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Daniel B. Kim-Shapiro
- Department of Physics and Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Department of Physics and Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - Farid Nakhoul
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
- *Farid Nakhoul:
| |
Collapse
|
14
|
Neto-Neves EM, Sousa-Santos O, Ferraz KC, Rizzi E, Ceron CS, Romano MMD, Gali LG, Maciel BC, Schulz R, Gerlach RF, Tanus-Santos JE. Matrix metalloproteinase inhibition attenuates right ventricular dysfunction and improves responses to dobutamine during acute pulmonary thromboembolism. J Cell Mol Med 2013; 17:1588-97. [PMID: 24199964 PMCID: PMC3914650 DOI: 10.1111/jcmm.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
Activated matrix metalloproteinases (MMPs) cause cardiomyocyte injury during acute pulmonary thromboembolism (APT). However, the functional consequences of this alteration are not known. We examined whether doxycycline (a MMP inhibitor) improves right ventricle function and the cardiac responses to dobutamine during APT. APT was induced with autologous blood clots (350 mg/kg) in anaesthetized male lambs pre-treated with doxycycline (Doxy, 10 mg/kg/day, intravenously) or saline. Non-embolized control lambs received doxycycline pre-treatment or saline. The responses to intravenous dobutamine (Dob, 1, 5, 10 μg/kg/min.) or saline infusions at 30 and 120 min. after APT induction were evaluated by echocardiography. APT increased mean pulmonary artery pressure and pulmonary vascular resistance index by ∼185%. Doxycycline partially prevented APT-induced pulmonary hypertension (P < 0.05). RV diameter increased in the APT group (from 10.7 ± 0.8 to 18.3 ± 1.6 mm, P < 0.05), but not in the Doxy+APT group (from 13.3 ± 0.9 to 14.4 ± 1.0 mm, P > 0.05). RV dysfunction on stress echocardiography was observed in embolized lambs (APT+Dob group) but not in embolized animals pre-treated with doxycycline (Doxy+APT+Dob). APT increased MMP-9 activity, oxidative stress and gelatinolytic activity in the RV. Although doxycycline had no effects on RV MMP-9 activity, it prevented the increases in RV oxidative stress and gelatinolytic activity (P < 0.05). APT increased serum cardiac troponin I concentrations (P < 0.05), doxycycline partially prevented this alteration (P < 0.05). We found evidence to support that doxycycline prevents RV dysfunction and improves the cardiac responses to dobutamine during APT.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption. Thromb Res 2013; 132:578-83. [DOI: 10.1016/j.thromres.2013.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
|
16
|
Treatment of Pulmonary Embolism Is All About Relieving Obstruction? N.O., It Is Not!*. Crit Care Med 2013; 41:1828-9. [DOI: 10.1097/ccm.0b013e3182804306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|