1
|
Sozio SJ, Raynor W, Becker MC, Yudd A, Kempf JS. Carcinoid crisis in Lutetium-177-Dotatate therapy of neuroendocrine tumors: an overview of pathophysiology, risk factors, recognition, and treatment. EJNMMI REPORTS 2024; 8:29. [PMID: 39266864 PMCID: PMC11393224 DOI: 10.1186/s41824-024-00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Lutetium-177-Dotatate (Lutathera®) is a combined radionuclide-peptide that is FDA-approved for the treatment of well-differentiated, somatostatin receptor-positive, gastroenteropancreatic neuroendocrine tumors. Carcinoid crisis is a rare, but potentially life-threatening risk of this radiopharmaceutical, of which prompt recognition and treatment is essential to reducing morbidity. This manuscript provides an overview of the topic to promote awareness of this adverse event, with emphasis on early recognition and management. In addition, we present our institution's experience with Lutetium-177-Dotatate-associated complications across a five-year period. METHODS A literature review of lutetium-177-dotatate therapy and its potential implication of carcinoid crisis was performed. Additionally, a review of our institution's experience is presented. RESULTS The incidence of carcinoid crisis induced by Lutetium-177-Dotatate therapy is estimated to range between 1 and 2% of treatment recipients. Those who have tumors located within the midgut, higher tumor burden, and the presence of metastasis have an increased risk of developing carcinoid crisis, among other risk factors. Carcinoid crisis is most often encountered within 12-48 h of receiving the first treatment dose, with the most common symptoms being nausea/vomiting, flushing, and diarrhea. CONCLUSION Carcinoid crisis is a rare but potentially life-threatening complication of Lutetium-177-Dotatate therapy. Knowledge of risk factors and prompt recognition of symptoms is essential to successful treatment, with early initiation of intravenous octreotide serving a critical step in reducing morbidity of this adverse event.
Collapse
Affiliation(s)
- Stephen J Sozio
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - William Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Murray C Becker
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anthony Yudd
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jeffrey S Kempf
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Ulaner GA, VanderMolen LA, Li G, Ferreira D. Dotatate PET/CT and 225Ac-Dotatate Therapy for Somatostatin Receptor-expressing Metastatic Breast Cancer. Radiology 2024; 312:e233408. [PMID: 39078299 DOI: 10.1148/radiol.233408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Background Somatostatin receptors, and specifically somatostatin receptor type 2 (SSTR2), have primarily been associated with neuroendocrine tumors and have revolutionized the imaging and therapy of patients with these tumors. SSTR2 is expressed on other tumors at lower prevalence. Purpose To evaluate the potential of SSTR2-targeted imaging and therapy in patients with breast cancer. Materials and Methods In a preclinical experiment, SSTR2 expression was assessed in tissue microarrays of breast cancer samples using H-score analysis. H-scores higher than 50 (0-300 scale) were considered positive. Then, a prospective phase 2 clinical trial of SSTR2-targeted tetraazacyclododecane tetraacetic acid octreotate (Dotatate) PET/CT was performed in participants with biopsy-proven estrogen receptor (ER)-positive breast cancer from January to August 2023. A positive Dotatate PET/CT scan was defined as tumors with a Krenning score of 3 (avidity greater than liver) or 4 (avidity greater than spleen). The proportion of positive scans and the 95% CI were calculated. One participant with metastatic ER-positive breast cancer and a Krenning 4 Dotatate PET/CT result underwent treatment with SSTR2-targeted actinium 225 (225Ac) Dotatate. Results Preclinical microarrays demonstrated that 63 of 123 ER-positive breast cancer tissue samples (51% [95% CI: 42, 60]) but only 22 of 121 ER-negative breast cancer tissue samples (18% [95% CI: 12, 26]) were enriched for SSTR2 (P < .001). Thirty female participants (mean age, 66 years ± 15) with metastatic ER-positive breast cancer were accrued to the phase 2 SSTR2-targeted imaging trial and underwent Dotatate PET/CT. Dotatate PET/CT demonstrated that nine of 30 participants (30% [95% CI: 15, 49]) had tumors with Krenning scores of 3 or 4, indicating strong SSTR2 expression. SSTR2-targeted therapy with alpha-emitting 225Ac-Dotatate resulted in a near complete response in a heavily pretreated participant with metastatic ER-positive breast cancer and a Krenning 4 Dotatate PET result. Conclusion Molecular imaging targeting SSTR2 and radioligand therapy with SSTR2-targeted 225Ac-Dotatate enables a new therapeutic option for patients with metastatic breast cancer. Clinical trial registration no. NCT05880394 © RSNA, 2024 See also the editorial by Lin and Choyke in this issue.
Collapse
Affiliation(s)
- Gary A Ulaner
- From the Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA 92618 (G.A.U.); Department of Radiology and Translational Genomics (G.A.U.) and Department of Medicine (L.A.V.), University of Southern California, Los Angeles, Calif; and RayzeBio, San Diego, CA (G.L., D.F.)
| | - Louis A VanderMolen
- From the Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA 92618 (G.A.U.); Department of Radiology and Translational Genomics (G.A.U.) and Department of Medicine (L.A.V.), University of Southern California, Los Angeles, Calif; and RayzeBio, San Diego, CA (G.L., D.F.)
| | - Gary Li
- From the Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA 92618 (G.A.U.); Department of Radiology and Translational Genomics (G.A.U.) and Department of Medicine (L.A.V.), University of Southern California, Los Angeles, Calif; and RayzeBio, San Diego, CA (G.L., D.F.)
| | - Denis Ferreira
- From the Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA 92618 (G.A.U.); Department of Radiology and Translational Genomics (G.A.U.) and Department of Medicine (L.A.V.), University of Southern California, Los Angeles, Calif; and RayzeBio, San Diego, CA (G.L., D.F.)
| |
Collapse
|
3
|
Cook GJR, Thorpe MP. Bone Metastases. Cancer J 2024; 30:202-209. [PMID: 38753755 DOI: 10.1097/ppo.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Bone metastases occur frequently in common malignancies such as breast and prostate cancer. They are responsible for considerable morbidity and skeletal-related events. Fortunately, there are now several systemic, focal, and targeted therapies that can improve quality and length of life, including radionuclide therapies. It is therefore important that bone metastases can be detected as early as possible and that treatment can be accurately and sensitively monitored. Several bone-specific and tumor-specific single-photon emission computed tomography and positron emission tomography molecular imaging agents are available, for detection and monitoring response to systemic therapeutics, as well as theranostic agents to confirm target expression and predict response to radionuclide therapies.
Collapse
Affiliation(s)
- Gary J R Cook
- From the Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Matthew P Thorpe
- Division of Nuclear Radiology, Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Mittra ES, Wong RKS, Winters C, Brown A, Murley S, Kennecke H. Establishing a robust radioligand therapy program: A practical approach for North American centers. Cancer Med 2024; 13:e6780. [PMID: 38214130 PMCID: PMC10905220 DOI: 10.1002/cam4.6780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Radioligand therapy (RLT) is a targeted approach to treating cancer that has been shown to be safe and effective in a variety of disease states, including gastroenteropancreatic neuroendocrine tumors, lymphoma, and most recently, advanced prostate cancer. In the United States, patient access to this therapy is currently variable. Implementation of new RLT programs and expansion of existing programs are needed to broaden patient access to and standardize the delivery of RLT, especially as new therapies are introduced into clinical practice. Drawing from experience in establishing RLT programs in different settings, we have developed practical recommendations for building and implementing a robust RLT program. In this review, we present our recommendations for minimal requirements and optimal requirements, as well as system considerations, and special issues associated with implementing an RLT program in North American centers.
Collapse
Affiliation(s)
- Erik S. Mittra
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Rebecca K. S. Wong
- Department of Radiation Oncology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - Celeste Winters
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Adam Brown
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Shondra Murley
- Department of Nuclear MedicineWest Tennessee HealthcareJacksonTennesseeUSA
| | | |
Collapse
|
5
|
Riveira-Martin M, Struelens L, Muñoz Iglesias J, Schoonjans W, Tabuenca O, Nogueiras JM, Salvador Gómez FJ, López Medina A. Radiation exposure assessment of nuclear medicine staff administering [ 177Lu]Lu-DOTA-TATE with active and passive dosimetry. EJNMMI Phys 2023; 10:70. [PMID: 37962683 PMCID: PMC10645926 DOI: 10.1186/s40658-023-00592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The use of lutetium-177 (177Lu)-based radiopharmaceuticals in peptide receptor nuclear therapy is increasing, but so is the number of nuclear medicine workers exposed to higher levels of radiation. In recent years, [177Lu]Lu-DOTA-TATE has begun to be widely used for the treatment of neuroendocrine tumours. However, there are few studies evaluating the occupational radiation exposure during its administration, and there are still some challenges that can result in higher doses to the staff, such as a lack of trained personnel or fully standardised procedures. In response, this study aims to provide a comprehensive analysis of occupational doses to the staff involved in the administration of [177Lu]Lu-DOTA-TATE. RESULTS A total of 32 administrations of [177Lu]Lu-DOTA-TATE (7.4 GBq/session) carried out by a physician and a nurse, were studied. In total, two physicians and four nurses were independently monitored with cumulative (passive) and/or real-time (active) dosemeters. Extremity, eye lens and whole-body doses were evaluated in terms of the dosimetric quantities Hp(0.07), Hp(3) and Hp(10), respectively. It was obtained that lead aprons reduced dose rates and whole-body doses by 71% and 69% for the physicians, respectively, and by 56% and 68% for the nurses. On average, normalised Hp(10) values of 0.65 ± 0.18 µSv/GBq were obtained with active dosimetry, which is generally consistent with passive dosemeters. For physicians, the median of the maximum normalised Hp(0.07) values was 41.5 µSv/GBq on the non-dominant hand and 45.2 µSv/GBq on the dominant hand. For nurses 15.4 µSv/GBq on the non-dominant and 13.9 µSv/GBq on the dominant hand. The ratio or correction factor between the maximum dose measured on the hand and the dose measured on the base of the middle/ring finger of the non-dominant hand resulted in a factor of 5/6 for the physicians and 3/4 for the nurses. Finally, maximum normalised Hp(3) doses resulted in 2.02 µSv/GBq for physicians and 1.76 µSv/GBq for nurses. CONCLUSIONS If appropriate safety measures are taken, the administration of [177Lu]Lu-DOTA-TATE is a safe procedure for workers. However, regular monitoring is recommended to ensure that the annual dose limits are not exceeded.
Collapse
Affiliation(s)
- Mercedes Riveira-Martin
- Genetic Oncology, Radiobiology and Radiointeraction Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain.
- Department of Radiology, Rehabilitation and Physiotherapy, Medicine School, Complutense University of Madrid, Madrid, Spain.
| | | | - José Muñoz Iglesias
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Olga Tabuenca
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | - José Manuel Nogueiras
- Nuclear Medicine Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Antonio López Medina
- Medical Physics and RP Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| |
Collapse
|