1
|
Speeckaert R, Caelenberg EV, Belpaire A, Speeckaert MM, Geel NV. Vitiligo: From Pathogenesis to Treatment. J Clin Med 2024; 13:5225. [PMID: 39274437 PMCID: PMC11396398 DOI: 10.3390/jcm13175225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Recent advances in vitiligo have provided promising treatment options, particularly through understanding the immune-mediated mechanisms leading to depigmentation. The inflammatory components in both vitiligo (non-segmental) and segmental vitiligo have similarities. Both are believed to result from an immune-based destruction of melanocytes by anti-melanocyte-specific cytotoxic T cells. The JAK-STAT pathway is activated with IFN-γ as the crucial cytokine and Th1-associated chemokines such as CXCL9 and CXCL10 recruit immune cells towards vitiligo skin. Nonetheless, clear differences are also present, such as the localized nature of segmental vitiligo, likely due to somatic mosaicism and increased presence of poliosis. The differing prevalence of poliosis suggests that the follicular immune privilege, which is known to involve immune checkpoints, may be more important in vitiligo (non-segmental). Immunomodulatory therapies, especially those targeting the JAK-IFNγ pathway, are currently at the forefront, offering effective inhibition of melanocyte destruction by cytotoxic T cells. Although Janus Kinase (JAK) inhibitors demonstrate high repigmentation rates, optimal results can take several months to years. The influence of environmental UV exposure on repigmentation in patients receiving immunomodulating drugs remains largely underexplored. Nonetheless, the combined effect of phototherapy with JAK inhibitors is impressive and suggests a targeted immune-based treatment may still require additional stimulation of melanocytes for repigmentation. Identifying alternative melanocyte stimulants beyond UV light remains crucial for the future management of vitiligo.
Collapse
Affiliation(s)
| | | | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Bishnoi A, Parsad D. Phototherapy for vitiligo: A narrative review on the clinical and molecular aspects, and recent literature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12968. [PMID: 38632705 DOI: 10.1111/phpp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Vitiligo is characterized by depigmented patches resulting from loss of melanocytes. Phototherapy has emerged as a prominent treatment option for vitiligo, utilizing various light modalities to induce disease stability and repigmentation. AIMS AND METHODS This narrative review aims to explore the clinical applications and molecular mechanisms of phototherapy in vitiligo. RESULTS AND DISCUSSION The review evaluates existing literature on phototherapy for vitiligo, analyzing studies on hospital-based and home-based phototherapy, as well as outcomes related to stabilization and repigmentation. Narrowband ultra-violet B, that is, NBUVB remains the most commonly employed, studied and effective phototherapy modality for vitiligo. Special attention is given to assessing different types of lamps, dosimetry, published guidelines, and the utilization of targeted phototherapy modalities. Additionally, the integration of phototherapy with other treatment modalities, including its use as a depigmenting therapy in generalized/universal vitiligo, is discussed. Screening for anti-nuclear antibodies and tailoring approaches for non-photo-adapters are also examined. CONCLUSION In conclusion, this review provides a comprehensive overview of phototherapy for vitiligo treatment. It underscores the evolving landscape of phototherapy and offers insights into optimizing therapeutic outcomes and addressing the challenges ahead. By integrating clinical evidence with molecular understanding, phototherapy emerges as a valuable therapeutic option for managing vitiligo, with potential for further advancements in the field.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
de Souza LG, Gold MH, Steiner D, Silva MR, Viana de Oliveira G. A simple drug-delivery microneedling technique modality successfully improves linear atrophic scars. J Cosmet Dermatol 2024; 23:857-861. [PMID: 38071614 DOI: 10.1111/jocd.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/21/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Atrophic scars are white, dermal depressions, caused by the destruction of collagen fibers and decrease in epidermal cells, following inflammation after different types of trauma. They lead to significant physical, aesthetic and psychological barriers and their treatment remain a therapeutic challenge for dermatologists. Microneedling has been shown to improve scars by stimulating angiogenesis and neocolagenesis and the combination of anti-fibrotic drugs could potentialize the results. METHODS We present 8 cases of patients with linear scars, successfully treated with two sessions of a new Microneedling technique, using a tattoo machine, associated with drug delivery of 5-FU. RESULTS A marked improvement in scar pigmentation and texture were noted by patients and doctors, 6 months following the sessions of MMP and drug delivery with 5-FU, in different body sites. We also showed that the assessment scores of at least one of the professionals with those of the patient had significant correlations with each other, which shows consistency between the qualitative assessment instruments. We also showed that the cause of the injury can influence joint assessment scores (physicians plus patient) or those exclusive to professionals trained for the assessments, generating evidence that the cause of the injury can influence the treatment outcome itself. CONCLUSIONS We present an inexpensive and promising approach that can be easily done as an in-office procedure. Larger, multicenter studies are needed to validate this technique among the first line therapies for acne scar treatment.
Collapse
Affiliation(s)
| | | | - Denise Steiner
- Mogi das Cruzes University (UMC), Mogi das Cruzes, Brazil
| | - Marcio Roberto Silva
- Embrapa Gado de leite e pós-graduação em saúde coletiva (UFJF), Juiz de Fora, Brazil
| | | |
Collapse
|
4
|
Liu W. The Involvement of Cysteine-X-Cysteine Motif Chemokine Receptors in Skin Homeostasis and the Pathogenesis of Allergic Contact Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1005. [PMID: 38256077 PMCID: PMC10815665 DOI: 10.3390/ijms25021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the C-X-C motif chemokine receptor (CXCR) superfamily play central roles in initiating the innate immune response in mammalian cells by orchestrating selective cell migration and immune cell activation. With its multilayered structure, the skin, which is the largest organ in the body, performs a crucial defense function, protecting the human body from harmful environmental threats and pathogens. CXCRs contribute to primary immunological defense; these receptors are differentially expressed by different types of skin cells and act as key players in initiating downstream innate immune responses. While the initiation of inflammatory responses by CXCRs is essential for pathogen elimination and tissue healing, overactivation of these receptors can enhance T-cell-mediated autoimmune responses, resulting in excessive inflammation and the development of several skin disorders, including psoriasis, atopic dermatitis, allergic contact dermatitis, vitiligo, autoimmune diseases, and skin cancers. In summary, CXCRs serve as critical links that connect innate immunity and adaptive immunity. In this article, we present the current knowledge about the functions of CXCRs in the homeostasis function of the skin and their contributions to the pathogenesis of allergic contact dermatitis and psoriasis. Furthermore, we will examine the research progress and efficacy of therapeutic approaches that target CXCRs.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Wang X, Wu W, Chen J, Li C, Li S. Management of the refractory vitiligo patient: current therapeutic strategies and future options. Front Immunol 2024; 14:1294919. [PMID: 38239366 PMCID: PMC10794984 DOI: 10.3389/fimmu.2023.1294919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research.
Collapse
Affiliation(s)
| | | | | | | | - Shuli Li
- *Correspondence: Shuli Li, ; Chunying Li,
| |
Collapse
|
6
|
Speeckaert R, Belpaire A, Speeckaert MM, van Geel N. A meta-analysis of chemokines in vitiligo: Recruiting immune cells towards melanocytes. Front Immunol 2023; 14:1112811. [PMID: 36911664 PMCID: PMC9999440 DOI: 10.3389/fimmu.2023.1112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Chemokine research offers insightful information on the pathogenesis of cutaneous immune disorders, such as vitiligo. Compared to cytokines, the higher detectable levels of chemokines display promising potential as future disease biomarkers. Nonetheless, some published study results are contradictory, which can be attributed to patient characteristics and methodological differences. In this study, a meta-analysis was performed to compare chemokine expression in blood and skin samples from vitiligo patients versus healthy controls. Furthermore, the relationship between chemokine expression and disease activity was evaluated. Chemokine levels were investigated in 15 articles in the circulation and in 9 articles in vitiligo skin. Overall, some clear trends were observed. CXCR3 signaling by CXCL10 and CXCL9 has been confirmed by several reports, although CXCL10 showed more robust findings in blood samples. In this meta-analysis, CCL5, CXCL8, CXCL12, and CXCL16 levels were also significantly elevated. This indicates a complex immune pathway activation in vitiligo that overall supports a Th1-dominant response. Chemokines linked to the Th2 and Th17 pathways were less prevalent. Despite these findings, study protocols that examine a broader range of chemokines are encouraged, because current research is mostly focused on a small number of chemokines that were differentially expressed in previous studies.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
7
|
Yao YZ, Liao ZK, Jiang S, Dong BQ, Luo LF, Miao F, Lei TC. Uncoupling melanogenesis from proliferation in epidermal melanocytes responding to stimulation with psoriasis-related proinflammatory cytokines. J Dermatol Sci 2022; 108:98-108. [PMID: 36577564 DOI: 10.1016/j.jdermsci.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Few studies have addressed the impact of the psoriasis-related proinflammatory cytokines on the proliferation and melanogenesis of melanocytes (MCs) in lesional psoriatic skin. OBJECTIVE We investigated the effects of TNFα, IL17A, and IL8 on the proliferation and melanin synthesis of MCs. METHODS Skin specimens were biopsied from patients with psoriasis vulgaris at the active stage, or from the tail skin of Dct-LacZ mice with imiquimod (IMQ)-induced psoriasiform dermatitis. Cultured keratinocytes (KCs), MCs, and human skin explants were used in this study. The numbers of MCs were measured via β-galactosidase staining, EdU incorporation and HMB45 immunohistochemical staining. The expression of human β-defensin 3 (hBD3) in KCs was silenced by siRNA, the conditioned medium (CM) from siRNA-transfected KCs was used to treat MCs, then followed by αMSH stimulation. The melanogenesis-related genes were examined by using qRT-PCR and western blotting. RESULTS The increased number of MCs and decreased melanin content were highly relevant to the enhanced expression of IL8 and BD3 both in human psoriatic skin and in IMQ-treated mouse tail skin. IL8 expression in KCs and CXCR2 expression in MCs was significantly increased by IL17A and TNFα, the αMSH-induced upregulations of microphthalmia-associated transcription factor (MITF) and tyrosinase in MCs were abrogated by the CM from hBD3-unsilenced KCs, but not from hBD3-silenced KCs. CONCLUSION Our results suggest the roles of IL8-CXCR2 activation in promoting MC proliferation and of BD3 upregulation in reducing melanogenesis. These findings have been implicated in the underlying mechanism that active psoriasis prefers hypopigmentation despite chronic inflammation.
Collapse
Affiliation(s)
- Yun-Zhu Yao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Speeckaert R, Belpaire A, Speeckaert M, van Geel N. The delicate relation between melanocytes and skin immunity: A game of hide and seek. Pigment Cell Melanoma Res 2022; 35:392-407. [PMID: 35298085 DOI: 10.1111/pcmr.13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Melanocytes exhibit a complex and intriguing relationship with the skin immune response, leading to several clinical conditions. In some disorders, inappropriate melanocyte destruction (e.g., vitiligo, halo naevi) is problematic, while in others, immune tolerance should be broken (melanoma). Important parts of the dysregulated pathways have been unraveled in pigment disorders, ranging from upregulated interferon (IFN)-γ signaling to memory T cells, regulatory T cells, and immune checkpoints. Although a network of many factors is involved, targeting key players such as IFN-γ or checkpoint inhibitors (e.g., programmed death-ligand 1 (PD-L1)] can shift the balance and lead to impressive outcomes. In this review, we focus on the immunological mechanisms of the most common inflammatory disorders where the interaction of the immune system with melanocytes plays a crucial role. This can provide new insights into the current state of melanocyte research.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8796735. [PMID: 35096274 PMCID: PMC8791757 DOI: 10.1155/2022/8796735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is a common chronic autoimmune skin disorder featured with depigmented patches and underlying destruction of melanocytes in the lesional skin. Multiple factors and mechanisms have been proposed for the etiopathogenesis of vitiligo, among which oxidative stress has been widely accepted as a key factor in initiating melanocyte loss. The altered redox status caused by oxidative stress, including the overproduction of reactive oxygen species (ROS) and the decreased activity of the antioxidant system in the skin, surrenders the resistance of melanocytes to exogenous or endogenous stimuli and eventually impairs the normal defense mechanism, leading to the absence of melanocytes. Considering the important role of innate and adaptive immunity in vitiligo, there is mounting evidence revealing an association between oxidative stress and autoimmunity. Since the significant changes of chemokines have been documented in vitiligo in many recent studies, it has been suggested that ROS-mediated chemotactic signals are not only the biomarkers of disease progression and prognosis but also are involved in the pathogenesis of vitiligo by facilitating the innate and adaptive immune cells, especially melanocyte-specific T cells, trafficking to the lesional areas of vitiligo. In this review, we discuss the interaction between oxidative stress and autoimmune response orchestrated by chemokines, including CXCL16-CXCR6 axis, CXCL9/CXCL10-CXCR3 axis, and other altered chemokines in vitiligo, and we also try to provide insight into potential therapeutic options through targeting these pathways.
Collapse
|