1
|
Desette A, Guichet PO, Emambux S, Masliantsev K, Cortes U, Ndiaye B, Milin S, George S, Faigner M, Tisserand J, Gaillard A, Brot S, Wager M, Tougeron D, Karayan-Tapon L. Deciphering Brain Metastasis Stem Cell Properties From Colorectal Cancer Highlights Specific Stemness Signature and Shared Molecular Features. Cell Mol Gastroenterol Hepatol 2023; 16:757-782. [PMID: 37482243 PMCID: PMC10520365 DOI: 10.1016/j.jcmgh.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND & AIMS Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.
Collapse
Affiliation(s)
- Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Sheik Emambux
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Ulrich Cortes
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Birama Ndiaye
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'Anatomie et de Cytologie Pathologiques, CHU de Poitiers, Poitiers, France
| | - Simon George
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mathieu Faigner
- Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | | | - Afsaneh Gaillard
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Sébastien Brot
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - David Tougeron
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'hépato-gastro-entérologie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
2
|
van Hattum JW, de Ruiter BM, Oddens JR, de Reijke TM, Wilmink JW, Molenaar RJ. The Effect of Metformin on Bladder Cancer Incidence and Outcomes: A Systematic Review and Meta-Analysis. Bladder Cancer 2022; 8:211-228. [PMID: 38993366 PMCID: PMC11181685 DOI: 10.3233/blc-211653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Effective oral treatment options for urothelial bladder cancer (BC) are lacking. Metformin, the most frequently used oral drug in type II diabetes mellitus, has putative anticancer properties and could, therefore, influence BC incidence and treatment outcomes. We systematically reviewed the current literature regarding the effect of metformin on BC incidence and oncological outcomes in non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). METHODS This review was conducted according to the PRISMA guidelines. Literature was gathered through a systematic search in PubMed/Medline, EMBASE and the Cochrane library. Risk of bias was determined using the Cochrane risk-of-bias tool for randomized trials and the Newcastle-Ottawa Scale for non-randomized trials. Hazard ratios (HRs) were extracted and pooled in a random-effects meta-analysis. RESULTS We reviewed 13 studies, including 3,315,320 patients, considering the risk of developing BC after metformin exposure and 9 studies, including 4,006 patients, on oncological outcomes of patients with BC. Metformin did not affect BC incidence (HR 0.97, 95% CI 0.87 -1.09) or oncological outcomes for NMIBC but did show a reduced risk of recurrence (HR 0.52, 95% CI 0.32 -0.84), cancer-specific mortality (HR 0.58, 95% CI 0.43 -0.78) and overall mortality (HR 0.66, 95% CI 0.47 -0.92) in MIBC. CONCLUSIONS The role of metformin in the prevention and treatment of BC in patients remains unclear. Although a beneficial effect of metformin on treatment outcomes of certain stages of BC may exist, a definitive conclusion cannot be drawn. Prospective clinical trials are needed to assess the efficacy of metformin for BC treatment.
Collapse
Affiliation(s)
- Jons W. van Hattum
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Max de Ruiter
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorg R. Oddens
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Theo M. de Reijke
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Remco J. Molenaar
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Magdy S, Alaaeldin E, Fathalla Z, Alaaeldin R, Elrehany M, Saber EA, Abdel-Aziz RT, Mansour HF. Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation. Int J Pharm 2022; 621:121781. [PMID: 35489604 DOI: 10.1016/j.ijpharm.2022.121781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing. Different ethosomal formulations were prepared using different concentrations of ethanol adopting injection technique. The developed formulations were investigated for entrapment efficiency, ex-vivo skin permeation, vesicle size, morphology and permeation kinetics. The optimized formulation was loaded in 5 % carbomer gel that was evaluated for skin permeation, cytotoxic effect against melanoma mice B16 cell line and for wound healing action. Ethosomes having 30 % v/v ethanol displayed superior entrapment for metformin % (55.3±0.07) ; and a highly efficient permeation via mice skin (85.8±3.7). The related carbomer ethosomal gel exhibited higher skin permeation compared to the untreated metformin gel (P < 0.001). The metformin ethosomes had a substantial antiproliferative activity against melanoma B16 cells compared to corresponding metformin solution as shown by the lower IC50 values (56.45±1.47 and 887.3±23.2, respectively, P<0.05) and tumour cell viability (P<0.05). The ethosomal system had a significant wound healing action in mice (80.5±1.9%) that was superior to that of the marketed product Mebo® ointment (56±1 %), P<0.05. This ethosomal system demonstrated outstanding induction of the mRNA levels of growth factors (IGF-1, FGF-1, PDGF-B and TGF-β) that are essential in the healing process. Those findings were supported by histopathologic examination of wound sections of different treated groups. Thus, the study proved that metformin ethosomes as a promising drug delivery system and a conceivable therapeutic approach for treatment of melanoma and wound healing.
Collapse
Affiliation(s)
- Shrouk Magdy
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Deraya University, Minia, Egypt.
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt; Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Histology and Cell Biology, Deraya University, Minia, Egypt
| | - Rasha Ta Abdel-Aziz
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Zhuang A, Chai P, Wang S, Zuo S, Yu J, Jia S, Ge S, Jia R, Zhou Y, Shi W, Xu X, Ruan J, Fan X. Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. Clin Transl Med 2022; 12:e660. [PMID: 35075807 PMCID: PMC8787022 DOI: 10.1002/ctm2.660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the therapeutic potential and the underlying mechanism of metformin, an adenosine monophosphate-activated kinase (AMPK) activator, in ocular melanoma. METHODS CCK8, transwell, and colony formation assays were performed to detect the proliferation and migration ability of ocular melanoma cells. A mouse orthotopic xenograft model was built to detect ocular tumor growth in vivo. Western blot, immunofluorescence, and electron microscopy were adopted to evaluate the autophagy levels of ocular melanoma cells, and high-throughput proteomics and CUT & Tag assays were performed to analyze the candidate for autophagy alteration. RESULTS Here, we revealed for the first time that a relatively low dose of metformin induced significant tumorspecific inhibition of the proliferation and migration of ocular melanoma cells both in vitro and in vivo. Intriguingly, we found that metformin significantly attenuated autophagic influx in ocular melanoma cells. Through high-throughput proteomics analysis, we revealed that optineurin (OPTN), which is a key candidate for autophagosome formation and maturation, was significantly downregulated after metformin treatment. Moreover, excessive OPTN expression was associated with an unfavorable prognosis of patients. Most importantly, we found that a histone deacetylase, SIRT1, was significantly upregulated after AMPK activation, resulting in histone deacetylation in the OPTN promoter. CONCLUSIONS Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN. This study provides novel insights into metformin - guided suppression of ocular melanoma and the potential mechanism underlying the dual role of metformin in autophagy regulation.
Collapse
Affiliation(s)
- Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Peiwei Chai
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shaoyun Wang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Sipeng Zuo
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shichong Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yixiong Zhou
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Wodong Shi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaofang Xu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jing Ruan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
5
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1027-1039. [DOI: 10.1093/jpp/rgac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/19/2022] [Indexed: 11/13/2022]
|
6
|
Sanches LJ, Marinello PC, da Silva Brito WA, Lopes NMD, Luiz RC, Cecchini R, Cecchini AL. Metformin pretreatment reduces effect to dacarbazine and suppresses melanoma cell resistance. Cell Biol Int 2021; 46:73-82. [PMID: 34506671 DOI: 10.1002/cbin.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Oxidative stress role on metformin process of dacarbazine (DTIC) inducing resistance of B16F10 melanoma murine cells are investigated. To induce resistance to DTIC, murine melanoma cells were exposed to increasing concentrations of dacarabazine (DTIC-res group). Metformin was administered before and during the induction of resistance to DTIC (MET-DTIC). The oxidative stress parameters of the DTIC-res group showed increased levels of malondialdehyde (MDA), thiol, and reduced nuclear p53, 8-hydroxy-2'-deoxyguanosine (8-OH-DG), nuclear factor kappa B (NF-ĸB), and Nrf2. In presence of metformin in the resistant induction process to DTIC, (MET-DTIC) cells had increased antioxidant thiols, MDA, nuclear p53, 8-OH-DG, Nrf2, and reducing NF-ĸB, weakening the DTIC-resistant phenotype. The exclusive administration of metformin (MET group) also induced the cellular resistance to DTIC. The MET group presented high levels of total thiols, MDA, and reduced percentage of nuclear p53. It also presented reduced nuclear 8-OH-DG, NF-ĸB, and Nrf2 when compared with the control. Oxidative stress and the studied biomarkers seem to be part of the alterations evidenced in DTIC-resistant B16F10 cells. In addition, metformin administration is able to play a dual role according to the experimental protocol, preventing or inducing a DTIC-resistant phenotype. These findings should help future research with the aim of investigating DTIC resistance in melanoma.
Collapse
Affiliation(s)
- Larissa J Sanches
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Poliana C Marinello
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Walison A da Silva Brito
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Natália M D Lopes
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rodrigo C Luiz
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Alessandra L Cecchini
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| |
Collapse
|
7
|
Xu A, Lee J, Zhao Y, Wang Y, Li X, Xu P. Potential effect of EGCG on the anti-tumor efficacy of metformin in melanoma cells. J Zhejiang Univ Sci B 2021; 22:548-562. [PMID: 34269008 DOI: 10.1631/jzus.b2000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metformin, a first-line drug for type 2 diabetes mellitus, has been recognized as a potential anti-tumor agent in recent years. Epigallocatechin-3-gallate (EGCG), as the dominant catechin in green tea, is another promising adjuvant agent for tumor prevention. In the present work, the potential effect of EGCG on the anti-tumor efficacy of metformin in a mouse melanoma cell line (B16F10) was investigated. Results indicated that EGCG and metformin exhibited a synergistic effect on cell viability, migration, and proliferation, as well as signal transducer and activator of transcription 3/nuclear factor-κB (STAT3/NF-κB) pathway signaling and the production of inflammation cytokines. Meanwhile, the combination showed an antagonistic effect on cell apoptosis and oxidative stress levels. The combination of EGCG and metformin also differentially affected the nucleus (synergism) and cytoplasm (antagonism) of B16F10 cells. Our findings provide new insight into the potential effects of EGCG on the anti-tumor efficacy of metformin in melanoma cells.
Collapse
Affiliation(s)
- An'an Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jeehyun Lee
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yueling Zhao
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Pasqual-Melo G, Bernardes SS, Souza-Neto FP, Carrara IM, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Bekeschus S, Cecchini AL. The progression of metastatic melanoma augments a pro-oxidative milieu locally but not systemically. Pathol Res Pract 2020; 216:153218. [PMID: 33002848 DOI: 10.1016/j.prp.2020.153218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Malignant melanoma is the most dangerous form of skin cancer. Despite new therapies for melanoma treatment, effective therapy is mainly limited by excessive metastasis. Currently, the factors determining metastasis development are not elucidated, but oxidative stress was suggested to be involved. To this end, we analyzed oxidative stress parameters during the metastatic development using the syngeneic B16F10 melanoma model. An increase in blood plasma lipid peroxidation occurred at the earliest stage of the disease, with a progressive decrease in oxidative damage and an increase in antioxidant defense. Vice versa, increased lipid peroxidation and 3-nitrotyrosine, and decreased antioxidant parameters were observed in the metastatic nodules throughout the disease. This was concomitant with a progressive increase in vascular endothelial growth factor and proliferating cell nuclear antigen. We conclude that the oxidative stress in the bloodstream decreases during the metastatic process and that nitrosative stress increases during the proliferation and growth of metastatic nodules in the tumor microenvironment. These results will help to better understand the role of oxidative stress during melanoma metastasis.
Collapse
Affiliation(s)
- Gabriella Pasqual-Melo
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil; ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Sara S Bernardes
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Tissue Microenvironment, Federal University of Minas Gerais, Brazil
| | - Fernando P Souza-Neto
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | - Iriana M Carrara
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | | | | | - Rodrigo C Luiz
- Laboratory of Molecular Pathology, State University of Londrina, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Alessandra L Cecchini
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil.
| |
Collapse
|
9
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
10
|
Souza-Neto FP, Marinello PC, Melo GP, Ramalho LZN, Cela EM, Campo VE, González-Maglio DH, Cecchini R, Cecchini AL. Metformin inhibits the inflammatory and oxidative stress response induced by skin UVB-irradiation and provides 4-hydroxy-2-nonenal and nitrotyrosine formation and p53 protein activation. J Dermatol Sci 2020; 100:152-155. [PMID: 33051086 DOI: 10.1016/j.jdermsci.2020.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Affiliation(s)
| | | | - Gabriela Pasqual Melo
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | | | - Eliana M Cela
- Universidad De Buenos Aires, Facultad De Farmacia y Bioquímica, Cátedra De Inmunología, Buenos Aires, Argentina; CONICET-Universidad De Buenos Aires, Instituto De Estudios De La Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Valeria E Campo
- Universidad De Buenos Aires, Facultad De Farmacia y Bioquímica, Cátedra De Inmunología, Buenos Aires, Argentina; CONICET-Universidad De Buenos Aires, Instituto De Estudios De La Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Daniel H González-Maglio
- Universidad De Buenos Aires, Facultad De Farmacia y Bioquímica, Cátedra De Inmunología, Buenos Aires, Argentina; CONICET-Universidad De Buenos Aires, Instituto De Estudios De La Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | | |
Collapse
|
11
|
Yu X, Zhou W, Wang H, Lu S, Jin Y, Fu J. Transdermal metformin hydrochloride-loaded cubic phases: in silico formulation optimization, preparation, properties, and application for local treatment of melanoma. Drug Deliv 2019; 26:376-383. [PMID: 30905216 PMCID: PMC6442100 DOI: 10.1080/10717544.2019.1587046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metformin hydrochloride (Met) is commonly used for antidiabetic therapy though its antimelanoma action is also reported. Conventional oral administration method of Met is not appropriate for therapy of melanoma because of large dose, adverse reactions, and low efficiency. Here, a transdermal Met-loaded cubic phase was developed for local treatment of melanoma. In silico formulation optimization of the cubic phases was done, and the corresponding formulations were prepared and characterized. The optimized formulations were screened based on the stable microstructure and proper fluidity. Highly efficient mouse skin permeability of Met was found with the cubic phases compared to Met solutions. High antimelanoma effect of transdermal Met-loaded cubic phases also was shown by the significant decrease of tumor volume and the improvement of melanoma cell apoptosis on the B16 melanoma mice. Met-loaded cubic phases are a promising topically applied medication for local therapies of melanoma.
Collapse
Affiliation(s)
- Xiang Yu
- a Department of Pharmacy, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University , Huzhou , China.,b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Wei Zhou
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Hongmei Wang
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Sheng Lu
- a Department of Pharmacy, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University , Huzhou , China
| | - Yiguang Jin
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Junhui Fu
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| |
Collapse
|
12
|
Carrara IM, Melo GP, Bernardes SS, Neto FS, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Cecchini AL. Looking beyond the skin: Cutaneous and systemic oxidative stress in UVB-induced squamous cell carcinoma in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:17-26. [PMID: 31035030 DOI: 10.1016/j.jphotobiol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm2). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Collapse
Affiliation(s)
- Iriana Moratto Carrara
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Sara Santos Bernardes
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Healthy Sciences Research, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil, UFGD, R. João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brazil.
| | - Fernando Souza Neto
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), FMRP, Av. Bandeirantes, 3900 - Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil.
| |
Collapse
|