1
|
McKechnie T, Talwar G, Grewal S, Wang A, Eskicioglu C, Parvez E. The impact of statins on melanoma survival: a systematic review and meta-analysis. Melanoma Res 2024; 34:475-486. [PMID: 39264579 DOI: 10.1097/cmr.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Statin use may decrease recurrence and improve survival in patients with melanoma. In this systematic review and meta-analysis, we examine the current body of literature concerning the use of statins as an adjunctive therapy in melanoma, Medline, EMBASE, CENTRAL, and PubMed were systematically searched from inception through to April 2023. Studies were included if they compared patients with melanoma receiving and not receiving statin therapy concurrently with their oncologic treatment in terms of long-term oncologic outcomes. The primary outcome was 5-year overall survival (OS). Meta-analyses was performed with DerSimonian and Laird random effects. Risk of bias was assessed with the ROBINS-I and GRADE was used to assess certainty of evidence. From 952 citations, eight non-randomized studies were identified. Included studies were conducted between 2007 and 2022. Random effects meta-analysis of adjusted hazard ratios from three studies suggested an improvement in 5-year OS with statin use with wide 95% confidence intervals (CIs) crossing the line of no effect (hazard ratio 0.87, 95% CI: 0.73-1.04, P = 0.12, I2 = 95%, very-low certainty). Outcome reporting was heterogeneous across all other oncologic outcomes such that pooling of data was not possible. Risk of bias was serious for seven studies and moderate for one study. This systematic review of studies evaluating the impact of statin use on survival in patients with melanoma found a 13% reduction in risk of death at 5 years from diagnosis - a point estimate suggesting benefit. However, the wide 95% CIs and resultant type II error risk create significant uncertainty.
Collapse
Affiliation(s)
- Tyler McKechnie
- Division of General Surgery, Department of Surgery, McMaster University
| | - Gaurav Talwar
- Division of General Surgery, Department of Surgery, McMaster University
| | - Shan Grewal
- Department of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Austine Wang
- Department of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Cagla Eskicioglu
- Division of General Surgery, Department of Surgery, McMaster University
- Department of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elena Parvez
- Division of General Surgery, Department of Surgery, McMaster University
- Department of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Davis JC, Waltz SE. The MET Family of Receptor Tyrosine Kinases Promotes a Shift to Pro-Tumor Metabolism. Genes (Basel) 2024; 15:953. [PMID: 39062731 PMCID: PMC11275592 DOI: 10.3390/genes15070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The development and growth of cancer is fundamentally dependent on pro-tumor changes in metabolism. Cancer cells generally shift away from oxidative phosphorylation as the primary source of energy and rely more heavily on glycolysis. Receptor tyrosine kinases (RTKs) are a type of receptor that is implicated in this shift to pro-tumor metabolism. RTKs are important drivers of cancer growth and metastasis. One such family of RTKs is the MET family, which consists of MET and RON (MST1R). The overexpression of either MET or RON has been associated with worse cancer patient prognosis in a variety of tumor types. Both MET and RON signaling promote increased glycolysis by upregulating the expression of key glycolytic enzymes via increased MYC transcription factor activity. Additionally, both MET and RON signaling promote increased cholesterol biosynthesis downstream of glycolysis by upregulating the expression of SREBP2-induced cholesterol biosynthesis enzymes via CTTNB1. These changes in metabolism, driven by RTK activity, provide potential targets in limiting tumor growth and metastasis via pharmacological inhibition or modifications in diet. This review summarizes pro-tumor changes in metabolism driven by the MET family of RTKs. In doing so, we will offer our unique perspective on metabolic pathways that drive worse patient prognosis and provide suggestions for future study.
Collapse
Affiliation(s)
- James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
3
|
Ma W, Wei S, Li Q, Zeng J, Xiao W, Zhou C, Yoneda KY, Zeki AA, Li T. Simvastatin Overcomes Resistance to Tyrosine Kinase Inhibitors in Patient-derived, Oncogene-driven Lung Adenocarcinoma Models. Mol Cancer Ther 2024; 23:700-710. [PMID: 38237027 PMCID: PMC11065592 DOI: 10.1158/1535-7163.mct-23-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/03/2024]
Abstract
There is an unmet clinical need to develop novel strategies to overcome resistance to tyrosine kinase inhibitors (TKI) in patients with oncogene-driven lung adenocarcinoma (LUAD). The objective of this study was to determine whether simvastatin could overcome TKI resistance using the in vitro and in vivo LUAD models. Human LUAD cell lines, tumor cells, and patient-derived xenograft (PDX) models from TKI-resistant LUAD were treated with simvastatin, either alone or in combination with a matched TKI. Tumor growth inhibition was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and expression of molecular targets was assessed by immunoblots. Tumors were assessed by histopathology, IHC stain, immunoblots, and RNA sequencing. We found that simvastatin had a potent antitumor effect in tested LUAD cell lines and PDX tumors, regardless of tumor genotypes. Simvastatin and TKI combination did not have antagonistic cytotoxicity in these LUAD models. In an osimertinib-resistant LUAD PDX model, simvastatin and osimertinib combination resulted in a greater reduction in tumor volume than simvastatin alone (P < 0.001). Immunoblots and IHC stain also confirmed that simvastatin inhibited TKI targets. In addition to inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, RNA sequencing and Western blots identified the proliferation, migration, and invasion-related genes (such as PI3K/Akt/mTOR, YAP/TAZ, focal adhesion, extracellular matrix receptor), proteasome-related genes, and integrin (α3β1, αvβ3) signaling pathways as the significantly downregulated targets in these PDX tumors treated with simvastatin and a TKI. The addition of simvastatin is a safe approach to overcome acquired resistance to TKIs in several oncogene-driven LUAD models, which deserve further investigation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Biochemistry, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianping Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Thoracic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Jie Zeng
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Wenwu Xiao
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Chihong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Amir A. Zeki
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
| |
Collapse
|
4
|
Wang R, Yan Q, Liu X, Wu J. Unraveling lipid metabolism reprogramming for overcoming drug resistance in melanoma. Biochem Pharmacol 2024; 223:116122. [PMID: 38467377 DOI: 10.1016/j.bcp.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Cutaneous melanoma is the deadliest form of skin cancer, and its incidence is continuing to increase worldwide in the last decades. Traditional therapies for melanoma can easily cause drug resistance, thus the treatment of melanoma remains a challenge. Various studies have focused on reversing the drug resistance. As tumors grow and progress, cancer cells face a constantly changing microenvironment made up of different nutrients, metabolites, and cell types. Multiple studies have shown that metabolic reprogramming of cancer is not static, but a highly dynamic process. There is a growing interest in exploring the relationship between melanoma andmetabolic reprogramming, one of which may belipid metabolism. This review frames the recent research progresses on lipid metabolism in melanoma.In addition, we emphasize the dynamic ability of metabolism during tumorigenesis as a target for improving response to different therapies and for overcoming drug resistance in melanoma.
Collapse
Affiliation(s)
- Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin Yan
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Vaseghi G, Ahmadzadeh E, Naji Esfahani H, Bahri Najafi M, Esmailian N, Haghjooy Javanmard S. Low-Dose Atorvastatin has Promoting Effect on Melanoma Tumor Growth and Angiogenesis in Mouse Model. Adv Biomed Res 2023; 12:263. [PMID: 38192896 PMCID: PMC10772795 DOI: 10.4103/abr.abr_120_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 01/10/2024] Open
Abstract
Background Preclinical evidence indicates that statins possess diverse antineoplastic effects in different types of tumors. However, clinical studies have yielded conflicting results regarding the potential of statins to either increase or decrease the risk of cancer. Our objective was to examine the relationship between the dose of a treatment and its impact on melanoma tumor growth and angiogenesis in an in vivo setting. Materials and Methods Melanoma cells were injected into C57BL6 mice in four groups. They received 0, 1, 5, and 10 mg/kg of atorvastatin daily. Three others received the mentioned doses one week before the inoculation of melanoma animals. At the end of the third week, the animals were euthanized in a humane manner, and both blood samples and tumor specimens were collected for subsequent analysis. Results The tumor size was 1.16 ± 0.25 cm3 in a group treated with therapeutic dose of atorvastatin and was significantly larger than that in the control group (0.42 ± 0.08 cm3). However, there were no significant differences between the two other doses and the control group (0.72 ± 0.22, 0.46 ± 0.08 cm3 in atorvastatin-treated groups with 5 and 10 mg/kg). The vascular density of the tumors was significantly increased in the lowest dose of the atorvastatin treatment group, similar to the results of tumor size (P < 0.05). Conclusion Atorvastatin, at low therapeutic concentrations, has been observed to stimulate tumor growth and exhibit pro-angiogenic effects. Therefore, it is advised to exercise caution and recommend clinically relevant doses of statins to patients with cancer.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Department of Pharmacology, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elmira Ahmadzadeh
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji Esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazgol Esmailian
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Association between Statin Use and Survival in Cancer Patients with Brain Metastasis: Retrospective Analysis from the Chinese Population. Pharmaceuticals (Basel) 2022; 15:ph15121474. [PMID: 36558925 PMCID: PMC9781124 DOI: 10.3390/ph15121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Brain metastasis predicts a worse clinical outcome in cancer patients. Emerging observational evidence suggests that statin use has a protective role in overall cancer prevention. Whether statin use could also be a supplementary treatment for advanced-stage cancers remains under researched and controversial. Data for cancer patients with brain metastasis were selected from the linked electronic medical care records of the West China Hospital between October 2010 and July 2019. Fisher’s exact chi-square test was used to compare the differences between cohorts. Multivariate Cox analysis was conducted to adjust the potential confounders in evaluating the role of statin use in the overall survival (OS) of cancer patients with brain metastasis. There were 4510 brain metastatic patients included in this retrospective study. The overall statin use rate in our patients was 5.28% (219 cases/4510 cases). Compared with the non-statin use cohort, patients who received statin therapy showed a decreased Karnofsky performance score (KPS, p < 0.001) and lower high-density lipoprotein (HDL, p = 0.020) but higher body mass index (BMI, p = 0.002) and triglyceride (TG, p < 0.001) at admission. There was no association between statin use and the OS of the cancer patients with brain metastasis (Hazard ratio (HR) = 0.90, 95% confidence interval (CI): 0.73−1.07, p = 0.213) during the univariate analysis. However, after adjusting for baseline patient characteristics, metabolism indicators, and cancer-specific factors, statin use was shown to have a significant protective role, aiding the survival of the cancer patients with brain metastasis (adjustHR = 0.82, 95%CI: 0.69−0.99, p = 0.034). Our results highlight that statin use shows significant survival benefits in cancer patients with brain metastasis. However, future research is needed to validate our findings.
Collapse
|