1
|
Cheng H, Li Y, Cheng J, Zhang Y, Zhang B. Study on the effect and mechanisms of piperine against cervical cancer based on network pharmacology and experimental validation. Biotechnol Genet Eng Rev 2024; 40:4875-4898. [PMID: 37235876 DOI: 10.1080/02648725.2023.2217611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Piperine has immunomodulatory and anti-inflammatory properties, and its potential in treating cervical cancer needs further exploration. Using data from The Cancer Genome Atlas (TCGA), we identified immune-related differentially expressed genes (IRDEGs) in cervical cancer. Predicted targets of piperine were compared with cervical cancer-associated genes from various databases. Protein-protein interaction (PPI) network analysis, enrichment of GO and KEGG pathways, and molecular docking were performed. Kaplan-Meier survival analysis was done to assess prognostic significance. In vitro and in vivo experiments were conducted to confirm findings. We obtained 403 IRDEGs, 125 piperine targets, and 7037 cervical cancer genes. PPI network analysis revealed potential targets and pathways regulated by piperine. Molecular docking showed good binding activity of piperine with specific targets. In vitro, piperine inhibited cervical cancer cell proliferation, migration, and invasion, and promoted apoptosis. In vivo, piperine suppressed tumor growth and downregulated expression of IL-1β and NLRP3 in tumor cells. Piperine also downregulated expression of IL-17A, IL-21, IL-22, and RORγt, and decreased the number of Th17 cells in tumor tissues. Piperine may inhibit cervical cancer progression through modulation of Th17 cell activation mediated by the NLRP3/IL-1β axis. Further studies are warranted to explore the potential of piperine as an immunomodulatory agent in cervical cancer treatment.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jie Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
3
|
Ma M, Xie Y, Liu J, Wu L, Liu Y, Qin X. Biological effects of IL-21 on immune cells and its potential for cancer treatment. Int Immunopharmacol 2024; 126:111154. [PMID: 37977064 DOI: 10.1016/j.intimp.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Interleukin-21 (IL-21), a member of the IL-2 cytokine family, is one of the most important effector and messenger molecules in the immune system. Produced by various immune cells, IL-21 has pleiotropic effects on innate and adaptive immune responses via regulation of natural killer, T, and B cells. An anti-tumor role of IL-21 has also been reported in the literature, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the tumor cell. Anti-tumor effect of IL-21 enhances when combined with other agents that target tumor cells, immune regulatory circuits, or other immune-enhancing molecules. Therefore, understanding the biology of IL-21 in the tumor microenvironment (TME) and reducing its systemic toxic and side effects is crucial to ensure the maximum benefits of anti-tumor treatment strategies. In this review, we provide a comprehensive overview on the biological functions, roles in tumors, and the recent advances in preclinical and clinical research of IL-21 in tumor immunotherapy.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Kozłowski M, Borzyszkowska D, Cymbaluk-Płoska A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines 2022; 10:2826. [PMID: 36359346 PMCID: PMC9687228 DOI: 10.3390/biomedicines10112826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 08/11/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies. The main treatment options are surgical removal of the tumor and chemotherapy. Cancer treatment has been revolutionized by immunotherapy, which has developed explosively over the past two decades. Clinical anticancer strategies used in immunotherapy include therapies based on the inhibition of PD-1, PD-L1 or CTLA-4. Despite encouraging results, a large proportion of cancer patients are resistant to these therapies or eventually develop resistance. It is important to perform research that will focus on immunotherapy based on other immune checkpoint inhibitors. The aim of the review was to analyze studies considering the expression of TIM-3 and LAG-3 in the ovarian cancer microenvironment and considering immunotherapy for ovarian cancer that includes antibodies directed against TIM-3 and LAG-3. As the data showed, the expression of the described immune checkpoints was shown in different ways. Higher TIM-3 expression was associated with a more advanced tumor stage. Both TIM-3 and LAG-3 were co-expressed with PD-1 in a large proportion of studies. The effect of LAG-3 expression on progression-free survival and/or overall survival is inconclusive and certainly requires further study. Co-expression of immune checkpoints prompts combination therapies using anti-LAG-3 or anti-TIM-3. Research on immune checkpoints, especially TIM-3 and LAG-3, should be further developed.
Collapse
|
6
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
7
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
8
|
Li X, Liang W, Zhao H, Jin Z, Shi G, Xie W, Wang H, Wu X. Immune Cell Infiltration Landscape of Ovarian Cancer to Identify Prognosis and Immunotherapy-Related Genes to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:749157. [PMID: 34805159 PMCID: PMC8595115 DOI: 10.3389/fcell.2021.749157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer (OC) is the second leading cause of death in gynecological cancer. Multiple study have shown that the efficacy of tumor immunotherapy is related to tumor immune cell infiltration (ICI). However, so far, the Immune infiltration landscape of tumor microenvironment (TME) in OC has not been elucidated. In this study, We organized the transcriptome data of OC in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, evaluated the patient's TME information, and constructed the ICI scores to predict the clinical benefits of patients undergoing immunotherapy. Immune-related genes were further used to construct the prognostic model. After clustering analysis of ICI genes, we found that patients in ICI gene cluster C had the best prognosis, and their tumor microenvironment had the highest proportion of macrophage M1 and T cell follicular helper cells. This result was consistent with that of multivariate cox (multi-cox) analysis. The prognostic model constructed by immune-related genes had good predictive performance. By estimating Tumor mutation burden (TMB), we also found that there were multiple genes with statistically different mutation frequencies in the high and low ICI score groups. The model based on the ICI score may help to screen out patients who would benefit from immunotherapy. The immune-related genes screened may be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | | | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Jin
- ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Guoqi Shi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Xie
- The Precise Medicine Center, Department of Basic Medical College, Shenyang Medical College, Shenyang, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Efficacy of Enhanced Cytokine-Induced Killer Cells as an Adjuvant Immunotherapy for Renal Cell Carcinoma: Preclinical and Clinical Studies. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5709104. [PMID: 34540187 PMCID: PMC8443387 DOI: 10.1155/2021/5709104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Cytokine-induced killer (CIK) cells have been proved to be an effective method of tumor immunotherapy in numerous preclinical and clinical studies. In our previous study, a new method was developed to prime and propagate CIK cells by the combination of IL-2 and IL-15, and this kind of CIK cells had enhanced antitumor effect on lung cancer. For renal cell carcinoma (RCC), immunotherapy plays an important role because of the poor efficacy of radiotherapy and chemotherapy. In this study, we further evaluated the antitumor effects of these enhanced CIK cells against RCC. Enhanced CIK cells were generated by IL-2 combined with IL-15 and identified by flow cytometry. HEK-293 and ACHN cell lines were used to verify the efficiency of CIK cells in vitro, and then the ACHN tumor xenograft model was also employed for in vivo study. In addition, the secreted cytokines including IFN-γ, granzyme B, TNF-α, and perforin, as well as the local microstructure were also studied. Subsequently, 20 patients with RCC were enrolled into our study, and 11 patients were randomly divided into the autologous CIK treatment group for clinical research. The results showed that enhanced CIK cells exert better antitumor effects in RCC in vitro (p < 0.01 in HEK-293 and p < 0.05 in ACHN)and in vivo (p < 0.05). Patients benefit overall survival from enhanced CIK therapy in our clinical study. Our present preclinical and clinical studies for the first time elucidated that these enhanced CIK cells would be used as an effective adjuvant therapy in the treatment of RCC.
Collapse
|
10
|
Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat Commun 2021; 12:951. [PMID: 33574265 PMCID: PMC7878483 DOI: 10.1038/s41467-021-21241-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
T cell rejuvenation by PD-1/PD-L1 blockade, despite emerging as a highly promising therapy for advanced cancers, is only beneficial for a minority of treated patients. There is evidence that a lack of efficient T cell activation may be responsible for the failure. Here, we demonstrate that IL-21 can be targeted to tumor-reactive T cells by fusion of IL-21 to anti-PD-1 antibody. To our surprise, the fusion protein PD-1Ab21 promotes the generation of memory stem T cells (TSCM) with enhanced cell proliferation. PD-1Ab21 treatment show potent antitumor effects in established tumor-bearing mice accompanied with an increased frequency of TSCM and robust expansion of tumor-specific CD8+ T cells with a memory phenotype, and is superior to a combination of PD-1 blockade and IL-21 infusion. Therefore, we have developed a potential strategy to improve the therapeutic effects of immune checkpoint blockade by simultaneously targeting cytokines to tumor-reactive T cells.
Collapse
|
11
|
Chen T, Ding X, Liao Q, Gao N, Chen Y, Zhao C, Zhang X, Xu J. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J Immunother Cancer 2021; 9:jitc-2020-001647. [PMID: 33504576 PMCID: PMC7843316 DOI: 10.1136/jitc-2020-001647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Oncolytic viruses (OVs) have shown promise in containing cancer progression in both animal models and clinical trials. How to further improve the efficacy of OVs are intensively explored. Arming OVs with immunoregulatory molecules has emerged as an important means to enhance their oncolytic activities majorly based on the mechanism of reverting the immunosuppressive nature of tumor environment. In this study, we aimed to identify the optimal combination of different OVs and immunomodulatory molecules for solid tumor treatment as well as the underlying mechanism, and subsequently evaluated its potential synergy with other immunotherapies. Methods Panels of oncolytic viruses and cells stably expressing immunoregulatory molecules were separately evaluated for treating solid tumors in mouse model. A tumor-targeted replicating vaccinia virus Tian Tan strain with deletion of TK gene (TTVΔTK) was armed rationally with IL-21 to create rTTVΔTK-IL21 through recombination. CAR-T cells and iNKT cells were generated from human peripheral blood mononuclear cells. The impact of rTTVΔTK-IL21 on tumor-infiltrating lymphocytes was assessed by flow cytometry, and its therapeutic efficacy as monotherapy or in combination with CAR-T and iNKT therapy was assessed in mouse tumor models. Results IL-21 and TTV was respectively identified as most potent immunomodulatory molecule and oncolytic virus for solid tumor suppression in mouse models. A novel recombinant oncolytic virus that resulted from their combination, namely rTTVΔTK-mIL21, led to significant tumor regression in mice, even for noninjected distant tumor. Mechanistically, rTTV∆TK-mIL21 induced a selective enrichment of immune effector cells over Treg cells and engage a systemic response of therapeutic effect. Moreover, its human form showed a notable synergy with CAR-T or iNKT therapy for tumor treatment when coupled in humanized mice. Conclusion With a strong potency of shaping tumor microenvironment toward favoring TIL activities, rTTVΔTK-IL21 represents a new opportunity worthy of further exploration in clinical settings for solid tumor control, particularly in combinatorial strategies with other immunotherapies. One sentence summary IL21-armed recombinant oncolytic vaccinia virus has potent anti-tumor activities as monotherapy and in combination with other immunotherapies.
Collapse
Affiliation(s)
- Tianyue Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Gao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Koh CH, Kim IK, Shin KS, Jeon I, Song B, Lee JM, Bae EA, Seo H, Kang TS, Kim BS, Chung Y, Kang CY. GITR Agonism Triggers Antitumor Immune Responses through IL21-Expressing Follicular Helper T Cells. Cancer Immunol Res 2020; 8:698-709. [PMID: 32122993 DOI: 10.1158/2326-6066.cir-19-0748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
Although treatment with the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) agonistic antibody (DTA-1) has shown antitumor activity in various tumor models, the underlying mechanism is not fully understood. Here, we demonstrate that interleukin (IL)-21-producing follicular helper T (Tfh) cells play a crucial role in DTA-1-induced tumor inhibition. The administration of DTA-1 increased IL21 expression by Tfh cells in an antigen-specific manner, and this activation led to enhanced antitumor cytotoxic T lymphocyte (CTL) activity. Mice treated with an antibody that neutralizes the IL21 receptor exhibited decreased antitumor activity when treated with DTA-1. Tumor growth inhibition by DTA-1 was abrogated in Bcl6 fl/fl Cd4 Cre mice, which are genetically deficient in Tfh cells. IL4 was required for optimal induction of IL21-expressing Tfh cells by GITR costimulation, and c-Maf mediated this pathway. Thus, our findings identify GITR costimulation as an inducer of IL21-expressing Tfh cells and provide a mechanism for the antitumor activity of GITR agonism.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Tae-Seung Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea. .,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A, Cui W. CD4 + T Cell Help Is Required for the Formation of a Cytolytic CD8 + T Cell Subset that Protects against Chronic Infection and Cancer. Immunity 2019; 51:1028-1042.e4. [PMID: 31810883 DOI: 10.1016/j.immuni.2019.10.009] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
Although CD4+ T cell "help" is crucial to sustain antiviral immunity, the mechanisms by which CD4+ T cells regulate CD8+ T cell differentiation during chronic infection remain elusive. Here, using single-cell RNA sequencing, we show that CD8+ T cells responding to chronic infection were more heterogeneous than previously appreciated. Importantly, our findings uncovered the formation of a CX3CR1-expressing CD8+ T cell subset that exhibited potent cytolytic function and was required for viral control. Notably, our data further demonstrate that formation of this cytotoxic subset was critically dependent on CD4+ T cell help via interleukin-21 (IL-21) and that exploitation of this developmental pathway could be used therapeutically to enhance the killer function of CD8+ T cells infiltrated into the tumor. These findings uncover additional molecular mechanisms of how "CD4+ T cell help" regulates CD8+ T cell differentiation during persistent infection and have implications toward optimizing the generation of protective CD8+ T cells in immunotherapy.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53213, USA
| | - David Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gang Xin
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53213, USA
| | - Christine Nguyen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53213, USA
| | - Allan Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Weiguo Cui
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53213, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Kim SH, Park SY, Lim MC, Lee ES, Lee EG, Han SE, Kim YH, Kwon BS, Choi BK. Delayed IL-21 treatment preferentially expands peptide-specific CD8 + T cells by reducing bystander activation of T cells. Immunotherapy 2019; 11:497-513. [PMID: 30760061 DOI: 10.2217/imt-2018-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We previously reported a simple and practical procedure to generate peptide-specific CD8+ T cells using peptide and IL-2, which is applied to produce human telomerase reverse transcriptase (hTERT)-specific CD8+ T cells for clinical use. We have modified the procedure to enhance the amplification of peptide-specific CD8+ T cells adding IL-21. MATERIALS & METHODS Using human leukocyte antigen (HLA)-A*0201-restricted cytomegalovirus/pp65-specific CD8+ T cells of healthy volunteers, we optimized the culture conditions by adjusting the dose and timing of IL-21 treatment. RESULTS & CONCLUSION By adding IL-21, we accelerated the expansion rate of cytomegalovirus/pp65-specific CD8+ T cells by reducing bystander activation of T cells. We expect that the procedure including IL-21 would improve the production rate of hTERT- and Wilms tumor 1 (WT1)-specific CD8+ T cells for clinical trials.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea
| | - Sang-Yoon Park
- Common Cancer Branch, Division of Clinical Research, National Cancer Center, Goyang, 10408 Korea.,Center for Uterine Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Myong Cheol Lim
- Center for Uterine Cancer, National Cancer Center, Goyang, 10408 Korea.,Cancer Healthcare Research Branch, Division of Cancer Epidemiology & Management, National Cancer Center, Goyang, 10408 Korea
| | - Eun Sook Lee
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea.,Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Eun Gyeong Lee
- Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Seoung-Eun Han
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, 10408 Korea
| | - Young-Ho Kim
- Rare Cancer Branch, Division of Clinical Research, National Cancer Center, Goyang, 10408, Korea
| | - Byoung S Kwon
- Eutilex, Co., Ltd, Suite# 1401 Daeryung Technotown 17 Gasan digital 1-ro 25, Geumcheon-gu, Seoul 08594, Korea.,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA Center for Breast Cancer, National Cancer Center, Goyang, 10408 Korea
| | - Beom K Choi
- Biomedicine Production Branch, National Cancer Center, Goyang, 10408 Korea
| |
Collapse
|
16
|
Abstract
CD4+ T helper (Th) cells are important regulators of cellular immune response. Newly discovered interleukin (IL)-17-producing CD4+ T cells are known as T helper 17 cells (Th17). They are distinct subset from the T helper type 1 (Th1) and 2 (Th2) lineages. The differentiation of Th17 cells has been intensively studied; however, the role of Th17 cells in different diseases including cancer is still under investigation. Besides IL-17 family cytokines, Th17 cells produce IL-22, IL-21, and IL-26. The dysregulated function of Th17 cells and their cytokines could contribute to pathology of diseases, including cancer. The role of cytokines of Th17 cells such as IL-17, IL-21, and IL-22 in cancer will be discussed in this review.
Collapse
Affiliation(s)
- Ayten Nalbant
- Molecular Immunology Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
17
|
Li L, Ma Y, Xu Y, Maerkeya K. TIM-3 expression identifies a distinctive PD-1 + follicular helper T cell subset, with reduced interleukin 21 production and B cell help function in ovarian cancer patients. Int Immunopharmacol 2018; 57:139-146. [DOI: 10.1016/j.intimp.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 01/25/2023]
|
18
|
Zhan J, Huang L, Ma H, Chen H, Yang Y, Tan S, Song W, Zhao W, Dai X. Reduced inflammatory responses of follicular helper T cell promote the development of regulatory B cells after Roux-en-Y gastric bypass. Clin Exp Pharmacol Physiol 2017; 44:556-565. [PMID: 28222218 DOI: 10.1111/1440-1681.12740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Bariatric surgery is currently the most effective strategy in treating severe obesity and its comorbidities, such as type 2 diabetes (T2D). However, the mechanism through which bariatric surgery mediates its benefits is not completely understood. Since obesity and T2D represent yet another inflammatory disease, and follicular helper T (Tfh) cells play important roles in inflammatory disorders, we investigated whether the Tfh activity was altered after Roux-en-Y gastric bypass (RYGB), one of the most common bariatric surgery procedures. We found that the Tfh cells after RYGB were not significantly changed in number, but presented altered cytokine secretion profile, including lower interferon (IFN)-γ, interleukin (IL)-2, IL-4, and IL-17 secretion. Tfh cells after RYGB also downregulated inducible co-stimulator and programmed death-1. Interestingly, after Tfh cell-naive B cell coculture, Tfh cells after RYGB secreted more IL-10 than autologous Tfh cells before RYGB. The frequencies of IL-10-expressing and transforming growth factor (TGF)-β-expressing regulatory B cells after Tfh cell-naive B cell coculture were directly correlated with the frequency of IL-10-expressing Tfh cells. Depletion of IL-10 in the coculture, however, resulted in fewer regulatory B cells. Finally, patients with greater increase in IL-10-expressing Tfh cells presented further reductions in body mass index, glycaemia, and body fat percentage. Together, these data demonstrated that the Tfh cells after RYGB presented lower inflammatory status and secreted higher IL-10, through which these Tfh cells promoted the development of regulatory B cells. Higher IL-10-expressing Tfh cell level also predicted better patient response to RYGB.
Collapse
Affiliation(s)
- Junfang Zhan
- Health Management Center, Guangzhou First People's Hospital, Guangzhou Medical College, Guangzhou, China
| | - Liyu Huang
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyong Ma
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Chen
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Yang
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Tan
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wendy Song
- DICAT Biomedical Computation Centre, Vancouver, BC, Canada
| | - Weiguo Zhao
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Dai
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
McMichael EL, Courtney NB, Duggan MC, Wesolowski R, Quiroga D, Kondadasula SV, Atwal LS, Bhave N, Luedke E, Jaime-Ramirez AC, Campbell AR, Mo X, Byrd JC, Carson Iii WE. Activation of the FcgammaReceptorIIIa on human natural killer cells leads to increased expression of functional interleukin-21 receptor. Oncoimmunology 2017. [PMID: 28638738 DOI: 10.1080/2162402x.2017.1312045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune effector cells that play a crucial role in immune surveillance and the destruction of cancer cells. NK cells express a low-affinity receptor for the Fc or constant region of immunoglobulin G (FcγRIIIa) and multiple cytokine receptors that respond to antibody-coated targets and cytokines in the tumor microenvironment. In the present work, microarray gene expression analysis revealed that the IL-21 receptor (IL-21R) was strongly upregulated following FcR stimulation. The IL-21R was found to be upregulated on FcR-stimulated NK cells at the transcript level as determined by reverse transcription polymerase chain reaction (RT-PCR). Immunoblot analysis revealed that protein expression of the IL-21R peaked at 8 h post-stimulation of the FcR. Inhibition of the mitogen-activated protein kinase (MAPK) pathway downstream of the FcR blocked the induction of IL-21R expression. Increased expression of the IL-21R sensitized NK cells to IL-21 stimulation, as treatment of FcR-stimulated NK cells led to significantly increased phosphorylation of STAT1 and STAT3, as measured by intracellular flow cytometry and immunoblot analysis. Following FcR-stimulation, IL-21-activated NK cells were better able to mediate the lysis of trastuzumab-coated human epidermal growth factor receptor 2 (HER2+) SK-BR-3 tumor cells as compared to control-treated cells. Likewise, IL-21-induced NK cell secretion of IFNγ following exposure to antibody-coated tumor cells was enhanced following FcR-stimulation. The analysis of NK cells from patients receiving trastuzumab therapy for HER2+ cancer exhibited increased levels of the IL-21R following the administration of antibody suggesting that the presence of monoclonal antibody-coated tumor cells in vivo can stimulate the increased expression of IL-21R on NK cells.
Collapse
Affiliation(s)
| | | | - Megan C Duggan
- Biomedical Sciences Graduate Program, College of Medicine, Columbus, OH, US
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, Columbus, OH, USA
| | - Dionisia Quiroga
- Division of Medical Oncology, Department of Internal Medicine, Columbus, OH, USA
| | | | | | - Neela Bhave
- Comprehensive Cancer Center, Columbus, OH, USA
| | - Eric Luedke
- Department of Surgery, Division of Surgical Oncology, Columbus, OH, USA
| | | | - Amanda R Campbell
- Biomedical Sciences Graduate Program, College of Medicine, Columbus, OH, US.,Medical Scientist Training Program, College of Medicine, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, Columbus, OH, USA
| | - William E Carson Iii
- Department of Surgery, Division of Surgical Oncology, Columbus, OH, USA.,Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA.,Biomedical Sciences Graduate Program, College of Medicine, Columbus, OH, US
| |
Collapse
|
20
|
Ma QY, Huang DY, Zhang HJ, Chen J, Miller W, Chen XF. Function of follicular helper T cell is impaired and correlates with survival time in non-small cell lung cancer. Int Immunopharmacol 2016; 41:1-7. [PMID: 27788370 DOI: 10.1016/j.intimp.2016.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
Non-small cell lung cancer (NSCLC) represents one of the most common and aggressive cancers worldwide. The PD-1/PD-L1 interaction plays important roles in cancer immunology, and expression of PD-L1 has been discovered in NSCLC tumor cells. Since follicular helper T (Tfh) cells have characteristic high PD-1 expression, we therefore investigated the inflammatory status of Tfh in NSCLC. CD4+CXCR5+ T cell population was examined to define Tfh cells. Data showed that frequency of Tfh cells in peripheral blood was significantly lower in NSCLC patients than in healthy controls. In both primary and metastatic tumors, infiltration of Tfh cells was observed, suggesting that they participated in the antitumor immunity of NSCLC patients. Compared to other T cell subsets, the Tfh cells from the peripheral blood and the resected tumors of NSCLC patients presented elevated apoptosis and reduced proliferation capacity. The Tfh cells from NSCLC patients were also less effective at downregulating IgD and upregulating CD27 expression in naive B cells, and induced less IgM, IgG and IgA secretion, than those from healthy controls. We then found that the survival time from the date of surgery was positively correlated with the frequency of tumor-infiltrating Tfh cells in NSCLC subjects. Overall, the results from this study demonstrated that the Tfh cells were likely involved in the antitumor immunity and were associated with better clinical outcomes, but suffered strong immunosuppression in NSCLC. Enhancing the Tfh cell activity therefore represents a potential therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Qin-Yun Ma
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Da-Yu Huang
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hui-Jun Zhang
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ji Chen
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Wendy Miller
- DICAT Biomedical Computation Centre, British Columbia, Canada
| | - Xiao-Feng Chen
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Faries MB. Intralesional Immunotherapy for Metastatic Melanoma: The Oldest and Newest Treatment in Oncology. Crit Rev Oncog 2016; 21:65-73. [PMID: 27481003 DOI: 10.1615/critrevoncog.2016017124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The last few years have yielded exciting developments in immunotherapy for cancer. The promise of cancer immunotherapy has been well known for many years, but had generally produced limited or inconsistent benefit to patients. Intralesional therapies, which are in fact one of the oldest forms of immunotherapy, are also demonstrating benefits in the modern age. This review discusses the origins of intralesional immunotherapy and its underlying rationale. It also discusses the reemergence of this mode of therapy into the modern era, which is where Donald L. Morton, subject of this edition of the journal, plays a major role. The review also discusses current areas of investigation. Given the intuitive advantages of this strategy and the demonstrated, expanding areas of clinical responses, it is likely that intralesional immunotherapy will remain a useful component of cancer treatment into the future.
Collapse
Affiliation(s)
- Mark B Faries
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404
| |
Collapse
|
22
|
Singh M, Overwijk WW. Intratumoral immunotherapy for melanoma. Cancer Immunol Immunother 2015; 64:911-21. [PMID: 26050024 PMCID: PMC11028428 DOI: 10.1007/s00262-015-1727-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/29/2015] [Indexed: 12/27/2022]
Abstract
Selection of suitable tumor-associated antigens is a major challenge in the development of effective cancer vaccines. Intratumoral (i.t.) immunotherapy empowers the immune system to mount T cell responses against tumor-associated antigens which are most immunogenic. To mediate systemic tumor regression, i.t. immunotherapy must generate systemic T cell responses that can target distant metastases beyond the initially treated tumor mass. Now that promising preclinical results and some initial success in clinical trials have been obtained, we here review i.t. immunotherapy-related preclinical and clinical studies, their mechanisms of action and future prospects.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 7455 Fannin St., Unit 0904, Houston, TX 77030 USA
| | - Willem W. Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 7455 Fannin St., Unit 0904, Houston, TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX USA
| |
Collapse
|
23
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
24
|
Turksma AW, Bontkes HJ, Ruizendaal JJ, van den Heuvel H, Scholten KBJ, Santegoets SJAM, de Gruijl TD, Meijer CJLM, Hooijberg E. Increased cytotoxic capacity of tumor antigen specific human T cells after in vitro stimulation with IL21 producing dendritic cells. Hum Immunol 2013; 74:506-13. [PMID: 23376456 DOI: 10.1016/j.humimm.2013.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/04/2012] [Accepted: 01/14/2013] [Indexed: 01/01/2023]
Abstract
Monocyte derived dendritic cells (moDC) electroporated with tumor associated antigen derived mRNA can elicit specific T cells against tumor cells in vivo. IL21 has been shown to enhance activation and cytotoxicity in CD8+ T cells. We therefore investigated in vitro effects on human CD8+ T-cells after stimulation with IL21 mRNA electroporated moDC. Codon modification of the IL21 gene significantly enhanced IL21 production upon electroporation of moDC. Tumor associated antigen specific CTL induction efficiency was significantly enhanced when codon modified IL21 mRNA was co-electroporated with tumor associated antigen mRNA. Tumor associated antigen specific T cells induced by codon modified IL21-DC demonstrated increased cytotoxic capacity and killing compared to control cultures. In conclusion, ectopic expression of codon modified IL21 by moDC enhances the priming efficiency of the DC as well as the cytotoxic potential of the induced CTL.
Collapse
Affiliation(s)
- A W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mittal A, Murugaiyan G, Beynon V, Hu D, Weiner HL. IL-27 induction of IL-21 from human CD8+ T cells induces granzyme B in an autocrine manner. Immunol Cell Biol 2012; 90:831-5. [PMID: 22430249 DOI: 10.1038/icb.2012.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-27 exerts an anti-inflammatory effect on human and mice CD4(+) T cells by inducing IL-10-producing T regulatory 1 cells through induction of IL-21. However, the role of IL-27 and how it regulates IL-21 from human CD8(+) T cells is unclear. Here, we show that the IL-27 receptor is expressed on human CD8(+) T cells and stimulation of human naïve CD8(+) T cells in the presence of IL-27 leads to an increase in IL-21 and interferon (IFN)-γ production. IL-21 induction in IL-27-stimulated human CD8(+) T cells correlates specifically with expression of the transcription factor T-bet. IL-27 stimulation of naïve CD8(+) T cells induces a double-positive T-bet(+) IL-21(+) expressing CD8(+) T-cell population. Furthermore, IL-27 stimulation of human naïve CD8(+) T cells greatly increases expression of granzyme B. Antibody-mediated neutralization of IL-21 abrogates IL-27-induced granzyme B expression. Moreover, direct addition of IL-21 greatly amplifies granzyme B expression in human naïve CD8(+) T cells. Our findings identify IL-27-induced IL-21 as a key autocrine regulator of granzyme B expression in human CD8(+) T cells.
Collapse
Affiliation(s)
- Akanksha Mittal
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
26
|
Elishmereni M, Kheifetz Y, Søndergaard H, Overgaard RV, Agur Z. An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers. PLoS Comput Biol 2011; 7:e1002206. [PMID: 22022259 PMCID: PMC3182868 DOI: 10.1371/journal.pcbi.1002206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022] Open
Abstract
Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected “training” data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent “validation” data in melanoma and renal cell carcinoma-challenged mice (R2>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 µg/dose) into a twice daily schedule (25 µg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 µg/day) regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R2>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic. Among the many potential drugs explored within the scope of cancer immunotherapy are selected cytokines which possess promising immune-boosting properties. Yet, the natural involvement of these proteins in multiple, often contradicting biological processes can complicate their use in the clinic. The cytokine interleukin (IL)-21 is no exception: while its strength as an anticancer agent has been established in several animal studies, response rates in melanoma and renal cell carcinoma patients remain low. To help guide the design of effective IL-21 therapy, we have developed a mathematical model that bridges between the complex biology of IL-21 and its optimal clinical use. Our model integrates data from preclinical studies under diverse IL-21 treatment settings, and was validated by extensive experiments in tumor-bearing mice. Model simulations predicted that beneficial, clinically practical IL-21 therapy should be composed of low-dose schedules, and/or schedules in which several partial doses are administered rather than a single complete dose. These findings were subsequently confirmed in mice with melanoma. Thus, future testing of these strategies in solid cancer patients can be a promising starting point for improving IL-21 therapy. Our model can thus provide a computational platform for rationalizing IL-21 regimens and streamlining its clinical development.
Collapse
Affiliation(s)
| | - Yuri Kheifetz
- Institute for Medical Biomathematics (IMBM), Bene-Ataroth, Israel
| | | | | | - Zvia Agur
- Institute for Medical Biomathematics (IMBM), Bene-Ataroth, Israel
- Optimata Ltd., Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
27
|
Yao H, Ng SS, Huo LF, Chow BKC, Shen Z, Yang M, Sze J, Ko O, Li M, Yue A, Lu LW, Bian XW, Kung HF, Lin MC. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol Cancer Ther 2011; 10:1082-92. [PMID: 21518728 DOI: 10.1158/1535-7163.mct-10-0717] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin-2 (IL-2) has been shown to possess antitumor activity in numerous preclinical and clinical studies. However, the short half-life of recombinant IL-2 protein in serum requires repeated high-dose injections, resulting in severe side effects. Although adenovirus-mediated IL-2 gene therapy has shown antitumor efficacy, the host antibody response to adenoviral particles and potential biosafety concerns still obstruct its clinical applications. Here we report a novel nanopolymer for IL-2 delivery, consisting of low molecular weight polyethylenimine (600 Da) linked by β-cyclodextrin and conjugated with folate (named H1). H1 was mixed with IL-2 plasmid to form H1/pIL-2 polyplexes of around 100 nm in diameter. Peritumoral injection of these polyplexes suppressed the tumor growth and prolonged the survival of C57/BL6 mice bearing B16-F1 melanoma grafts. Importantly, the antitumor effects of H1/pIL-2 (50 μg DNA) were similar to those of recombinant adenoviruses expressing IL-2 (rAdv-IL-2; 2 × 10(8) pfu). Furthermore, we showed that H1/pIL-2 stimulated the activation and proliferation of CD8+, CD4+ T cell, and natural killer cells in peripheral blood and increased the infiltration of CD8+, CD4+ Tcells, and natural killer cells into the tumor environment. In conclusion, these results show that H1/pIL-2 is an effective and safe melanoma therapeutic with an efficacy comparable to that of rAdv-IL-2. This treatment represents an alternative gene therapy strategy for melanoma.
Collapse
Affiliation(s)
- Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Costanzo A, Chimenti MS, Botti E, Caruso R, Sarra M, Monteleone G. IL-21 in the pathogenesis and treatment of skin diseases. J Dermatol Sci 2010; 60:61-6. [PMID: 20888735 DOI: 10.1016/j.jdermsci.2010.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 11/24/2022]
|