1
|
Ren Y, Wang Z, You L, Zhou J, Huang H, Chang S, Wu Y, Xue J. Gut-derived trimethylamine N-oxide promotes CCR2-mediated macrophage infiltration in acute kidney injury. Nephrol Dial Transplant 2024; 39:1876-1889. [PMID: 38587855 DOI: 10.1093/ndt/gfae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Inflammation is crucial in the development of acute kidney injury (AKI) and subsequent chronic kidney disease (CKD) following renal ischaemia-reperfusion (IR) injury. Gut microbiota metabolites trigger inflammation and affect IR-induced renal damage. Yet the driving factors and mechanisms are unclear. Trimethylamine N-oxide (TMAO), a gut-derived choline metabolite, is a strong pro-inflammatory factor that increases in patients with AKI and CKD. We hypothesized that TMAO can promote renal injury caused by IR. METHODS Mice subjected to unilateral renal IR to induce AKI and CKD were fed a high-choline diet to observe the effects of TMAO on kidney inflammation, fibrosis and macrophage dynamics. RESULTS A choline-rich diet altered the gut microbiota and elevated TMAO levels, exacerbating IR-induced AKI and subsequent CKD. Single-cell analysis identified a distinct subset of CCR2+ macrophages derived from monocytes as key responders to TMAO, intensifying immune cell interactions and worsening renal injury. TMAO promoted sustained CCR2 expression after IR, increasing macrophage infiltration. CCR2 deletion and antagonist RS-102895 improved TMAO-induced inflammation and fibrosis and alleviated renal injury induced by IR. CONCLUSIONS Our study provides valuable insights into the link between TMAO and IR-induced renal inflammation and fibrosis, emphasizing the critical role of TMAO-mediated macrophage infiltration via CCR2 as a key therapeutic target in the acute and chronic phases after IR.
Collapse
Affiliation(s)
- Yuan Ren
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyuan Wang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Li You
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Zhou
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
- Division of Nephrology of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haowen Huang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Sansi Chang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanhao Wu
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Xue
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhong Y, Wei B, Wang W, Chen J, Wu W, Liang L, Huang XR, Szeto CC, Yu X, Nikolic-Paterson DJ, Lan HY. Single-Cell RNA-Sequencing Identifies Bone Marrow-Derived Progenitor Cells as a Main Source of Extracellular Matrix-Producing Cells Across Multiple Organ-Based Fibrotic Diseases. Int J Biol Sci 2024; 20:5027-5042. [PMID: 39430238 PMCID: PMC11488580 DOI: 10.7150/ijbs.98839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 10/22/2024] Open
Abstract
Fibrosis is characterized by the aberrant deposition of extracellular matrix (ECM) due to dysregulated tissue repair responses, imposing a significant global burden on fibrosis-related diseases. Although alpha-smooth muscle actin (α-SMA/ACTA2)-expressing myofibroblasts are considered as key player in fibrogenesis, the origin of ECM-producing cells remains controversial. To address this issue, we integrated and analyzed large-scale single-cell transcriptomic datasets from patients with distinct fibrotic diseases involving the heart, lung, liver, or kidney. Unexpectedly, not all ACTA2-expressing cells were ECM-producing cells identified by expressing collagen genes; instead, the majority of ECM-producing cells were myofibroblasts and fibroblasts derived from circulating bone marrow precursor, and to a lesser extent from local pericytes and vascular smooth cells in all fibrotic diseases. This was confirmed in sex-mismatched kidney transplants by the discovery that ECM-producing cells originated from recipient, not donor, bone marrow-derived progenitor cells (BMPCs). Moreover, these BMPCs-derived ECM-producing cells exhibited a proinflammatory phenotype. Thus, bone marrow-derived proinflammatory and profibrotic fibroblasts/myofibroblasts with stem cell properties serve as a major source of ECM-producing cells and may play a driving role in tissue fibrosis across a wide range of human fibrotic diseases. Targeting these ECM-producing cells may provide a novel therapy for diseases with fibrosis.
Collapse
Affiliation(s)
- Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenbiao Wang
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Wu
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Liying Liang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Clinical Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Cheuk-Chun Szeto
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - David J. Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Torrico S, Hotter G, Muñoz Á, Calle P, García M, Poch E, Játiva S. PBMC therapy reduces cell death and tissue fibrosis after acute kidney injury by modulating the pattern of monocyte/macrophage survival in tissue. Biomed Pharmacother 2024; 178:117186. [PMID: 39067165 DOI: 10.1016/j.biopha.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, we investigated if the therapeutic potential of peripheral blood mononuclear cell (PBMC) therapy in a murine model of ischemic AKI is related with the survival pattern of monocyte/macrophages in tissue. CD-1 mice were subjected to bilateral renal ischemia followed by reperfusion to induce AKI. M2-polarized PBMCs isolated from CD-1 mice were administered intravenously at different time points post-injury. Our results demonstrate that early administration of PBMC therapy attenuates renal tissue damage, reduces tissue cell death and prevents fibrosis development. Reduction of tissue pyroptosis was observed by reduction on NLRP3 inflammasome activation and decreasing IL-1beta and Caspase-1 expression in the kidney. Furthermore, the therapy was shown to mitigate ferroptosis by inducing GPX4 overexpression. Early administration of PBMCs increased the survival pattern of renal tissue-macrophages, promoting a "pro-survival phenotype" resulting in decreased pyroptotic marker NLRP3, IL-1beta and Caspase 1 and increased anti-ferroptotic gene GPX4. Conversely, delayed administration of PBMC therapy exhibits diminished efficacy in preventing cell death and fibrosis in tissue and provoked a decrease in the pro-survival phenotype of both monocyte /macrophages in tissue. Our findings highlight the therapeutic potential of PBMC therapy in mitigating AKI and preventing CKD progression by modulating tissue-resident macrophage survival and reducing their cell death pathways. The fact that the effectiveness of the therapy depends on the time of administration after the injury underscores the importance of early intervention in AKI management.
Collapse
Affiliation(s)
- Selene Torrico
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain; Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza 50018, Spain
| | - Ángeles Muñoz
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Priscila Calle
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Miriam García
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Esteban Poch
- Nefrologia i Trasplantament Renal, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona 08036, Spain
| | - Soraya Játiva
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain.
| |
Collapse
|
4
|
Dong L, Xie YL, Zhang RT, Hu QY. Models of sepsis-induced acute kidney injury. Life Sci 2024; 352:122873. [PMID: 38950643 DOI: 10.1016/j.lfs.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yi-Ling Xie
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ren-Tao Zhang
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qiong-Ying Hu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
5
|
Zhang NX, Guan C, Li CY, Xu LY, Xin YL, Song Z, Li TY, Yang CY, Zhao L, Che L, Wang YF, Man XF, Xu Y. Formononetin Alleviates Ischemic Acute Kidney Injury by Regulating Macrophage Polarization through KLF6/STAT3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1487-1505. [PMID: 39169449 DOI: 10.1142/s0192415x24500587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-α, and IL-1β) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Ning-Xin Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Yu Li
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, München, Germany
| | - Ling-Yu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Lu Xin
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuo Song
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian-Yang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng-Yu Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Fei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Fei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Wang Y, Chen M, Wang L, Wu Y. Cardiometabolic traits mediating the effect of education on the risk of DKD and CKD: a Mendelian randomization study. Front Nutr 2024; 11:1400577. [PMID: 39193563 PMCID: PMC11347428 DOI: 10.3389/fnut.2024.1400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Background Both diabetic kidney disease (DKD) and chronic kidney disease (CKD) are more prevalent among individuals with lower levels of education in observational studies. To quantify the mediation effect of recognized cardiometabolic traits, we obtain causal estimates between education and DKD as well as CKD. Materials and methods We assessed the causal effect of education on DKD and CKD, separately estimated the causal effect of 26 cardiometabolic traits on DKD and CKD, and finally calculated the mediating effects and mediating proportions of each using two-step, two-sample multivariable Mendelian randomization (MVMR). Furthermore, the genetic association between exposure, mediators, and outcomes was investigated using linkage disequilibrium score (LDSC) regression analysis. Expression quantitative trait loci (eQTL) were retrieved from the Genotype-Tissue Expression Project (GTEx) v8 to serve as genetic instrumental variables. Transcriptome-wide association studies (TWAS), Bayesian colocalization analysis, and Summary-data-based Mendelian Randomization (SMR) analysis were performed to explore underlying susceptibility genes between education, mediators, and kidney diseases. Results Higher education with a genetically predicted 1-SD (4.2 years) was linked to a 48.64% decreased risk of DKD and a 29.08% decreased risk of CKD. After extensive evaluation of 26 cardiometabolic traits, 7 and 6 causal mediators were identified as mediating the effects of education on DKD and CKD, respectively. The largest mediating factor between education and DKD was BMI, which was followed by WHR, T2D, fasting insulin, SBP, fasting glucose, and DBP. In contrast, candidate mediators in the education-to-CKD pathway included BMI, followed by cigarettes smoked per day, WHR, SBP, T2D, and DBP. MR analysis revealed that TP53INP1 was found to be a shared susceptibility gene for cardiometabolic traits and DKD, while L3MBTL3 was found to be a shared susceptibility gene for cardiometabolic traits and CKD. Conclusion Our findings provide solid evidence that education has a causally protective effect on the development of DKD and CKD. We additionally reveal significant directions for intervention on cardiometabolic traits that mitigate the negative effects of educational inequities on the onset of DKD and CKD. Our work demonstrates a shared genetic basis between education, cardiometabolic traits, and kidney diseases. Future research aiming at lowering kidney risk may benefit from these findings.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Lindhardt RB, Rasmussen SB, Riber LP, Lassen JF, Ravn HB. The Impact of Acute Kidney Injury on Chronic Kidney Disease After Cardiac Surgery: A Systematic Review and Meta-analysis. J Cardiothorac Vasc Anesth 2024; 38:1760-1768. [PMID: 38879369 DOI: 10.1053/j.jvca.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To evaluate the impact of acute kidney injury on transition to chronic kidney disease (CKD) after cardiac surgery and to determine frequency of incident CKD in these patients. DESIGN A systematic review and meta-analysis of observational studies. SETTING Electronic databases Medline and Embase were systematically searched from 1974 to February 6, 2023. PARTICIPANTS Eligible studies were original observational studies on adult cardiac surgery patients, written in the English language, and with clear kidney disease definitions. Exclusion criteria were studies with previously transplanted populations, populations with preoperative kidney impairment, ventricular assist device procedures, endovascular procedures, a kidney follow-up period of <90 days, and studies not presenting necessary data for effect size calculations. INTERVENTIONS Patients developing postoperative acute kidney injury after cardiac surgery were compared with patients who did not develop acute kidney injury. MEASUREMENTS AND MAIN RESULTS The search identified 4,329 unique studies, 87 underwent full-text review, and 12 were included for analysis. Mean acute kidney injury occurrence across studies was 16% (minimum-maximum: 8-50), while mean occurrence of CKD was 24% (minimum-maximum: 3-35), with high variability depending on definitions and follow-up time. Acute kidney injury was associated with increased odds of CKD in all individual studies. The pooled odds ratio across studies was 5.67 (95% confidence interval, 3.34-9.64; p < 0.0001). CONCLUSIONS Acute kidney injury after cardiac surgery was associated with a more than 5-fold increased odds of developing CKD. New-onset CKD occurred in almost 1 in 4 patients in the years after surgery.
Collapse
Affiliation(s)
- Rasmus Bo Lindhardt
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark; Department of Clinical Research, Health Faculty, University of Southern Denmark, Odense, Denmark.
| | - Sebastian Buhl Rasmussen
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark; Department of Clinical Research, Health Faculty, University of Southern Denmark, Odense, Denmark
| | - Lars Peter Riber
- Department of Clinical Research, Health Faculty, University of Southern Denmark, Odense, Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Jens Flensted Lassen
- Department of Clinical Research, Health Faculty, University of Southern Denmark, Odense, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Hanne Berg Ravn
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark; Department of Clinical Research, Health Faculty, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
10
|
Ren Y, Zhou L, Li X, Zhu X, Zhang Z, Sun X, Xue X, Dai C. Taz/Tead1 Promotes Alternative Macrophage Activation and Kidney Fibrosis via Transcriptional Upregulation of Smad3. J Immunol Res 2024; 2024:9512251. [PMID: 39108258 PMCID: PMC11303051 DOI: 10.1155/2024/9512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophage alternative activation is involved in kidney fibrosis. Previous researches have documented that the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz) are linked to organ fibrosis. However, limited knowledge exists regarding the function and mechanisms of their downstream molecules in regulating macrophage activation and kidney fibrosis. In this paper, we observed that the Hippo pathway was suppressed in macrophages derived from fibrotic kidneys in mice. Knockout of Taz or Tead1 in macrophages inhibited the alternative activation of macrophages and reduced kidney fibrosis. Additionally, by using bone marrow-derived macrophages (BMDMs), we investigated that knockout of Taz or Tead1 in macrophages impeded both cell proliferation and migration. Moreover, deletion of Tead1 reduces p-Smad3 and Smad3 abundance in macrophages. And chromatin immunoprecipitation (ChIP) assays showed that Tead1 could directly bind to the promoter region of Smad3. Collectively, these results indicate that Tead1 knockout in macrophages could reduce TGFβ1-induced phosphorylation Smad3 via transcriptional downregulation of Smad3, thus suppressing macrophage alternative activation and IRI-induced kidney fibrosis.
Collapse
Affiliation(s)
- Yizhi Ren
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Lu Zhou
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xinyuan Li
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xingwen Zhu
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Zhiheng Zhang
- School of StomatologyXuzhou Medical University, No. 209 Tongshan Road, Xuzhou 221000, Jiangsu, China
| | - Xiaoli Sun
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xian Xue
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Chunsun Dai
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| |
Collapse
|
11
|
Song Z, Yao W, Wang X, Mo Y, Liu Z, Li Q, Jiang L, Wang H, He H, Li N, Zhang Z, Lv P, Zhang Y, Yang L, Wang Y. The novel potential therapeutic target PSMP/MSMP promotes acute kidney injury via CCR2. Mol Ther 2024; 32:2248-2263. [PMID: 38796708 PMCID: PMC11286806 DOI: 10.1016/j.ymthe.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Acute kidney injury (AKI) is a major worldwide health concern that currently lacks effective medical treatments. PSMP is a damage-induced chemotactic cytokine that acts as a ligand of CCR2 and has an unknown role in AKI. We have observed a significant increase in PSMP levels in the renal tissue, urine, and plasma of patients with AKI. PSMP deficiency improved kidney function and decreased tubular damage and inflammation in AKI mouse models induced by kidney ischemia-reperfusion injury, glycerol, and cisplatin. Single-cell RNA sequencing analysis revealed that Ly6Chi or F4/80lo infiltrated macrophages (IMs) were a major group of proinflammatory macrophages with strong CCR2 expression in AKI. We observed that PSMP deficiency decreased CCR2+Ly6Chi or F4/80lo IMs and inhibited M1 polarization in the AKI mouse model. Moreover, overexpressed human PSMP in the mouse kidney could reverse the attenuation of kidney injury in a CCR2-dependent manner, and this effect could be achieved without CCL2 involvement. Extracellular PSMP played a crucial role, and treatment with a PSMP-neutralizing antibody significantly reduced kidney injury in vivo. Therefore, PSMP might be a therapeutic target for AKI, and its antibody is a promising therapeutic drug for the treatment of AKI.
Collapse
Affiliation(s)
- Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Weijian Yao
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuekang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yaqian Mo
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Hui Wang
- Laboratory of Electron Microscopy Pathological Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Huiying He
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Ning Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhaohuai Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China.
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China; Center for Human Disease Genomics, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
12
|
Li H, Ren Q, Shi M, Ma L, Fu P. Lactate metabolism and acute kidney injury. Chin Med J (Engl) 2024:00029330-990000000-01083. [PMID: 38802283 DOI: 10.1097/cm9.0000000000003142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 05/29/2024] Open
Abstract
ABSTRACT Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | |
Collapse
|
13
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Tian Y, Chen J, Huang W, Ren Q, Feng J, Liao J, Fu H, Zhou L, Liu Y. Myeloid-derived Wnts play an indispensible role in macrophage and fibroblast activation and kidney fibrosis. Int J Biol Sci 2024; 20:2310-2322. [PMID: 38617540 PMCID: PMC11008274 DOI: 10.7150/ijbs.94166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Wnt/β-catenin signaling plays a pivotal role in the pathogenesis of chronic kidney diseases (CKD), which is associated with macrophage activation and polarization. However, the relative contribution of macrophage-derived Wnts in the evolution of CKD is poorly understood. Here we demonstrate a critical role of Wnts secreted by macrophages in regulating renal inflammation and fibrosis after various injuries. In mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO), macrophages were activated and polarized to M1 and M2 subtypes, which coincided with the activation of Wnt/β-catenin signaling. In vitro, multiple Wnts were induced in primary cultured bone marrow-derived macrophages (BMDMs) after polarization. Conversely, Wnt proteins also stimulated the activation and polarization of BMDMs to M1 and M2 subtype. Blockade of Wnt secretion from macrophages in mice with myeloid-specific ablation of Wntless (Wls), a cargo receptor that is obligatory for Wnt trafficking and secretion, blunted macrophage infiltration and activation and inhibited the expression of inflammatory cytokines. Inhibition of Wnt secretion by macrophages also abolished β-catenin activation in tubular epithelium, repressed myofibroblast activation and reduced kidney fibrosis after either obstructive or ischemic injury. Furthermore, conditioned medium from Wls-deficient BMDMs exhibited less potency to stimulate fibroblast proliferation and activation, compared to the controls. These results underscore an indispensable role of macrophage-derived Wnts in promoting renal inflammation, fibroblasts activation and kidney fibrosis.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Jingzhou Hospital Affiliated to Yangze University, Jingzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshu Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Ren
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junxia Feng
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
15
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
16
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
17
|
Mohamed R, Sullivan JC. Sustained activation of 12/15 lipoxygenase (12/15 LOX) contributes to impaired renal recovery post ischemic injury in male SHR compared to females. Mol Med 2023; 29:163. [PMID: 38049738 PMCID: PMC10696802 DOI: 10.1186/s10020-023-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) due to ischemia-reperfusion (IR) is a serious and frequent complication in clinical settings, and mortality rates remain high. There are well established sex differences in renal IR, with males exhibiting greater injury following an ischemic insult compared to females. We recently reported that males have impaired renal recovery from ischemic injury vs. females. However, the mechanisms mediating sex differences in renal recovery from IR injury remain poorly understood. Elevated 12/15 lipoxygenase (LOX) activity has been reported to contribute to the progression of numerous kidney diseases. The goal of the current study was to test the hypothesis that enhanced activation of 12/15 LOX contributes to impaired recovery post-IR in males vs. females. METHODS 13-week-old male and female spontaneously hypertensive rats (SHR) were randomized to sham or 30-minute warm bilateral IR surgery. Additional male and female SHR were randomized to treatment with vehicle or the specific 12/15 LOX inhibitor ML355 1 h prior to sham/IR surgery, and every other day following up to 7-days post-IR. Blood was collected from all rats 1-and 7-days post-IR. Kidneys were harvested 7-days post-IR and processed for biochemical, histological, and Western blot analysis. 12/15 LOX metabolites 12 and 15 HETE were measured in kidney samples by liquid chromatography-mass spectrometry (LC/MS). RESULTS Male SHR exhibited delayed recovery of renal function post-IR vs. male sham and female IR rats. Delayed recovery in males was associated with activation of renal 12/15 LOX, increased renal 12-HETE, enhanced endoplasmic reticulum (ER) stress, lipid peroxidation, renal cell death and inflammation compared to females 7-days post-IR. Treatment of male SHR with ML355 lowered levels of 12-HETE and resulted in reduced renal lipid peroxidation, ER stress, tubular cell death and inflammation 7-days post-IR with enhanced recovery of renal function compared to vehicle-treated IR male rats. ML355 treatment did not alter IR-induced increases in plasma creatinine in females, however, tubular injury and cell death were attenuated in ML355 treated females compared to vehicle-treated rats 7 days post-IR. CONCLUSION Our data demonstrate that sustained activation 12/15 LOX contributes to impaired renal recovery post ischemic injury in male and female SHR, although males are more susceptible on this mechanism than females.
Collapse
Affiliation(s)
- Riyaz Mohamed
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912, United States.
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912, United States
| |
Collapse
|
18
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
19
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
20
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Vernier ICS, Neres-Santos RS, Andrade-Oliveira V, Carneiro-Ramos MS. Immune Cells Are Differentially Modulated in the Heart and the Kidney during the Development of Cardiorenal Syndrome 3. Cells 2023; 12:605. [PMID: 36831272 PMCID: PMC9953884 DOI: 10.3390/cells12040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cardiorenal syndrome type 3 (CRS 3) occurs when there is an acute kidney injury (AKI) leading to the development of an acute cardiac injury. The immune system is involved in modulating the severity of kidney injury, and the role of immune system cells in the development of CRS 3 is not well established. The present work aims to characterize the macrophage and T and B lymphocyte populations in kidney and heart tissue after AKI induced by renal I/R. Thus, C57BL/6 mice were subjected to a renal I/R protocol by occlusion of the left renal pedicle (unilateral) for 60 min, followed by reperfusion for 3, 8 and 15 days. The immune cell populations of interest were identified using flow cytometry, and RT-qPCR was used to evaluate gene expression. As a result, a significant increase in TCD4+, TCD8+ lymphocytes and M1 macrophages to the renal tissue was observed, while B cells in the heart decreased. A renal tissue repair response characterized by Foxp3 activation predominated. However, a more inflammatory profile was shown in the heart tissue influenced by IL-17RA and IL-1β. In conclusion, the AKI generated by renal I/R was able to activate and recruit T and B lymphocytes and macrophages, as well as pro-inflammatory mediators to renal and cardiac tissue, showing the role of the immune system as a bridge between both organs in the context of CRS 3.
Collapse
Affiliation(s)
- Imara Caridad Stable Vernier
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Laboratory, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| |
Collapse
|
22
|
Li J, Gong X. Bibliometric and visualization analysis of kidney repair associated with acute kidney injury from 2002 to 2022. Front Pharmacol 2023; 14:1101036. [PMID: 37153766 PMCID: PMC10157647 DOI: 10.3389/fphar.2023.1101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Renal repair is closely related to the prognosis of acute kidney injury (AKI) and has attracted increasing attention in the research field. However, there is a lack of a comprehensive bibliometric analysis in this research area. This study aims at exploring the current status and hotspots of renal repair research in AKI from the perspective of bibliometrics. Methods: Studies published between 2002 and 2022 related to kidney repair after AKI were collected from Web of Science core collection (WoSCC) database. Bibliometric measurement and knowledge graph analysis to predict the latest research trends in the field were performed using bibliometrics software CiteSpace and VOSviewer. Results: The number of documents related to kidney repair after AKI has steadily increased over 20 years. The United States and China contribute more than 60% of documents and are the main drivers of research in this field. Harvard University is the most active academic institution that contributes the most documents. Humphreys BD and Bonventre JV are the most prolific authors and co-cited authors in the field. The American Journal of Physiology-Renal Physiology and Journal of the American Society of Nephrology are the most popular journals in the field with the greatest number of documents. "exosome", "macrophage polarization", "fibroblast", and" aki-ckd transition" are high-frequency keywords in this field in recent years. Extracellular vesicles (including exosomes), macrophage polarization, cell cycle arrest, hippo pathway, and sox9 are current research hotspots and potential targets in this field. Conclusion: This is the first comprehensive bibliometric study on the knowledge structure and development trend of AKI-related renal repair research in recent years. The results of the study comprehensively summarize and identify research frontiers in AKI-related renal repair.
Collapse
|
23
|
Guan X, Liu Y, Xin W, Qin S, Gong S, Xiao T, Zhang D, Li Y, Xiong J, Yang K, He T, Zhao J, Huang Y. Activation of EP4 alleviates AKI-to-CKD transition through inducing CPT2-mediated lipophagy in renal macrophages. Front Pharmacol 2022; 13:1030800. [DOI: 10.3389/fphar.2022.1030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with complex pathogenesis, characterized by a rapid decline in kidney function in the short term. Worse still, the incomplete recovery from AKI increases the risk of progression to chronic kidney disease (CKD). However, the pathogenesis and underlying mechanism remain largely unknown. Macrophages play an important role during kidney injury and tissue repair, but its role in AKI-to-CKD transition remains elusive. Herein, single nucleus RNA sequencing (snRNA-Seq) and flow cytometry validations showed that E-type prostaglandin receptor 4 (EP4) was selectively activated in renal macrophages, rather than proximal tubules, in ischemia-reperfusion injury (IRI)-induced AKI-to-CKD transition mouse model. EP4 inhibition aggravated AKI-to-CKD transition, while EP4 activation impeded the progression of AKI to CKD though regulating macrophage polarization. Mechanistically, network pharmacological analysis and subsequent experimental verifications revealed that the activated EP4 inhibited macrophage polarization through inducing Carnitine palmitoyltransferase 2 (CPT2)-mediated lipophagy in macrophages. Further, CPT2 inhibition abrogated the protective effect of EP4 on AKI-to-CKD transition. Taken together, our findings demonstrate that EP4-CPT2 signaling-mediated lipophagy in macrophages plays a pivotal role in the transition of AKI to CKD and targeting EP4-CPT2 axis could serve as a promising therapeutic approach for retarding AKI and its progression to CKD.
Collapse
|