1
|
Jin W, Hui H, Jiang J, Li B, Deng Z, Tuo X. S100A1 overexpression stimulates cell proliferation and is predictive of poor outcome in ovarian cancer. Transl Cancer Res 2024; 13:5265-5277. [PMID: 39525021 PMCID: PMC11543041 DOI: 10.21037/tcr-24-430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background Members of the S100 gene family are frequently dysregulated in various cancers, including ovarian cancer (OC). Despite this, the prognostic implications of individual S100 genes in OC remain poorly understood. This study aimed to explore the prognostic significance of S100A1 expression in OC and assess its potential as a therapeutic target. Methods To investigate the role of S100A1 in OC, we utilized the Gene Expression Profiling Interactive Analysis (GEPIA) database and the University of ALabama at Birmingham Cancer Data Analysis Portal (UALCAN) database. Protein levels of S100A1 in OC tissues were assessed using western blotting and immunohistochemistry. Bioinformatics analyses were performed to correlate S100A1 expression with clinical outcomes. Functional assays were conducted to evaluate the impact of S100A1 knockout on OC cell proliferation and migration. Additionally, we investigated the effect of S100A1 on ferroptosis and lipid reactive oxygen species (ROS) levels in tumor cells. Results Our analyses revealed that S100A1 protein levels were significantly elevated in OC tissues compared to normal tissues. Elevated S100A1 expression was associated with poor clinical outcomes in OC patients. Functional assays demonstrated that the knockout of S100A1 led to a decrease in both proliferation and migration of OC cells in vitro. Furthermore, S100A1 was found to inhibit ferroptosis in OC cells, resulting in lower levels of lipid ROS within tumor cells. Conclusions High levels of S100A1 are indicative of adverse clinical outcomes in OC. Our findings suggest that S100A1 could serve as a valuable prognostic marker and a potential therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Wen Jin
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hui Hui
- Department of Gynecological Oncology, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Bin Li
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhuo Deng
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoqian Tuo
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
2
|
Polivka J, Gouda M, Sharif M, Pesta M, Huang H, Treskova I, Woznica V, Windrichova J, Houfkova K, Kucera R, Fikrle T, Ricar J, Pivovarcikova K, Topolcan O, Janku F. Predictive Significance of Combined Plasmatic Detection of BRAF Mutations and S100B Tumor Marker in Early-Stage Malignant Melanoma. Cancer Med 2024; 13:e70313. [PMID: 39387479 PMCID: PMC11465285 DOI: 10.1002/cam4.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Melanoma is the most aggressive skin cancer with ability to recur also after early-stage tumor surgery. The aim was to identify early-stage melanoma patients at high risk of recurrence using liquid biopsy, estimating of mutated BRAF ctDNA and the level of tumor marker S100B in plasma. METHODS Eighty patients were enrolled in the study. BRAF V600E mutation was determined in FFPE tissue and plasma samples using ultrasensitive ddPCR with pre-amplification. The level of S100B was determined in plasma by immunoassay chemiluminescent method. RESULTS The best prediction of melanoma recurrence after surgery was observed in patients with combined high level of S100B (S100Bhigh) and ctDNA BRAFV600E (BRAFmut) in preoperative (57.1% vs. 12.5%, p = 0.025) as well as postoperative blood samples (83.3% vs. 14.3%, resp., p = 0.001) in comparison with low S100B and BRAF wild-type. Similarly, patients with preoperative and postoperative S100Bhigh and BRAFmut experienced worse prognosis (DFI p = 0.05, OS p = 0.131 and DFI p = 0.001, OS = 0.001, resp.). CONCLUSION We observed the benefit of the estimation of combination of S100B and ctDNA BRAFmut in peripheral blood for identification of patients at high risk of recurrence and unfavorable prognosis. SIGNIFICANCE There is still no general consensus on molecular markers for deciding the appropriateness of adjuvant treatment of early-stage melanoma. We have shown for the first time that the combined determination of the ctDNA BRAFmut oncogene (liquid biopsy) and the high level of tumor marker S100B in pre- and postoperative plasma samples can identify patients with the worst prognosis and the highest risk of tumor recurrence. Therefore, modern adjuvant therapy would be appropriate for these patients with resectable melanoma, regardless of disease stage.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Mohamed A. Gouda
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mahyar Sharif
- Department of Histology and Embryology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Helen Huang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Inka Treskova
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Vlastimil Woznica
- Department of Plastic SurgeryUniversity Hospital PilsenPilsenCzech Republic
| | - Jindra Windrichova
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Radek Kucera
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
- Department of Pharmacology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Tomas Fikrle
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | - Jan Ricar
- Department of DermatovenerologyUniversity Hospital PilsenPilsenCzech Republic
| | | | - Ondrej Topolcan
- Department of Immunochemical DiagnosticsUniversity Hospital PilsenPilsenCzech Republic
| | - Filip Janku
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
3
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
4
|
Kurtović M, Piteša N, Čonkaš J, Hajpek H, Vučić M, Musani V, Ozretić P, Sabol M. GLI Transcriptional Targets S100A7 and KRT16 Show Upregulated Expression Patterns in Epidermis Overlying the Tumor Mass in Melanoma Samples. Int J Mol Sci 2024; 25:6084. [PMID: 38892279 PMCID: PMC11172526 DOI: 10.3390/ijms25116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Helena Hajpek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Majda Vučić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
- Department of Pathology, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| |
Collapse
|
5
|
Brodesser DM, Kummer S, Eichberger JA, Schlangen K, Corteggio A, Borzacchiello G, Bertram CA, Brandt S, Pratscher B. Deregulation of Metalloproteinase Expression in Gray Horse Melanoma Ex Vivo and In Vitro. Cells 2024; 13:956. [PMID: 38891088 PMCID: PMC11172212 DOI: 10.3390/cells13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The ability of human melanoma cells to switch from an epithelial to a mesenchymal phenotype contributes to the metastatic potential of disease. Metalloproteinases (MPs) are crucially involved in this process by promoting the detachment of tumor cells from the primary lesion and their migration to the vasculature. In gray horse melanoma, epithelial-mesenchymal transition (EMT) is poorly understood, prompting us to address MP expression in lesions versus intact skin by transcriptome analyses and the immunofluorescence staining (IF) of gray horse tumor tissue and primary melanoma cells. RNAseq revealed the deregulation of several MPs in gray horse melanoma and, notably, a 125-fold upregulation of matrix metalloproteinase 1 (MMP1) that was further confirmed by RT-qPCR from additional tumor material. The IF staining of melanoma tissue versus intact skin for MMP1 and tumor marker S100 revealed MMP1 expression in all lesions. The co-expression of S100 was observed at different extents, with some tumors scoring S100-negative. The IF staining of primary tumor cells explanted from the tumors for MMP1 showed that the metalloproteinase is uniformly expressed in the cytoplasm of 100% of tumor cells. Overall, the presented data point to MP expression being deregulated in gray horse melanoma, and suggest that MMP1 has an active role in gray horse melanoma by driving EMT-mediated tumor cell dissemination via the degradation of the extracellular matrix. Whilst S100 is considered a reliable tumor marker in human MM, gray horse melanomas do not seem to regularly express this protein.
Collapse
Affiliation(s)
- Daniela M. Brodesser
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Stefan Kummer
- VetImaging, VetCore Facility, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Julia A. Eichberger
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Karin Schlangen
- Section for Biosimulation and Bioinformatics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna (MUV), Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy;
| | - Christof A. Bertram
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Sabine Brandt
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| |
Collapse
|
6
|
Sanchez‐Pupo RE, Finch GA, Johnston DE, Craig H, Abdo R, Barr K, Kerfoot S, Dagnino L, Penuela S. Global pannexin 1 deletion increases tumor-infiltrating lymphocytes in the BRAF/Pten mouse melanoma model. Mol Oncol 2024; 18:969-987. [PMID: 38327091 PMCID: PMC10994229 DOI: 10.1002/1878-0261.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.
Collapse
Affiliation(s)
| | - Garth A. Finch
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | | | - Heather Craig
- Department of Microbiology and ImmunologyWestern UniversityLondonCanada
| | - Rober Abdo
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | - Kevin Barr
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | - Steven Kerfoot
- Department of Microbiology and ImmunologyWestern UniversityLondonCanada
| | - Lina Dagnino
- Department of Physiology and PharmacologyWestern UniversityLondonCanada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| | - Silvia Penuela
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| |
Collapse
|
7
|
Wang G, Zhang Y, Kwong HK, Zheng M, Wu J, Cui C, Chan KWY, Xu C, Chen T. On-Site Melanoma Diagnosis Utilizing a Swellable Microneedle-Assisted Skin Interstitial Fluid Sampling and a Microfluidic Particle Dam for Visual Quantification of S100A1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306188. [PMID: 38417122 PMCID: PMC11040363 DOI: 10.1002/advs.202306188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Indexed: 03/01/2024]
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Yuyue Zhang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Hoi Kwan Kwong
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Jianpeng Wu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Chenyu Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Kannie W. Y. Chan
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Ting‐Hsuan Chen
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- City University of Hong Kong Shenzhen Research Institute8 Yuexing 1st Road, Shenzhen Hi‐Tech Industrial Park, Nanshan DistrictShenzhen518057China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| |
Collapse
|
8
|
Kim YS, Kim D, Park J, Chung YJ. Single-cell RNA sequencing of a poorly metastatic melanoma cell line and its subclones with high lung and brain metastasis potential reveals gene expression signature of metastasis with prognostic implication. Exp Dermatol 2023; 32:1774-1784. [PMID: 37534569 DOI: 10.1111/exd.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2). Unsupervised clustering of 8173 melanoma cells identified three distinct clusters according to cell type ('Primary', 'Lung' and 'Brain' clusters) with differential expression of MITF and AXL pathways and putative cancer and cell cycle drivers, with the lung cluster expressing intermediate but distinct gene profiles between primary and brain clusters. Principal component (PC) analysis revealed that PC2 (the second PC), which was positively associated with MITF expression and negatively with AXL pathways, primarily segregated cell types, in addition to PC1 of the cell cycle pathway. Pseudotime trajectory and RNA velocity analyses suggested the existence of cellular subsets with metastatic potential in the Primary cluster and an association between PC2 signature alteration and metastasis potential acquisition. Analysis of The Cancer Genome Atlas melanoma samples by clustering into PC2-high and -low clusters by quartiles of PC2 signature expression revealed that the PC2-high cluster was an independent significant factor for poor prognosis (p-value = 0.003) with distinct genomic and transcriptomic characteristics, compared to the PC2-low cluster. In conclusion, we identified signatures of melanoma metastasis with prognostic significance and putative pro-metastatic subclones within a primary cell line.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Centofanti E, Wang C, Iyer S, Krichevsky O, Oyler-Yaniv A, Oyler-Yaniv J. The spread of interferon-γ in melanomas is highly spatially confined, driving nongenetic variability in tumor cells. Proc Natl Acad Sci U S A 2023; 120:e2304190120. [PMID: 37603742 PMCID: PMC10468618 DOI: 10.1073/pnas.2304190120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023] Open
Abstract
Interferon-γ (IFNγ) is a critical antitumor cytokine that has varied effects on different cell types. The global effect of IFNγ in the tumor depends on which cells it acts upon and the spatial extent of its spread. Reported measurements of IFNγ spread vary dramatically in different contexts, ranging from nearest-neighbor signaling to perfusion throughout the entire tumor. Here, we apply theoretical considerations to experiments both in vitro and in vivo to study the spread of IFNγ in melanomas. We observe spatially confined niches of IFNγ signaling in 3-D mouse melanoma cultures and human tumors that generate cellular heterogeneity in gene expression and alter the susceptibility of affected cells to T cell killing. Widespread IFNγ signaling only occurs when niches overlap due to high local densities of IFNγ-producing T cells. We measured length scales of ~30 to 40 μm for IFNγ spread in B16 mouse melanoma cultures and human primary cutaneous melanoma. Our results are consistent with IFNγ spread being governed by a simple diffusion-consumption model and offer insight into how the spatial organization of T cells contributes to intratumor heterogeneity in inflammatory signaling, gene expression, and immune-mediated clearance. Solid tumors are often viewed as collections of diverse cellular "neighborhoods": Our work provides a general explanation for such nongenetic cellular variability due to confinement in the spread of immune mediators.
Collapse
Affiliation(s)
- Edoardo Centofanti
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Chad Wang
- The Systems, Synthetic, and Quantitative Biology Graduate Program at Harvard Medical School, Boston, MA02115
| | - Sandhya Iyer
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Oleg Krichevsky
- The Department of Physics at Ben Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Alon Oyler-Yaniv
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
10
|
Mandarino A, Thiyagarajan S, Martins ACF, Gomes RDS, Vetter SW, Leclerc E. S100s and HMGB1 Crosstalk in Pancreatic Cancer Tumors. Biomolecules 2023; 13:1175. [PMID: 37627239 PMCID: PMC10452588 DOI: 10.3390/biom13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
11
|
Wan Y, Shen J, Hong Y, Liu J, Shi T, Cai J. Mapping knowledge landscapes and emerging trends of the biomarkers in melanoma: a bibliometric analysis from 2004 to 2022. Front Oncol 2023; 13:1181164. [PMID: 37427124 PMCID: PMC10327294 DOI: 10.3389/fonc.2023.1181164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background Melanoma is a skin tumor with a high mortality rate, and early diagnosis and effective treatment are the key to reduce its mortality rate. Therefore, more and more attention has been paid for biomarker identification for early diagnosis, prognosis prediction and prognosis evaluation of melanoma. However, there is still a lack of a report that comprehensively and objectively evaluates the research status of melanoma biomarkers. Therefore, this study aims to intuitively analyze the research status and trend of melanoma biomarkers through the methods of bibliometrics and knowledge graph. Objective This study uses bibliometrics to analyze research in biomarkers in melanoma, summarize the field's history and current status of research, and predict future research directions. Method Articles and Reviews related to melanoma biomarkers were retrieved by using Web of Science core collection subject search. Bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer and Bibliometrix (R-Tool of R-Studio). Result A total of 5584 documents from 2004 to 2022 were included in the bibliometric analysis. The results show that the number of publications and the frequency of citations in this field are increasing year by year, and the frequency of citations has increased rapidly after 2018. The United States is the most productive and influential country in this field, with the largest number of publications and institutions with high citation frequency. Caroline Robert, F. Stephen Hodi, Suzanne L. Topalian and others are authoritative authors in this field, and The New England Journal of Medicine, Journal of Clinical Oncology and Clinical Cancer Research are the most authoritative journals in this field. Biomarkers related to the diagnosis, treatment and prognosis of melanoma are hot topics and cutting-edge hotspots in this field. Conclusion For the first time, this study used the bibliometric method to visualize the research in the field of melanoma biomarkers, revealing the trends and frontiers of melanoma biomarkers research, which provides a useful reference for scholars to find key research issues and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bolovan LM, Ceausu M, Stanciu AE, Panait ME, Busca A, Hotnog CM, Bleotu C, Gales LN, Georgescu MT, Prunoiu VM, Brasoveanu LI, Voinea SC. Correlation Studies between S100 Protein Level and Soluble MIA or Tissue MelanA and gp100 (HMB45) Expression in Cutaneous Melanoma. J Pers Med 2023; 13:898. [PMID: 37373887 DOI: 10.3390/jpm13060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Cutaneous melanoma (CM) originates from melanocytes and causes 90% of skin cancer deaths; therefore, the comparison of different soluble and tissue markers could be valuable in the detection of melanoma progression and therapy monitoring. The present study is focused on the potential correlations between soluble S100B and MIA protein levels in different melanoma stages or with tissue expression of S100, gp100 (HMB45), and MelanA biomarkers. (2) Methods: Soluble S100B and MIA levels were evaluated by means of immunoassay methods in blood samples from 176 patients with CM, while tissue expressions of S100, MelanA, and gp100 (HMB45) were detected by means of immunohistochemistry in 76 melanomas. (3) Results: Soluble S100B correlated with MIA in stages III (r = 0.677, p < 0.001) and IV (r = 0.662, p < 0.001) but not in stages I and II; however, 22.22% and 31.98% of stage I and II patients, respectively, had high values for at least one of the two soluble markers. S100 tissue expression correlated with both MelanA (r = 0.610, p < 0.001) and HMB45 (r = 0.476, p < 0.01), while HMB45 and MelanA also significantly positively correlated (r = 0.623, p < 0.001). (4) Conclusions: Blood levels of S100B and MIA corroborated with melanoma tissue markers expression could help to improve the stratification process for patients with a high risk of tumor progression.
Collapse
Affiliation(s)
- Lucica Madalina Bolovan
- Carcinogenesis and Molecular Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Mihai Ceausu
- Pathology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Adina Elena Stanciu
- Carcinogenesis and Molecular Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Marieta Elena Panait
- Cancer Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Antonela Busca
- Cancer Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Camelia Mia Hotnog
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Laurentia Nicoleta Gales
- Oncology Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
- Oncology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 252 Fundeni Ave, 022328 Bucharest, Romania
| | - Mihai Teodor Georgescu
- Oncology Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
- Oncology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 252 Fundeni Ave, 022328 Bucharest, Romania
| | - Virgiliu Mihail Prunoiu
- Oncological Surgery Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
- Oncological Surgery Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Silviu Cristian Voinea
- Oncological Surgery Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
- Oncological Surgery Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
13
|
Azimi A, Patrick E, Teh R, Kim J, Fernandez-Penas P. Proteomic profiling of cutaneous melanoma explains the aggressiveness of distant organ metastasis. Exp Dermatol 2023. [PMID: 37082900 DOI: 10.1111/exd.14814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Despite recent developments in managing metastatic melanomas, patients' overall survival remains low. Therefore, the current study aims to understand better the proteome-wide changes associated with melanoma metastasis that will assist with identifying targeted therapies. The latest development in mass spectrometry-based proteomics, together with extensive bioinformatics analysis, was used to investigate the molecular changes in 60 formalin-fixed and paraffin-embedded samples of primary and lymph nodes (LN) and distant organ metastatic melanomas. A total of 4631 proteins were identified, of which 72 and 453 were significantly changed between the LN and distant organ metastatic melanomas compared to the primary lesions (adj. p-value <0.05). An increase in proteins such as SLC9A3R1, CD20 and GRB2 and a decrease in CST6, SERPINB5 and ARG1 were associated with regional LN metastasis. By contrast, increased metastatic activities in distant organ metastatic melanomas were related to higher levels of CEACAM1, MC1R, AKT1 and MMP3-9 and decreased levels of CDKN2A, SDC1 and SDC4 proteins. Furthermore, machine learning analysis classified the lesions with up to 92% accuracy based on their metastatic status. The findings from this study provide up to date proteome-level information about the progression of melanomas to regional LN and distant organs, leading to the identification of protein signatures with potential for clinical translation.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachel Teh
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Jennifer Kim
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
14
|
Selimovic D, Kharouf N, Carrouel F, Hassan SY, Flanagan TW, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Induction of Antimicrobial Protein S100A15 Expression by Oral Microbial Pathogens Is Toll-like Receptors-Dependent Activation of c-Jun-N-Terminal Kinase (JNK), p38, and NF-κB Pathways. Int J Mol Sci 2023; 24:ijms24065348. [PMID: 36982421 PMCID: PMC10049289 DOI: 10.3390/ijms24065348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The antimicrobial protein S100A15 belongs to the S100 family, which is differentially expressed in a variety of normal and pathological tissues. Although the function of S100A15 protein has been discussed in several studies, its induction and regulation in oral mucosa, so far, are largely unknown. In this study, we demonstrate that S100A15 is induced by the stimulation of oral mucosa with gram− or gram+ bacterial pathogens, as well as with the purified membrane components, namely lipopolysaccharides (LPS) and lipoteichoic acid (LTA). The stimulation of the human gingival fibroblast (GF) and the human mouth epidermal carcinoma (KB) cell lines with either gram− or gram+ bacterial pathogens or their purified membrane components (LPS and LTA) results in the activation of NF-κB, apoptosis-regulating kinase1 (ASK1), and MAP kinase signaling pathways including, c-Jun N-terminal kinase (JNK) and p38 together with their physiological substrates AP-1 and ATF-2, respectively. Inhibition of S100A15 by antibodies-mediated Toll-like receptor 4 (TLR4) or Toll-like receptor 2 (TLR2) neutralization reveals the induction of S100A15 protein by LPS/gram− bacterial pathogens to be TLR4- dependent mechanism, whereas induction by LTA/gram+ bacterial pathogens to be TLR2- dependent mechanism. Pre-treatment of GF and KB cells with JNK (SP600125), p38 (SB-203580), or NF-κB (Bay11-7082) specific inhibitors further demonstrates the importance of JNK, p38 and NF-κB pathways in the regulation of gram−/gram+ bacterial pathogen-induced S100A15 expression. Our data provide evidence that S100A15 is induced in cancer and non-cancer oral mucosa-derived cell lines by gram−/gram+ bacterial pathogens and provide insight into the molecular mechanisms by which gram− and gram+ bacterial pathogens induce S100A15 expression in the oral mucosa.
Collapse
Affiliation(s)
- Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France
- Department of Restorative Dentistry, Endodontology and Biomaterials, Faculty of Dentistry, University of Tours, 37000 Tours, France
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Florence Carrouel
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-339-2671
| |
Collapse
|
15
|
Ren Y, Chen B, Zhang M, Xu F. Comprehensive analysis of the prognosis of S100 family members and their relationship with tumor-infiltrating immune cells in human pancreatic adenocarcinoma. Medicine (Baltimore) 2023; 102:e32976. [PMID: 36827067 PMCID: PMC11309628 DOI: 10.1097/md.0000000000032976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
S100 family members (S100s) are small molecular EF hand calcium binding proteins and widely expressed in many tissues and organs. S100s are shown to be biomarkers of disease progression and prognosis in various types of cancers. Nevertheless, the expression patterns, function, and prognostic values of S100s and its association with tumor-infiltrating immune cells in pancreatic adenocarcinoma (PAAD) patients have not been systematically clarified. We explored the expression and roles of the entire 20 S100s in PAAD patients by using the following public databases: Oncomine, gene expression profiling interactive analysis, cBioPortal, Metascape, search tool for recurring instances of neighboring genes, Tumor IMmune Estimation Resource, and GeneMANIA. The S100A2/A3/A4/A6/A8/A9/A10/A11/A13/A14/A16/B/P mRNA expressions were significantly upregulated in PAAD patients. The mRNA expression of S100A3/A4/A5/A6/A10/A11/A14/A16/Z were significantly negatively related with the tumor stage in PAAD patients. We found that the S100A2/A3/A5/A10/A11/A14/A16 were significantly correlated with poor overall survival, whereas the increased levels of S100A1/B/G/Z were strongly associated with good overall survival. We found significant correlations among S100s and tumor-infiltrating immune cells. Cox proportional risk models revealed that B cells, Dendritic cells and S100A1/A5/A6/A8/A9/A13/A14 were significantly related with outcomes in PAAD patients. These results suggest that S100A2/A3/A10/A11/A14/A16 may serve as new diagnostic and prognostic biomarkers for PAAD patients and provide new clues for immunotherapy in PAAD patients.
Collapse
Affiliation(s)
- Yajun Ren
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Smith M, Li P. Molecular Insights into the Calcium Binding in Troponin C through a Molecular Dynamics Study. J Chem Inf Model 2023; 63:354-361. [PMID: 36507851 DOI: 10.1021/acs.jcim.2c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium-binding proteins play critical roles in various biological processes such as signal transduction, cell growth, and transcription factor regulation. Ion binding and target binding of Ca2+-binding proteins are highly related. Therefore, understanding the ion binding mechanism will benefit the relevant inhibitor design toward the Ca2+-binding proteins. The EF-hand is the typical ion binding motif in Ca2+-binding proteins. Previous studies indicate that the ion binding affinity of the EF-hand increases with the peptide length, but this mechanism has not been fully understood. Herein, using molecular dynamics simulations, thermodynamic integration calculations, and molecular mechanics Poisson-Boltzmann surface area analysis, we systematically investigated four Ca2+-binding peptides containing the EF-hand loop in site III of rabbit skeletal troponin C. These four peptides have 13, 21, 26, and 34 residues. Our simulations reproduced the observed trend that the ion binding affinity increases with the peptide length. Our results implied that the E-helix motif preceding the EF-hand loop, likely the Phe99 residue in particular, plays a significant role in this regulation. The E-helix has a significant impact on the backbone and side-chain conformations of the Asp103 residue, rigidifying important hydrogen bonds in the EF-hand and decreasing the solvent exposure of the Ca2+ ion, hence leading to more favorable Ca2+ binding in longer peptides. The present study provides molecular insights into the ion binding in the EF-hand and establishes an important step toward elucidating the responses of Ca2+-binding proteins toward the ion and target availability.
Collapse
Affiliation(s)
- Madelyn Smith
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States
| |
Collapse
|
17
|
Wang W, Zhao H, Wang S. Identification of a novel immune-related gene signature for prognosis and the tumor microenvironment in patients with uveal melanoma combining single-cell and bulk sequencing data. Front Immunol 2023; 14:1099071. [PMID: 36793711 PMCID: PMC9922847 DOI: 10.3389/fimmu.2023.1099071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Uveal melanoma (UVM) is the most invasive intraocular malignancy in adults with a poor prognosis. Growing evidence revealed that immune-related gene is related to tumorigenesis and prognosis. This study aimed to construct an immune-related prognostic signature for UVM and clarify the molecular and immune classification. Methods Based on The Cancer Genome Atlas (TCGA) database, single-sample gene set enrichment (ssGSEA) and hierarchical clustering analysis were performed to identify the immune infiltration pattern of UVM and classify patients into two immunity clusters. Then, we proposed univariate and multivariate Cox regression analysis to identify immune-related genes that related to overall survival (OS) and validated in the Gene Expression Omnibus (GEO) external validation cohort. The molecular and immune classification in the immune-related gene prognostic signature defined subgroups were analyzed. Results The immune-related gene prognostic signature was constructed based on S100A13, MMP9, and SEMA3B genes. The prognostic value of this risk model was validated in three bulk RNA sequencing datasets and one single-cell sequencing dataset. Patients in the low-risk group had better OS than those in the high-risk group. The receiver-operating characteristic (ROC) analysis revealed its strong predictive ability for UVM patients. Lower expression of immune checkpoint genes was presented in the low-risk group. Functional studies showed that S100A13 knockdown via siRNA inhibited UVM cell proliferation, migration, and invasion in vitro, with the increased expression of reactive oxygen species (ROS) related markers in UVM cell lines. Discussion The immune-related gene prognostic signature is an independent predictive factor for the survival of patients with UVM and provides new information about cancer immunotherapy in UVM.
Collapse
Affiliation(s)
- Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
18
|
Miñoza JMA, Rico JA, Zamora PRF, Bacolod M, Laubenbacher R, Dumancas GG, de Castro R. Biomarker Discovery for Meta-Classification of Melanoma Metastatic Progression Using Transfer Learning. Genes (Basel) 2022; 13:2303. [PMID: 36553569 PMCID: PMC9777873 DOI: 10.3390/genes13122303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Melanoma is considered to be the most serious and aggressive type of skin cancer, and metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer learning-based biomarker discovery model that could aid in the diagnosis and prognosis of this disease. After applying it to the ensemble machine learning model, results revealed that the genes found were consistent with those found using other methodologies previously applied to the same TCGA (The Cancer Genome Atlas) data set. Further novel biomarkers were also found. Our ensemble model achieved an AUC of 0.9861, an accuracy of 91.05, and an F1 score of 90.60 using an independent validation data set. This study was able to identify potential genes for diagnostic classification (C7 and GRIK5) and diagnostic and prognostic biomarkers (S100A7, S100A7, KRT14, KRT17, KRT6B, KRTDAP, SERPINB4, TSHR, PVRL4, WFDC5, IL20RB) in melanoma. The results show the utility of a transfer learning approach for biomarker discovery in melanoma.
Collapse
Affiliation(s)
- Jose Marie Antonio Miñoza
- System Modeling and Simulation Laboratory, Department of Computer Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jonathan Adam Rico
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
| | | | - Manny Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Gerard G. Dumancas
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
- Loyola Science Center, Department of Chemistry, The University of Scranton, Scranton, PA 18510, USA
| | - Romulo de Castro
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
- 3R Biosystems, Long Beach, CA 90840, USA
| |
Collapse
|
19
|
Yao CY, Lin CC, Wang YH, Hsu CL, Kao CJ, Hou HA, Chou WC, Tien HF. The clinical and biological characterization of acute myeloid leukemia patients with S100A4 overexpression. J Formos Med Assoc 2022:S0929-6646(22)00422-3. [DOI: 10.1016/j.jfma.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
|
20
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
21
|
Kurtović M, Piteša N, Bartoniček N, Ozretić P, Musani V, Čonkaš J, Petrić T, King C, Sabol M. RNA-seq and ChIP-seq Identification of Unique and Overlapping Targets of GLI Transcription Factors in Melanoma Cell Lines. Cancers (Basel) 2022; 14:cancers14184540. [PMID: 36139698 PMCID: PMC9497141 DOI: 10.3390/cancers14184540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite significant progress in therapy, melanoma still has a rising incidence worldwide, and novel treatment strategies are needed. Recently, researchers have recognized the involvement of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and its consistent crosstalk with the MAPK pathway. In order to further investigate the link between the two pathways and to find new target genes that could be considered for combination therapy, we set out to find transcriptional targets of all three GLI proteins in melanoma. METHODS We performed RNA sequencing on three melanoma cell lines (CHL-1, A375, and MEL224) with overexpressed GLI1, GLI2, and GLI3 and combined them with the results of ChIP-sequencing on endogenous GLI1, GLI2, and GLI3 proteins. After combining these results, 21 targets were selected for validation by qPCR. RESULTS RNA-seq revealed a total of 808 differentially expressed genes (DEGs) for GLI1, 941 DEGs for GLI2, and 58 DEGs for GLI3. ChIP-seq identified 527 genes that contained GLI1 binding sites in their promoters, 1103 for GLI2 and 553 for GLI3. A total of 15 of these targets were validated in the tested cell lines, 6 of which were detected by both RNA-seq and ChIP-seq. CONCLUSIONS Our study provides insight into the unique and overlapping transcriptional output of the GLI proteins in melanoma. We suggest that our findings could provide new potential targets to consider while designing melanoma-targeted therapy.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nenad Bartoniček
- The Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, 370 Victoria St., Darlinghurst, NSW 2010, Australia
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Tina Petrić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Cecile King
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
22
|
Influence of S100A2 in Human Diseases. Diagnostics (Basel) 2022; 12:diagnostics12071756. [PMID: 35885660 PMCID: PMC9316160 DOI: 10.3390/diagnostics12071756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
S100 proteins are a family of low-molecular-weight proteins characterized by two calcium-binding sites with a helix-loop-helix (“EF-hand-type”) domain. The S100 family of proteins is distributed across various organs and can interact with diverse molecules. Among the proteins of the S100 family, S100 calcium-binding protein A2 (S100A2) has been identified in mammary epithelial cells, glands, lungs, kidneys, and prostate gland, exhibiting various physiological and pathological actions in human disorders, such as inflammatory diseases and malignant tumors. In this review, we introduce basic knowledge regarding S100A2 regulatory mechanisms. Although S100A2 is a tumor suppressor, we describe the various influences of S100A2 on cancer and inflammatory diseases.
Collapse
|
23
|
Barbero G, Castro MV, Quezada MJ, Lopez-Bergami P. Bioinformatic analysis identifies epidermal development genes that contribute to melanoma progression. Med Oncol 2022; 39:141. [PMID: 35834068 DOI: 10.1007/s12032-022-01734-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Several diagnostic and prognostic markers for melanoma have been identified in last few years. However, their actual contribution to melanoma progression have not been investigated in detail. This study was aimed to identify genes, biological processes, and signaling pathways implicated in melanoma progression by applying bioinformatics analysis. We identified nine differentially expressed genes (DEGs) (IL36RN, KRT6A, KRT6B, KRT16, S100A7, SPRR1A, SPRR1B, SPRR2B, and KLK7) that were upregulated in primary melanoma compared with metastatic melanoma in all five datasets analyzed. All these genes except IL36RN, both form a protein-protein interaction network and have cellular functions associated with constitutive processes of keratinocytes. Thus, they were generically termed Epidermal Development and Cornification (EDC) genes. The differential expression of these genes in primary and metastatic melanoma was confirmed in the TCGA-SKCM cohort. High expression of the EDC genes correlated with reduced tumor thickness in primary melanoma and shorter survival in metastatic melanoma. Analysis of DEGs from primary melanoma patients displaying high or low expression of all eight EDC revealed that the upregulated genes are enriched in biological process related to cell migration, extracellular matrix organization, invasion, and Epithelial-Mesenchymal Transition. Further analysis of enriched curated oncogenic genesets together with RPPA data of phosphorylated proteins revealed the activation of MEK, ATF2, and EGFR pathways in tumors displaying high expression of EDC genes. Thus, EDC genes may contribute to melanoma progression by promoting the activation of MEK, ATF2, and EGFR pathways together with biological processes associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Gastón Barbero
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - María Victoria Castro
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, Pelletier RJ, Yapp C, Arias-Camison R, Chen YA, Lian CG, Murphy GF, Santagata S, Sorger PK. The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution. Cancer Discov 2022; 12:1518-1541. [PMID: 35404441 PMCID: PMC9167783 DOI: 10.1158/2159-8290.cd-21-1357] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma is a highly immunogenic malignancy that is surgically curable at early stages but life-threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and spatially resolved microregion transcriptomics to study immune evasion and immunoediting in primary melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells change significantly along a progression axis involving precursor states, melanoma in situ, and invasive tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors become locally invasive, a consolidated and spatially restricted suppressive environment forms along the tumor-stromal boundary. This environment is established by cytokine gradients that promote expression of MHC-II and IDO1, and by PD1-PDL1-mediated cell contacts involving macrophages, dendritic cells, and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can coexist within a few millimeters of each other in a single specimen. SIGNIFICANCE The reorganization of the tumor ecosystem in primary melanoma is an excellent setting in which to study immunoediting and immune evasion. Guided by classic histopathology, spatial profiling of proteins and mRNA reveals recurrent morphologic and molecular features of tumor evolution that involve localized paracrine cytokine signaling and direct cell-cell contact. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Ajit J. Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zoltan Maliga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Brian Quattrochi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alyce A. Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Connor A. Jacobson
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Roxanne J. Pelletier
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Raquel Arias-Camison
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Christine G. Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George F. Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Kiuru M, Kriner MA, Wong S, Zhu G, Terrell JR, Li Q, Hoang M, Beechem J, McPherson JD. High-Plex Spatial RNA Profiling Reveals Cell Type‒Specific Biomarker Expression during Melanoma Development. J Invest Dermatol 2022; 142:1401-1412.e20. [PMID: 34699906 PMCID: PMC9714472 DOI: 10.1016/j.jid.2021.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023]
Abstract
Early diagnosis of melanoma is critical for improved survival. However, the biomarkers of early melanoma evolution and their origin within the tumor and its microenvironment, including the keratinocytes, are poorly defined. To address this, we used spatial transcript profiling that maintains the morphological tumor context to measure the expression of >1,000 RNAs in situ in patient-derived formalin-fixed, paraffin-embedded tissue sections in primary melanoma and melanocytic nevi. We profiled 134 regions of interest (each 200 μm in diameter) enriched in melanocytes, neighboring keratinocytes, or immune cells. This approach captured distinct expression patterns across cell types and tumor types during melanoma development. Unexpectedly, we discovered that S100A8 is expressed by keratinocytes within the tumor microenvironment during melanoma growth. Immunohistochemistry of 252 tumors showed prominent keratinocyte-derived S100A8 expression in melanoma but not in benign tumors and confirmed the same pattern for S100A8's binding partner S100A9, suggesting that injury to the epidermis may be an early and readily detectable indicator of melanoma development. Together, our results establish a framework for high-plex, spatial, and cell type‒specific resolution of gene expression in archival tissue applicable to the development of biomarkers and characterization of tumor microenvironment interactions in tumor evolution.
Collapse
Affiliation(s)
- Maija Kiuru
- Department of Dermatology, University of California Davis, Sacramento, California, USA,Department of Pathology & Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | | | - Samantha Wong
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | - Guannan Zhu
- Department of Dermatology, University of California Davis, Sacramento, California, USA,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jessica R. Terrell
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | - Qian Li
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California, Davis, Sacramento, CA
| | | | | | - John D. McPherson
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
26
|
Yan J, Huang YJ, Huang QY, Liu PX, Wang CS. Transcriptional activation of S100A2 expression by HIF-1α via binding to the hypomethylated hypoxia response elements in HCC cells. Mol Carcinog 2022; 61:494-507. [PMID: 35107180 DOI: 10.1002/mc.23393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers. Dysregulation of S100A2 has recently been found in many cancers including HCC. However, its regulatory mechanism in HCC remains poorly understood, especially in hypoxia. In this study, we found that S100A2 is upregulated and correlated with the clinicopathological features of HCC patients. Moreover, the elevated S100A2 showed worse overall survival. Functionally, S100A2 inhibition decreased the proliferation and migration of HepG2 cells. Interestingly, we found that HIF-1α directly binds to hypoxia response elements (HREs) of the S100A2 promoter region. S100A2 expression could be induced in an HIF-1α-dependent manner under hypoxia. Furthermore, S100A2 silencing significantly suppressed HCC cell proliferation and invasion under hypoxia. Mechanistically, pyrosequencing results showed that the hypomethylation status of CpG located in the HRE at the S100A2 promoter was correlated with S100A2 induction. Additionally, HIF-1α- mediated S100A2 activation was associated with TET2-related epigenetic inactivation. TET2 was enriched in the HRE of the S100A2 promoter in HepG2 cells. Finally, S100A2 methylation-related genes and pathways were analyzed. We found that the methylation of S100A2 is correlated with ANXA2, PPP1R15A, and FOS, which include in a hypoxia-related gene set from the GSEA database. Moreover, some EMT-related genes are associated with the methylation of S100A2 in HCC. Conclusively, our study thus uncovered a novel mechanism showing that hypoxia/HIF-1α signaling associated with DNA methylation enhances S100A2 expression in HCC. S100A2 may be useful as a target for facilitating novel diagnostic and therapeutic strategies in liver cancer.
Collapse
Affiliation(s)
- Jia Yan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ya Jun Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qing Yu Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Peng Xia Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Chang Shan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
27
|
Wolf J, Boneva S, Schlecht A, Lapp T, Auw-Haedrich C, Lagrèze W, Agostini H, Reinhard T, Schlunck G, Lange C. The Human Eye Transcriptome Atlas: A searchable comparative transcriptome database for healthy and diseased human eye tissue. Genomics 2022; 114:110286. [DOI: 10.1016/j.ygeno.2022.110286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 11/25/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
28
|
Fuh KF, Withell J, Shepherd RD, Rinker KD. Fluid Flow Stimulation Modulates Expression of S100 Genes in Normal Breast Epithelium and Breast Cancer. Cell Mol Bioeng 2022; 15:115-127. [PMID: 35087607 PMCID: PMC8761192 DOI: 10.1007/s12195-021-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/07/2021] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied. The goal of this study was to analyze expression profiles of S100 genes upon exposing HMECs to fluid flow. METHODS HMECs and breast cancer cell lines were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in three independent clinical datasets. RESULTS S100 genes were among the most upregulated genes upon flow stimulation. Network analysis revealed interactions between upregulated transcripts, including interactions between S100P, S100PBP, S100A4, S100A7, S100A8 and S100A9. Overexpression of S100s was also observed in patients with early stage breast cancer compared to normal breast tissue, and in most breast cancer patients. Finally, survival analysis revealed reduced survival times for patients with elevated expression of S100A7 and S100P. CONCLUSION This study shows that exposing HMECs to fluid flow upregulates genes identified clinically to be overexpressed during breast cancer development, including S100A7 and S100P. These findings are the first to show that S100 genes are flow-responsive and might be participating in a fundamental adaptation pathway in normal tissue that is also active in breast cancer.
Collapse
Affiliation(s)
- Kenneth F. Fuh
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4 Canada
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jessica Withell
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Robert D. Shepherd
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Kristina D. Rinker
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4 Canada
- Libin Cardiovascular Institute of Canada, University of Calgary, Calgary, AB T2N 1N4 Canada
- Centre for Bioengineering Research & Education, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
29
|
Mapping of MeLiM melanoma combining ICP-MS and MALDI-MSI methods. Int J Biol Macromol 2022; 203:583-592. [PMID: 35090942 DOI: 10.1016/j.ijbiomac.2022.01.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Here we developed a powerful tool for comprehensive data collection and mapping of molecular and elemental signatures in the Melanoma-bearing Libechov Minipig (MeLiM) model. The combination of different mass spectrometric methods allowed for detail investigation of specific melanoma markers and elements and their spatial distribution in tissue sections. MALDI-MSI combined with HPLC-MS/MS analyses resulted in identification of seven specific proteins, S100A12, CD163, MMP-2, galectin-1, tenascin, resistin and PCNA that were presented in the melanoma signatures. Furthermore, the ICP-MS method allowed for spatial detection of zinc, calcium, copper, and iron elements linked with the allocation of the specific binding proteins.
Collapse
|
30
|
Identification of Keratinocyte Differentiation-Involved Genes for Metastatic Melanoma by Gene Expression Profiles. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:9652768. [PMID: 35003328 PMCID: PMC8728391 DOI: 10.1155/2021/9652768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Background Melanoma is the deadliest type of skin cancer. Until now, its pathological mechanisms, particularly the mechanism of metastasis, remain largely unknown. Our study on the identification of genes in association with metastasis for melanoma provides a novel understanding of melanoma. Methods From the Gene Expression Omnibus (GEO) database, the gene expression microarray datasets GSE46517, GSE7553, and GSE8401 were downloaded. We made use of R aiming at analyzing the differentially expressed genes (DEGs) between metastatic and nonmetastatic melanoma. R was also used in differentially expressed miRNA (DEM) data mining from GSE18509, GSE19387, GSE24996, GSE34460, GSE35579, GSE36236, and GSE54492 datasets referring to Li's study. Based on the DEG and DEM data, we performed functional enrichment analysis through the application of the DAVID database. Furthermore, we constructed the protein-protein interaction (PPI) network and established functional modules by making use of the STRING database. Through making use of Cytoscape, the PPI results were visualized. We predicted the targets of the DEMs through applying TargetScan, miRanda, and PITA databases and identified the overlapping genes between DEGs and predicted targets, followed by the construction of DEM-DEG pair network. The expressions of these keratinocyte differentiation-involved genes in Module 1 were identified based on the data from TCGA. Results 239 DEGs were screened out in all 3 datasets, which were inclusive of 21 positively regulated genes and 218 negatively regulated genes. Based on these 239 DEGs, we finished constructing the PPI network which was formed from 225 nodes and 846 edges. We finished establishing 3 functional modules. And we analyzed 92 overlapping genes and 26 miRNA, including 11 upregulated genes targeted by 11 negatively regulated DEMs and 81 downregulated genes targeted by 15 positively regulated DEMs. As proof of the differential expression of metastasis-associated genes, eleven keratinocyte differentiation-involved genes, including LOR, EVPL, SPRR1A, FLG, SPRR1B, SPRR2B, TGM1, DSP, CSTA, CDSN, and IVL in Module 1, were obviously downregulated in metastatic melanoma tissue in comparison with primary melanoma tissue based on the data from TCGA. Conclusion 239 melanoma metastasis-associated genes and 26 differentially expressed miRNA were identified in our study. The keratinocyte differentiation-involved genes may take part in melanoma metastasis, providing a latent molecular mechanism for this disease.
Collapse
|
31
|
Huayanay Espinoza JL, Mego Ramírez FN, Guerra Miller H, Guelfguat M. An Overview of Rare Breast Neoplasms with Radiologic-Pathologic Correlation. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
33
|
Campbell NR, Rao A, Hunter MV, Sznurkowska MK, Briker L, Zhang M, Baron M, Heilmann S, Deforet M, Kenny C, Ferretti LP, Huang TH, Perlee S, Garg M, Nsengimana J, Saini M, Montal E, Tagore M, Newton-Bishop J, Middleton MR, Corrie P, Adams DJ, Rabbie R, Aceto N, Levesque MP, Cornell RA, Yanai I, Xavier JB, White RM. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev Cell 2021; 56:2808-2825.e10. [PMID: 34529939 DOI: 10.1016/j.devcel.2021.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a "go or grow" trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.
Collapse
Affiliation(s)
- Nathaniel R Campbell
- Weill Cornell/Rockefeller Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anjali Rao
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda V Hunter
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Luzia Briker
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Maomao Zhang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Silja Heilmann
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxime Deforet
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin Kenny
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lorenza P Ferretti
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland; Department of Molecular Mechanisms of Disease, University of Zürich, Zurich, Switzerland
| | - Ting-Hsiang Huang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Perlee
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Massimo Saini
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Emily Montal
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohita Tagore
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Mark R Middleton
- Oxford NIHR Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Pippa Corrie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Roy Rabbie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joao B Xavier
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
34
|
Abstract
Objective To investigate the clinical significance of serum S100 calcium-binding protein A10 (S100A10) levels in lung cancer. Methods This prospective study enrolled patients with lung cancer, patients with benign lung nodules and healthy control subjects. Serum S100A10 levels and three biomarkers were measured and compared between the groups. Associations between serum S100A10 and clinical characteristics in patients with lung cancer were investigated. The diagnostic efficacy of serum S100A10 and carcinoembryonic antigen for lung cancer was calculated. Results The study enrolled 82 patients with lung cancer, 21 with benign lung nodules and 50 healthy controls. Serum S100A10 levels were significantly higher in patients with lung cancer compared with patients with benign lung nodules and healthy control subjects. Serum S100A10 levels of patients with advanced lung cancer were significantly higher than those with early stage disease. Patients with lymph node metastases had significantly higher serum S100A10 levels than patients without lymph node metastases. The cut-off serum S100A10 value for lung cancer detection was 1.34 ng/ml, which had a sensitivity of 48.2%, a specificity of 76.2% and an area under the curve of 0.63. Conclusion Serum S100A10 was significantly correlated with disease stage and lymph node metastasis. It has the potential to be a tumour biomarker for lung cancer.
Collapse
Affiliation(s)
- Yu-Lei Hou
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Hong Zhang
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Bao Guo
- Department of Cardiothoracic Surgery, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Chhabra G, Singh CK, Guzmán-Pérez G, Ndiaye MA, Iczkowski KA, Ahmad N. Anti-melanoma effects of concomitant inhibition of SIRT1 and SIRT3 in Braf V600E/Pten NULL mice. J Invest Dermatol 2021; 142:1145-1157.e7. [PMID: 34597611 PMCID: PMC9199498 DOI: 10.1016/j.jid.2021.08.434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small molecule dual inhibitor of SIRT1 and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of 10-week-old mice, and the effects of 4'-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 4'-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
36
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
37
|
Wang G, Li HN, Cui XQ, Xu T, Dong ML, Li SY, Li XR. S100A1 is a Potential Biomarker for Papillary Thyroid Carcinoma Diagnosis and Prognosis. J Cancer 2021; 12:5760-5771. [PMID: 34475990 PMCID: PMC8408122 DOI: 10.7150/jca.51855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
S100 calcium binding protein A1 (S100A1) is an important member of the S100 family and known to express in a variety of cancers. However, the biological functions of S100A1 in thyroid carcinoma have not been thoroughly studied. In this report, bioinformatics analyses and immunohistochemistry assays were applied to assess the expression profile of S100A1 as well as its relationship with the pathological features and prognosis of papillary thyroid carcinoma (PTC). Meanwhile, functions of S100A1 in PTC cells were analyzed with either in vitro or in vivo experiments. S100A1 was significantly up-regulated in PTC tissues compared with adjacent non-cancerous tissues. S100A1 protein expression was significantly associated with tumor size (p=0.0032) or lymph node metastasis (p=0.0331). More importantly, an elevated S100A1 expression was significantly correlated with a worse recurrence-free survival (RFS) (HR=2.26, p=0.042). Further, knockdown of S100A1 dramatically inhibited cell proliferation and migration as well as increased apoptosis of PTC cells. S100A1 knockdown inhibited tumor progression as seen in in vivo experiments. In terms of mechanism, down-regulation of S100A1 induced yes associated protein (YAP) phosphorylation in the cytoplasm and diminished Hippo/YAP pathway activation. Therefore, S100A1 may serve as a novel oncogene and a promising biomarker for PTC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
38
|
Rachinger N, Fischer S, Böhme I, Linck-Paulus L, Kuphal S, Kappelmann-Fenzl M, Bosserhoff AK. Loss of Gene Information: Discrepancies between RNA Sequencing, cDNA Microarray, and qRT-PCR. Int J Mol Sci 2021; 22:ijms22179349. [PMID: 34502254 PMCID: PMC8430810 DOI: 10.3390/ijms22179349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Molecular analyses of normal and diseased cells give insight into changes in gene expression and help in understanding the background of pathophysiological processes. Years after cDNA microarrays were established in research, RNA sequencing (RNA-seq) became a key method of quantitatively measuring the transcriptome. In this study, we compared the detection of genes by each of the transcriptome analysis methods: cDNA array, quantitative RT-PCR, and RNA-seq. As expected, we found differences in the gene expression profiles of the aforementioned techniques. Here, we present selected genes that exemplarily demonstrate the observed differences and calculations to reveal that a strong RNA secondary structure, as well as sample preparation, can affect RNA-seq. In summary, this study addresses an important issue with a strong impact on gene expression analysis in general. Therefore, we suggest that these findings need to be considered when dealing with data from transcriptome analyses.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (N.R.); (I.B.); (L.L.-P.); (S.K.)
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany; (S.F.); (M.K.-F.)
| | - Ines Böhme
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (N.R.); (I.B.); (L.L.-P.); (S.K.)
| | - Lisa Linck-Paulus
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (N.R.); (I.B.); (L.L.-P.); (S.K.)
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (N.R.); (I.B.); (L.L.-P.); (S.K.)
| | - Melanie Kappelmann-Fenzl
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany; (S.F.); (M.K.-F.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (N.R.); (I.B.); (L.L.-P.); (S.K.)
- Correspondence:
| |
Collapse
|
39
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
40
|
Yarza R, Bover M, Agulló-Ortuño MT, Iglesias-Docampo LC. Current approach and novel perspectives in nasopharyngeal carcinoma: the role of targeting proteasome dysregulation as a molecular landmark in nasopharyngeal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:202. [PMID: 34154654 PMCID: PMC8215824 DOI: 10.1186/s13046-021-02010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) represents a molecularly paradigmatic tumor given the complex diversity of environmental as well as host dependent factors that are closely implicated in tissue transformation and carcinogenesis. Epstein Barr Virus (EBV) plays a key role in tissue invasion, hyperplasia and malignant transformation. Therefore, EBV related oncoviral proteins such as Latent Membrane Protein family (LMP1, LMP2), Epstein Barr Nuclear Antigen 1 (EBNA1) and EBV related glycoprotein B (gB) are responsible for inducing intracellular signalling aberrations leading to sustained proliferation and further acquisition of NPC related invasive nature and metastatic potential.Dysregulation of proteasome signaling seems to be centrally implicated in oncoviral protein stabilization as well as in modulating tumor microenvironment. Different studies in vitro and in vivo suggest a potential role of proteasome inhibitors in the therapeutic setting of NPC. Furthermore, alterations affecting proteasome signalling in NPC have been associated to tumor growth and invasion, distant metastasis, immune exclusion and resistance as well as to clinical poor prognosis. So on, recent studies have shown the efficacy of immunotherapy as a suitable therapeutic approach to NPC. Nevertheless, novel strategies seem to look for combinatorial regimens aiming to potentiate immune recognition as well as to restore both primary and acquired immune resistance.In this work, our goal is to thoroughly review the molecular implications of proteasome dysregulation in the molecular pathogenesis of NPC, together with their direct relationship with EBV related oncoviral proteins and their role in promoting immune evasion and resistance. We also aim to hypothesize about the feasibility of the use of proteasome inhibitors as part of immunotherapy-including combinatorial regimens for their potential role in reversing immune resistance and favouring tumor recognition and eventual tumor death.
Collapse
Affiliation(s)
- Ramon Yarza
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain. .,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.
| | - Mateo Bover
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Maria Teresa Agulló-Ortuño
- Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain. .,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. .,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. .,Facultad de Fisioterapia y Enfermería, Universidad de Castilla La Mancha (UCLM), Toledo, Spain.
| | - Lara Carmen Iglesias-Docampo
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
41
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
42
|
Jia G, Song Z, Xu Z, Tao Y, Wu Y, Wan X. Screening of gene markers related to the prognosis of metastatic skin cutaneous melanoma based on Logit regression and survival analysis. BMC Med Genomics 2021; 14:96. [PMID: 33823876 PMCID: PMC8022370 DOI: 10.1186/s12920-021-00923-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bioinformatics was used to analyze the skin cutaneous melanoma (SKCM) gene expression profile to provide a theoretical basis for further studying the mechanism underlying metastatic SKCM and the clinical prognosis. METHODS We downloaded the gene expression profiles of 358 metastatic and 102 primary (nonmetastatic) CM samples from The Cancer Genome Atlas (TCGA) database as a training dataset and the GSE65904 dataset from the National Center for Biotechnology Information database as a validation dataset. Differentially expressed genes (DEGs) were screened using the limma package of R3.4.1, and prognosis-related feature DEGs were screened using Logit regression (LR) and survival analyses. We also used the STRING online database, Cytoscape software, and Database for Annotation, Visualization and Integrated Discovery software for protein-protein interaction network, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses based on the screened DEGs. RESULTS Of the 876 DEGs selected, 11 (ZNF750, NLRP6, TGM3, KRTDAP, CAMSAP3, KRT6C, CALML5, SPRR2E, CD3G, RTP5, and FAM83C) were screened using LR analysis. The survival prognosis of nonmetastatic group was better compared to the metastatic group between the TCGA training and validation datasets. The 11 DEGs were involved in 9 KEGG signaling pathways, and of these 11 DEGs, CALML5 was a feature DEG involved in the melanogenesis pathway, 12 targets of which were collected. CONCLUSION The feature DEGs screened, such as CALML5, are related to the prognosis of metastatic CM according to LR. Our results provide new ideas for exploring the molecular mechanism underlying CM metastasis and finding new diagnostic prognostic markers.
Collapse
Affiliation(s)
- Guoliang Jia
- Department of Orthopedics, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin, China
| | - Zheyu Song
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Zhonghang Xu
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Youmao Tao
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Yuanyu Wu
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China.
| | - Xiaoyu Wan
- Department of Brest Surgery, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin, China.
| |
Collapse
|
43
|
Kannan S, Aronica PGA, Nguyen TB, Li J, Verma CS. Computational Design of Macrocyclic Binders of S100B(ββ): Novel Peptide Theranostics. Molecules 2021; 26:721. [PMID: 33573254 PMCID: PMC7866529 DOI: 10.3390/molecules26030721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
S100B(ββ) proteins are a family of multifunctional proteins that are present in several tissues and regulate a wide variety of cellular processes. Their altered expression levels have been associated with several human diseases, such as cancer, inflammatory disorders and neurodegenerative conditions, and hence are of interest as a therapeutic target and a biomarker. Small molecule inhibitors of S100B(ββ) have achieved limited success. Guided by the wealth of available experimental structures of S100B(ββ) in complex with diverse peptides from various protein interacting partners, we combine comparative structural analysis and molecular dynamics simulations to design a series of peptides and their analogues (stapled) as S100B(ββ) binders. The stapled peptides were subject to in silico mutagenesis experiments, resulting in optimized analogues that are predicted to bind to S100B(ββ) with high affinity, and were also modified with imaging agents to serve as diagnostic tools. These stapled peptides can serve as theranostics, which can be used to not only diagnose the levels of S100B(ββ) but also to disrupt the interactions of S100B(ββ) with partner proteins which drive disease progression, thus serving as novel therapeutics.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (P.G.A.A.); (T.B.N.); (J.L.)
| | - Pietro G. A. Aronica
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (P.G.A.A.); (T.B.N.); (J.L.)
| | - Thanh Binh Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (P.G.A.A.); (T.B.N.); (J.L.)
| | - Jianguo Li
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (P.G.A.A.); (T.B.N.); (J.L.)
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (P.G.A.A.); (T.B.N.); (J.L.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
44
|
Guo AJ, Wang FJ, Ji Q, Geng HW, Yan X, Wang LQ, Tie WW, Liu XY, Thorne RF, Liu G, Xu AM. Proteome Analyses Reveal S100A11, S100P, and RBM25 Are Tumor Biomarkers in Colorectal Cancer. Proteomics Clin Appl 2021; 15:e2000056. [PMID: 33098374 DOI: 10.1002/prca.202000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/03/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The prognosis for colorectal cancer (CRC) patients is drastically impacted by the presence of lymph node or liver metastases at diagnosis or resection. On this basis it is sought to identify novel proteins as biomarkers and determinants of CRC metastasis. EXPERIMENTAL DESIGN Proteomic analyses are undertaken using primary tissues from ten Chinese CRC patients presenting with or without liver metastases and immunohistochemistry used to validate selected proteins in an independent patient cohort. RESULTS Comparing CRC against paired normal adjacent tissues identifies 1559 differentially expressed proteins (DEPs) with 974 upregulated and 585 downregulated proteins, respectively. The highest number of DEPs is selectively associated with metastatic tumors (519 upregulated and 267 downregulated proteins, respectively) with a smaller number of unique DEPs identified only in non-metastatic CRC cases (116 upregulated and 29 downregulated proteins, respectively). The remaining DEPs are commonly expressed in both non-metastatic and metastatic tumors. The upregulation of three representative DEPs (S100A11, S100P, and RBM25) is confirmed using immunohistochemistry against 154 CRC tissues embedded in a tissue microarray. CONCLUSIONS AND CLINICAL RELEVANCE The data reveal both previously identified CRC biomarkers along with novel candidates which provide a ready resource of DEPs in CRC for further investigation.
Collapse
Affiliation(s)
- Ai-Jun Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Feng-Jie Wang
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiang Ji
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hui-Wu Geng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu Yan
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lin-Qi Wang
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wei-Wei Tie
- Department of Gynaecology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Xiao-Ying Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, and Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Gang Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
45
|
Dai H, Guo L, Lin M, Cheng Z, Li J, Tang J, Huan X, Huang Y, Xu K. Comprehensive analysis and identification of key genes and signaling pathways in the occurrence and metastasis of cutaneous melanoma. PeerJ 2020; 8:e10265. [PMID: 33240619 PMCID: PMC7680623 DOI: 10.7717/peerj.10265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Background Melanoma is a malignant tumor of melanocytes, and the incidence has increased faster than any other cancer over the past half century. Most primary melanoma can be cured by local excision, but metastatic melanoma has a poor prognosis. Cutaneous melanoma (CM) is prone to metastasis, so the research on the mechanism of melanoma occurrence and metastasis will be beneficial to diagnose early, improve treatment, and prolong life survival. In this study, we compared the gene expression of normal skin (N), primary cutaneous melanoma (PM) and metastatic cutaneous melanoma (MM) in the Gene Expression Omnibus (GEO) database. Then we identified the key genes and molecular pathways that may be involved in the development and metastasis of cutaneous melanoma, thus to discover potential markers or therapeutic targets. Methods Three gene expression profiles (GSE7553, GSE15605 and GSE46517) were downloaded from the GEO database, which contained 225 tissue samples. R software identified the differentially expressed genes (DEGs) between pairs of N, PM and MM samples in the three sets of data. Subsequently, we analyzed the gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the DEGs, and constructed a protein-protein interaction (PPI) network. MCODE was used to seek the most important modules in PPI network, and then the GO function and KEGG pathway of them were analyzed. Finally, the hub genes were calculated by the cytoHubba in Cytoscape software. The Cancer Genome Atlas (TCGA) data were analyzed using UALCAN and GEPIA to validate the hub genes and analyze the prognosis of patients. Results A total of 134, 317 and 147 DEGs were identified between N, PM and MM in pair. GO functions and KEGG pathways analysis results showed that the upregulated DEGs mainly concentrated in cell division, spindle microtubule, protein kinase activity and the pathway of transcriptional misregulation in cancer. The downregulated DEGs occurred in epidermis development, extracellular exosome, structural molecule activity, metabolic pathways and p53 signaling pathway. The PPI network obtained the most important module, whose GO function and KEGG pathway were enriched in oxidoreductase activity, cell division, cell exosomes, protein binding, structural molecule activity, and metabolic pathways. 14, 18 and 18 DEGs were identified respectively as the hub genes between N, PM and MM, and TCGA data confirmed the expression differences of hub genes. In addition, the overall survival curve of hub genes showed that the differences in these genes may lead to a significant decrease in overall survival of melanoma patients. Conclusions In this study, several hub genes were found from normal skin, primary melanoma and metastatic melanoma samples. These hub genes may play an important role in the production, invasion, recurrence or death of CM, and may provide new ideas and potential targets for its diagnosis or treatment.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Lihuang Guo
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Mingyue Lin
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Zhenbo Cheng
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Jiancheng Li
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Jinxia Tang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Xisha Huan
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Yue Huang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Keqian Xu
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| |
Collapse
|
46
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
47
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
48
|
S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 2020; 39:5307-5322. [PMID: 32555330 DOI: 10.1038/s41388-020-1363-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.
Collapse
|
49
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
50
|
Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X. Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway. Front Oncol 2020; 10:624. [PMID: 32373541 PMCID: PMC7187895 DOI: 10.3389/fonc.2020.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma. HDFs expressing high levels of ATF3 suppressed the growth and migration of melanoma cells in association with downregulation of different cytokines including IL-6 in vitro. In vivo, HDFs with high ATF3 expression reduced tumor formation. Adding recombinant IL-6 to melanoma cells reversed those in vitro and in vivo effects, suggesting that ATF3 expression by HDFs regulates melanoma progression through the IL-6/STAT3 pathway. More importantly, HDFs pretreated with cyclosporine A or phenformin to induce ATF3 expression inhibited melanoma cell growth in vitro and in vivo. In summary, our study reveals that ATF3 suppresses human melanoma growth and that inducing the expression of ATF3 in HDFs can inhibit melanoma growth, a new potential melanoma therapeutic approach.
Collapse
Affiliation(s)
- Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Orthodontics, Liaocheng People's Hospital, Liaocheng, China
| | - Hui Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|