1
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol 2020; 10:537311. [PMID: 33344222 PMCID: PMC7746843 DOI: 10.3389/fonc.2020.537311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
With millions of cases diagnosed annually and high economic burden to cover expensive costs, cancer is one of the most difficult diseases to treat due to late diagnosis and severe adverse effects from conventional therapy. This creates an urgent need to find new targets for early diagnosis and therapy. Progress in research revealed the key steps of carcinogenesis. They are called cancer hallmarks. Zooming in, cancer hallmarks are characterized by ligands binding to their cognate receptor and so triggering signaling cascade within cell to make response for stimulus. Accordingly, understanding membrane topology is vital. In this review, we shall discuss one type of transmembrane proteins: Glycosylphosphatidylinositol-Anchored Proteins (GPI-APs), with specific emphasis on those involved in tumor cells by evading immune surveillance and future applications for diagnosis and immune targeted therapy.
Collapse
|
3
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
5
|
Zhao Y, Li Y, Wu X, Li L, Liu J, Wang Y, Liu Y, Li Q, Wang Z. Identification of anti-CD16a single domain antibodies and their application in bispecific antibodies. Cancer Biol Ther 2019; 21:72-80. [PMID: 31564196 DOI: 10.1080/15384047.2019.1665953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD16a (FcγRIIIa) mediates the antibody dependent cellular cytotoxicity (ADCC) and is important for anti-tumor activities of many therapeutic antibodies. Bispecific antibody targeting natural killer (NK) cells has been studied for cancer therapy. In this work, anti-CD16a single-domain antibodies were identified from hCD16a immunized camel. Bispecific antibodies are then constructed by fusing these single domain antibodies with an anti-CEA single domain antibody. These bispecific antibodies can recruite NK cells to kill CEA-positive tumor cells, and inhibit tumor growth in vivo, suggesting that these anti-CD16a single domain antibodies are powerful tools to engaging NK cells for cancer therapy.
Collapse
Affiliation(s)
- Yining Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Yumei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Bogen JP, Hinz SC, Grzeschik J, Ebenig A, Krah S, Zielonka S, Kolmar H. Dual Function pH Responsive Bispecific Antibodies for Tumor Targeting and Antigen Depletion in Plasma. Front Immunol 2019; 10:1892. [PMID: 31447859 PMCID: PMC6697062 DOI: 10.3389/fimmu.2019.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Shedding of membrane-bound cell surface proteins, where the extracellular domain is released and found in the circulation is a common phenomenon. A prominent example is CEACAM5 (CEA, CD66e), where the shed domain plays a pivotal role in tumor progression and metastasis. For treatment of solid tumors, the presence of the tumor-specific antigen in the plasma can be problematic since tumor-specific antibodies might be intercepted by the soluble antigen before invading their desired tumor target area. To overcome this problem, we developed a generic procedure to generate bispecific antibodies, where one arm binds the antigen in a pH-dependent manner thereby enhancing antigen clearance upon endosomal uptake, while the other arm is able to target tumor cells pH-independently. This was achieved by incorporating pH-sensitive binding modalities in the common light chain IGKV3-15*01 of a CEACAM5 binding heavy chain only antibody. Screening of a histidine-doped light chain library using yeast surface display enabled the isolation of pH-dependent binders. When such a light chain was utilized as a common light chain in a bispecific antibody format, only the respective heavy/light chain combination, identified during selections, displayed pH-responsive binding. In addition, we found that the altered common light chain does not negatively impact the affinity of other heavy chain only binders toward their respective antigen. Our strategy may open new avenues for the generation of bispecifics, where one arm efficiently removes a shed antigen from the circulation while the other arm targets a tumor marker in a pH-independent manner.
Collapse
Affiliation(s)
- Jan P Bogen
- Department of Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Steffen C Hinz
- Department of Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Department of Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aileen Ebenig
- Department of Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Department of Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Liu J, Wu X, Lin L, Pan H, Wang Y, Li Y, Zhao Y, Wang Z. Bp-Bs, a Novel T-cell Engaging Bispecific Antibody with Biparatopic Her2 Binding, Has Potent Anti-tumor Activities. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:66-73. [PMID: 31020038 PMCID: PMC6475711 DOI: 10.1016/j.omto.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Patients with Human epidermal growth factor receptor type 2 (Her2) overexpression are associated with aggressive tumor growth and poor clinical outcomes. Bispecific antibodies targeting Her2 have recently exhibited potent effects on Her2 signal inhibition. In this study, a novel biparatopic anti-Her2 bispecific antibody (Bp-Bs) was constructed by linking a single anti-CD3 Fab with two different anti-Her2 single-domain antibodies targeting non-overlapping epitopes of Her2. The Bp-Bs demonstrated strong binding on Her2-positive cells and potent cytotoxicity on Her2-positive tumor cells, even Her2-low expression cells, suggesting that biparatopic bispecific antibodies may have improved therapeutic benefits on broad Her2 patient populations.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yumei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yining Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Chanier T, Chames P. Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer. Antibodies (Basel) 2019; 8:E13. [PMID: 31544819 PMCID: PMC6640690 DOI: 10.3390/antib8010013] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, cancer immunotherapies have produced impressive therapeutic results. However, the potency of immunotherapy is tightly linked to immune cell infiltration within the tumor and varies from patient to patient. Thus, it is becoming increasingly important to monitor and modulate the tumor immune infiltrate for an efficient diagnosis and therapy. Various bispecific approaches are being developed to favor immune cell infiltration through specific tumor targeting. The discovery of antibodies devoid of light chains in camelids has spurred the development of single domain antibodies (also called VHH or nanobody), allowing for an increased diversity of multispecific and/or multivalent formats of relatively small sizes endowed with high tissue penetration. The small size of nanobodies is also an asset leading to high contrasts for non-invasive imaging. The approval of the first therapeutic nanobody directed against the von Willebrand factor for the treatment of acquired thrombotic thrombocypenic purpura (Caplacizumab, Ablynx), is expected to bolster the rise of these innovative molecules. In this review, we discuss the latest advances in the development of nanobodies and nanobody-derived molecules for use in cancer immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Timothée Chanier
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| | - Patrick Chames
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| |
Collapse
|
9
|
Liu Y, Wang Y, Xing J, Li Y, Liu J, Wang Z. A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2645-2654. [PMID: 30214153 PMCID: PMC6120566 DOI: 10.2147/dddt.s166373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Interleukin-15 (IL-15) is an immunomodulatory cytokine. It can activate and expand cytotoxic CD8 T lymphocytes and natural killer cells, leading to potent antitumor effects. Various forms of IL-15 are now in different stages of development for cancer immunotherapy. One of the major issues with IL-15 or IL15–IL15Rα fusion is high toxicity due to systemic activation of immune cells. Materials and methods In this study, we engineered a nanobody–cytokine fusion molecule, anti-CEA-IL15, in which an anti-CEA nanobody was linked to an IL15Rα–IL15 fusion. The nanobody–cytokine fusion exhibited multiple mechanisms to kill tumor cells, including promoting immune cell proliferation and directing antibody-dependent cytotoxicity against CEA-positive tumor cells. Results In xenograft models, anti-CEA-IL15 was localized in the tumor microenvironment and exhibited more potent antitumor activities than non-targeting IL-15, supporting potential application of this multifunctional fusion molecule in tumor immunotherapy. Conclusion We generated and validated a tumortargeting fusion protein, anti-CEA-IL15, which has potent cytokine activity to activate and mobilize the immune system to fight cancer cells. Such strategies may also be applied to other cytokines and tumor-targeting molecules to increase antitumor efficacy.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yanlan Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jieyu Xing
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yumei Li
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jiayu Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Zhong Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
10
|
Mølgaard K, Harwood SL, Compte M, Merino N, Bonet J, Alvarez-Cienfuegos A, Mikkelsen K, Nuñez-Prado N, Alvarez-Mendez A, Sanz L, Blanco FJ, Alvarez-Vallina L. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2018; 67:1251-1260. [PMID: 29869168 PMCID: PMC11028287 DOI: 10.1007/s00262-018-2181-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain VHH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR VHH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Collapse
Affiliation(s)
- Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Ana Alvarez-Cienfuegos
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Ana Alvarez-Mendez
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark.
| |
Collapse
|
11
|
Wang Y, Liu J, Pan H, Xing J, Wu X, Li Q, Wang Z. A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent Cytotoxicity. J Vis Exp 2018. [PMID: 30059039 DOI: 10.3791/57588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This protocol describes the construction and functional studies of a bispecific antibody (bsAb), GPC3-S-Fab. bsAbs can recognize two different epitopes through their two different arms. bsAbs have been actively studied for their ability to directly recruit immune cells to kill tumor cells. Currently, the majority of bsAbs are produced in the form of recombinant proteins, either as Fc-containing bsAbs or as smaller bsAb derivatives without the Fc region. In this study, GPC3-S-Fab, an antibody fragment (Fab) based bispecific antibody, was designed by linking the Fab of anti-GPC3 antibody GC33 with an anti-CD16 single domain antibody. The GPC3-S-Fab can be expressed in Escherichia coli and purified by two affinity chromatographies. The purified GPC3-S-Fab can specifically bind to and kill GPC3 positive liver cancer cells by recruiting natural killer cells, suggesting a potential application of GPC3-S-Fab in liver cancer therapy.
Collapse
Affiliation(s)
- Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Jieyu Xing
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University;
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University; Center for Cellular & Structural Biology, Sun Yat-Sen University;
| |
Collapse
|
12
|
Pan H, Liu J, Deng W, Xing J, Li Q, Wang Z. Site-specific PEGylation of an anti-CEA/CD3 bispecific antibody improves its antitumor efficacy. Int J Nanomedicine 2018; 13:3189-3201. [PMID: 29881272 PMCID: PMC5985803 DOI: 10.2147/ijn.s164542] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Bispecific antibodies that engage immune cells to kill cancer cells are actively pursued in cancer immunotherapy. Different types of bispecific antibodies, including single-chain fragments, Fab fragments, nanobodies, and immunoglobulin Gs (IgGs), have been studied. However, the low molecular weight of bispecific antibodies with single-chain or Fab fragments generally leads to their rapid clearance in vivo, which limits the therapeutic potential of these bispecific antibodies. Materials and methods In this study, we used a site-specific PEGylation strategy to modify the bispecific single-domain antibody-linked Fab (S-Fab), which was designed by linking an anticarcinoembryonic antigen (anti-CEA) nanobody with an anti-CD3 Fab. Results The half-life (t1/2) of PEGylated S-Fab (polyethylene glycol-S-Fab) was increased 12-fold in vivo with a slightly decreased tumor cell cytotoxicity in vitro as well as more potent tumor growth inhibition in vivo compared to S-Fab. Conclusion This study demonstrated that PEGylation is an effective approach to enhance the antitumor efficacy of bispecific antibodies.
Collapse
Affiliation(s)
- Haitao Pan
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiayu Liu
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wentong Deng
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jieyu Xing
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qing Li
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhong Wang
- School of Pharmaceutical Sciences.,Centre for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett 2018; 16:1259-1266. [PMID: 29963199 DOI: 10.3892/ol.2018.8698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen-binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell-mediated HER2-specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.
Collapse
Affiliation(s)
- Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Shu
- Ying Rui, Inc., Guangzhou, Guangdong 510009, P.R. China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510009, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
14
|
Allegra A, Innao V, Gerace D, Vaddinelli D, Allegra AG, Musolino C. Nanobodies and Cancer: Current Status and New Perspectives. Cancer Invest 2018; 36:221-237. [DOI: 10.1080/07357907.2018.1458858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| |
Collapse
|
15
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Wu X, Chen S, Lin L, Liu J, Wang Y, Li Y, Li Q, Wang Z. A Single Domain-Based Anti-Her2 Antibody Has Potent Antitumor Activities. Transl Oncol 2018; 11:366-373. [PMID: 29455083 PMCID: PMC5852409 DOI: 10.1016/j.tranon.2018.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20% to 30% of breast cancers and various other types of cancers, which plays a vital role in the cancer progression. Monoclonal antibodies targeting Her2 are now used in the clinic to treat Her2 overexpression cancer patients. However, relapse or resistance is frequent with the current therapies. To generate a new treatment avenue against Her2, we immunized and selected a specific anti-Her2 single domain antibody C3 for further studies. The C3-Fc antibody drove antibody-dependent cell-mediated cytotoxicity against Her2-positive tumor cells in vitro and resulted in potent antitumor growth in vivo. These data suggest that the C3-Fc antibody may provide an alternative avenue for Her2-positive cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Siqi Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Yumei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| |
Collapse
|
17
|
Li Y, Zhou C, Li J, Liu J, Lin L, Li L, Cao D, Li Q, Wang Z. Single domain based bispecific antibody, Muc1-Bi-1, and its humanized form, Muc1-Bi-2, induce potent cancer cell killing in muc1 positive tumor cells. PLoS One 2018; 13:e0191024. [PMID: 29357376 PMCID: PMC5777659 DOI: 10.1371/journal.pone.0191024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
Muc1 is one of the most studied tumor antigens. However, antibodies or antibody-toxin conjugates against Muc1 have not shown significant efficacy for tumors with Muc1 overexpression. In this study, we employed bispecific antibody approach to target Muc1 positive tumor cells. A novel bispecific antibody, Muc1-Bi-1, was constructed by linking single domain antibodies, anti-Muc1-VHH and anti-CD16-VHH. Muc1-Bi-2, the humanized form of Muc1-Bi-1, was also constructed by grafting. Both Muc1-Bi bispecific antibodies can be efficiently expressed and purified from bacteria. In vitro, the Muc1-Bi bispecific antibodies can recruit Natural Killer (NK) cells to drive potent and specific cell killing of Muc1-overexpressing tumor cells. In xenograft model, the Muc1-Bi bispecific antibodies can suppress tumor growth in the presence of human peripheral blood mononuclear cells (PBMC). These data suggested that the single domain based Muc1-Bi may provide a valid strategy for targeting tumors with Muc1 overexpression.
Collapse
Affiliation(s)
- Yumei Li
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Limin Lin
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing Li
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
- * E-mail: (QL); (ZW)
| | - Zhong Wang
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Guangzhou, China
- Center for Cellular & Structural Biology, Sun Yat-sen University, Guangzhou, China
- * E-mail: (QL); (ZW)
| |
Collapse
|
18
|
|
19
|
Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies. Int J Mol Sci 2016; 18:ijms18010048. [PMID: 28036020 PMCID: PMC5297683 DOI: 10.3390/ijms18010048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
Abstract
With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc)-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.
Collapse
|
20
|
Li A, Xing J, Li L, Zhou C, Dong B, He P, Li Q, Wang Z. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells. AMB Express 2016; 6:32. [PMID: 27112931 PMCID: PMC4844577 DOI: 10.1186/s13568-016-0201-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.
Collapse
|
21
|
Abstract
Cancer immunotherapy has recently generated much excitement after the continuing success of the immunomodulating anti-CTLA-4 and anti-PD-1 antibodies against various types of cancers. Aside from these immunomodulating antibodies, bispecific antibodies, chimeric antigen receptor T cells, and other technologies are being actively studied. Among the various approaches to cancer immunotherapy, 2 bispecific antibodies are currently approved for patient care. Many more bispecific antibodies are now in various phases of clinical development and will become the next generation of antibody-based therapies. Further understanding of immunology and advances in protein engineering will help to generate a greater variety of bispecific antibodies to fight cancer. Here, we focus on bispecific antibodies that recruit immune cells to engage and kill tumor cells.
Collapse
Affiliation(s)
- Siqi Chen
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Jing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Qing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Zhong Wang
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
22
|
Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Antibodies (Basel) 2015; 5:antib5010001. [PMID: 31557983 PMCID: PMC6698871 DOI: 10.3390/antib5010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
As evidenced by the recent approvals of Removab (EU, Trion Pharma) in 2009 and of Blincyto (US, Amgen) in 2014, the high potential of bispecific antibodies in the field of immuno-oncology is eliciting a renewed interest from pharmaceutical companies. Supported by rapid advances in antibody engineering and the development of several technological platforms such as Triomab or bispecific T cell engagers (BiTEs), the “bispecifics” market has increased significantly over the past decade and may occupy a pivotal space in the future. Over 30 bispecific molecules are currently in different stages of clinical trials and more than 70 in preclinical phase. This review focuses on the clinical potential of bispecific antibodies as immune effector cell engagers in the onco-immunotherapy field. We summarize current strategies targeting various immune cells and their clinical interests. Furthermore, perspectives of bispecific antibodies in future clinical developments are addressed.
Collapse
|