1
|
Nammour HM, Madrigal K, Starling CT, Doan HQ. Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies. Int J Mol Sci 2024; 25:11055. [PMID: 39456853 PMCID: PMC11507330 DOI: 10.3390/ijms252011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Although rare, Merkel cell carcinoma (MCC) is a highly aggressive and increasingly prevalent neuroendocrine cancer of the skin. While current interventions, including surgical resection, radiation, and immunotherapy have been employed in treating many patients, those who remain unresponsive to treatment are met with sparse alternatives and a grim prognosis. For this reason, it is of interest to expand the repertoire of available therapies for MCC patients who remain resistant to current primary interventions. Recently, our improved mechanistic understanding of aberrant cell signaling observed in both MCPyV-positive and -negative MCC has facilitated exploration into several small molecules and inhibitors, among them receptor tyrosine kinase inhibitors (TKIs) and somatostatin analogs (SSAs), both of which have positively improved response rates and reduced tumor volumes upon application to treatment of MCC. The introduction of such targeted therapies into treatment protocols holds promise for more personalized care tailored towards patients of diverse subtypes, thereby improving outcomes and mitigating tumor burden, especially for treatment-resistant individuals. In this review, we characterize recent findings surrounding targeted treatments that have been applied to MCC and provide an overview of emerging perspectives on translatable options that can be further developed to offer additional therapeutic avenues for patients with the disease.
Collapse
Affiliation(s)
- Helena M. Nammour
- UTHealth McGovern Medical School, Houston, TX 77030, USA; (H.M.N.); (K.M.)
| | - Karla Madrigal
- UTHealth McGovern Medical School, Houston, TX 77030, USA; (H.M.N.); (K.M.)
| | - Caroline T. Starling
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX 77030, USA;
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hung Q. Doan
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX 77030, USA;
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Kervarrec T. From genetic characterization to new potential therapeutic options: targeting Bcl-xL in Merkel carcinoma. Br J Dermatol 2023; 189:7. [PMID: 37146163 DOI: 10.1093/bjd/ljad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, University Hospital of Tours
- 'Biologie des infections à polyomavirus' Team, UMR1282 INRAE, University of Tours, Tours, France
| |
Collapse
|
5
|
Tanda ET, d'Amato AL, Rossi G, Croce E, Boutros A, Cecchi F, Spagnolo F, Queirolo P. Merkel Cell Carcinoma: An Immunotherapy Fairy-Tale? Front Oncol 2021; 11:739006. [PMID: 34631574 PMCID: PMC8495203 DOI: 10.3389/fonc.2021.739006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, neuroendocrine cutaneous tumor. The incidence of MCC is growing worldwide, and the disease-related mortality is about three-fold higher than melanoma. Since a few years ago, very little has been known about this disease, and chemotherapy has been the standard of care. Nowadays, new discoveries about the pathophysiology of this neoplasm and the introduction of immunotherapy allowed to completely rewrite the history of these patients. In this review, we provide a summary of the most important changes in the management of Merkel cell carcinoma, with a focus on immunotherapy and a landscape of future treatment strategies.
Collapse
Affiliation(s)
- Enrica Teresa Tanda
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Agostina Lagodin d'Amato
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giovanni Rossi
- Medical Oncology, Ospedale Padre Antero Micone, Genova, Italy.,Department on Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elena Croce
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Federica Cecchi
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia (IEO), European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
6
|
Esnault C, Leblond V, Martin C, Desgranges A, Baltus CB, Aubrey N, Lakhrif Z, Lajoie L, Lantier L, Clémenceau B, Sarma B, Schrama J, Houben R, Schrama D, Hesbacher S, Gouilleux-Gruart V, Feng Y, Dimitrov D, Guyétant S, Berthon P, Viaud-Massuard MC, Samimi M, Touzé A, Kervarrec T. Adcitmer ® , a new CD56-targeting monomethyl auristatin E-conjugated antibody, is a potential therapeutic approach in Merkel cell carcinoma. Br J Dermatol 2021; 186:295-306. [PMID: 34582565 DOI: 10.1111/bjd.20770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an aggressive skin cancer, whose tumour cells often express CD56. While immune checkpoint inhibitors constitute a major advance for treating patients with MCC with advanced disease, new therapeutic options are still urgently required. OBJECTIVES To produce and evaluate the therapeutic performance of a new antibody-drug conjugate (Adcitmer® ) targeting CD56 in preclinical models of MCC. METHODS CD56 expression was evaluated in a MCC cohort (immunohistochemistry on a tissue microarray of 90 tumour samples) and MCC cell lines. Interaction of an unconjugated CD56-targeting antibody with CD56+ MCC cell lines was investigated by immunohistochemistry and imaging flow cytometry. Adcitmer® product was generated by the bioconjugation of CD56-targeting antibody to a cytotoxic drug (monomethyl auristatin E) using the McSAF Inside® bioconjugation process. The chemical properties and homogeneity of Adcitmer® were characterized by hydrophobic interaction chromatography. Adcitmer® cytotoxicity was evaluated in vitro and in an MCC xenograft mice model. RESULTS Similar to previous reports, CD56 was expressed by 66% of MCC tumours in our cohort, confirming its relevance as a therapeutic target. Specific binding and internalization of the unconjugated CD56-targeting antibody was validated in MCC cell lines. The high homogeneity of the newly generated Adcitmer® was confirmed by hydrophobic interaction chromatography. The CD56-mediated cytotoxicity of Adcitmer® was demonstrated in vitro in MCC cell lines. Moreover, Adcitmer® significantly reduced tumour growth in a MCC mouse model. CONCLUSIONS Our study suggests that Adcitmer® should be further assessed as a therapeutic option in patients with MCC, as an alternative therapy or combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- C Esnault
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - V Leblond
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | | | | | | | - N Aubrey
- Team BIOMAP, ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | - Z Lakhrif
- Team BIOMAP, ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | - L Lajoie
- Team FRAME, GICC EA7501, Université de Tours, Tours, 37200, France.,Plateforme Scientifique et Technique, Analyse des Systèmes Biologiques Département des Cytométries, Université de Tours, Tours, 37200, France
| | - L Lantier
- Team BIOMAP, ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | - B Clémenceau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France.,CHU de Nantes, Hôtel Dieu, Nantes, F-44000, France
| | - B Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - J Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - R Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - D Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - S Hesbacher
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | | | - Y Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, NCI at Frederick, Frederick, MD, 21702, USA
| | - D Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - S Guyétant
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France.,Department of Pathology, Université de Tours, CHU de Tours, Chambray-les-Tours, 37170, France
| | - P Berthon
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | - M C Viaud-Massuard
- McSAF, Tours, 37200, France.,Team IMT, GICC EA7501, Université de Tours, Tours, 37200, France
| | - M Samimi
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France.,Department of Dermatology, Université de Tours, CHU de Tours, Chambray-les-Tours, 37170, France
| | - A Touzé
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France
| | - T Kervarrec
- Team 'Biologie des Infections à Polyomavirus', ISP UMR 1282, INRAE, Université de Tours, Tours, 37200, France.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany.,Department of Pathology, Université de Tours, CHU de Tours, Chambray-les-Tours, 37170, France
| |
Collapse
|
7
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Samimi M, Becker J. There is still a place for tumour-targeted therapies in Merkel cell carcinoma in the era of immune checkpoint inhibitors. Br J Dermatol 2020; 184:195-197. [PMID: 32892361 DOI: 10.1111/bjd.19247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M Samimi
- Dermatology Department, University of Tours, Tours, France.,Laboratory 'Biologie des Infections à Polyomavirus', ISP1282 INRA Université de Tours, Tours, France
| | - J Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Essen, Germany.,University Medicine Essen, Essen and Deutsches Krebsforschungszenrtrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
10
|
Liu W, Krump NA, Herlyn M, You J. Combining DNA Damage Induction with BCL-2 Inhibition to Enhance Merkel Cell Carcinoma Cytotoxicity. BIOLOGY 2020; 9:biology9020035. [PMID: 32093022 PMCID: PMC7168258 DOI: 10.3390/biology9020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly lethal skin cancer. MCC tumors rapidly develop resistance to the chemotherapies tested to date. While PD-1/PD-L1 immune checkpoint blockade has demonstrated success in MCC treatment, a significant portion of MCC patients are nonresponsive. Therefore, the pressing need for effective MCC chemotherapies remains. We screened a library of natural products and discovered that one compound, glaucarubin, potently reduced the viability of Merkel cell polyomavirus (MCPyV)-positive MCCs, while remaining nontoxic to primary human fibroblasts and MCPyV-negative MCC cell lines tested. Protein array and Western blot analyses revealed that glaucarubin induces DNA damage and PARP-1 cleavage that correlates with the loss of viability in MCC cells. However, high basal expression of the antiapoptotic factor BCL-2 allowed a subpopulation of cells to survive glaucarubin treatment. Previous studies have shown that, while targeting BCL-2 family proteins significantly decreases MCC cell viability, BCL-2 antisense therapy alone was insufficient to inhibit tumor growth in patients with advanced MCC. We discovered that treatment with an FDA-approved BCL-2 inhibitor in the context of glaucarubin-induced DNA damage led to near complete killing in multiple MCPyV-positive MCC cell lines that express high levels of BCL-2. The combination of DNA damage-induced apoptosis and BCL-2 inhibition thus represents a novel therapeutic strategy for MCPyV-positive MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
| | - Nathan A. Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
| | - Meenhard Herlyn
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
- Correspondence: ; Tel.: +1-215-573-6781
| |
Collapse
|
11
|
Femia D, Prinzi N, Anichini A, Mortarini R, Nichetti F, Corti F, Torchio M, Peverelli G, Pagani F, Maurichi A, Mattavelli I, Milione M, Bedini N, Corti A, Di Bartolomeo M, de Braud F, Pusceddu S. Treatment of Advanced Merkel Cell Carcinoma: Current Therapeutic Options and Novel Immunotherapy Approaches. Target Oncol 2019; 13:567-582. [PMID: 30073632 DOI: 10.1007/s11523-018-0585-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced Merkel cell carcinoma (MCC) is a very aggressive, rare neuroendocrine tumor of the skin with a high frequency of locoregional recurrence and metastasis, and a high mortality rate. Surgical resection, sentinel lymph node biopsy, and radiotherapy represent the gold standard of treatment in patients with localized disease, while chemotherapy has a significant role in the treatment of advanced disease. However, no definitive evidence on the survival impact of radiotherapy in the advanced stages has been provided to date, and response to chemotherapy remains brief in the majority of cases, indicating an urgent need for alternative approaches. Biological and genome sequencing studies have implicated multiple molecular pathways in MCC, thus leading to the development of new agents that target angiogenic factors, anti-apoptosis molecules, poly-ADP ribose polymerase, intracellular signal proteins such as the PI3K/AKT/mTOR pathway, and peptide receptors such as somatostatin receptors. More recently, immunotherapy agents such as avelumab, pembrolizumab, and nivolumab, which act by blocking the programmed cell-death (PD)-1/PD-L1 immune checkpoint, have shown promising results, especially in the advanced setting, and should now be considered standard of care for metastatic MCC. Current research is focusing on developing new immunotherapeutic strategies, identifying predictive biomarker to aid in the selection of patients responsive to immunotherapy, and defining combination approaches to increase efficacy in refractory patients.
Collapse
Affiliation(s)
- Daniela Femia
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Natalie Prinzi
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano and ENETS Center of Excellence, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano and ENETS Center of Excellence, Milan, Italy
| | - Federico Nichetti
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Martina Torchio
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Giorgia Peverelli
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, ENETS Center of Excellence, Milan, Italy
| | - Ilaria Mattavelli
- Melanoma and Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, ENETS Center of Excellence, Milan, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori and ENETS Center of Excellence, Milan, Italy
| | - Nice Bedini
- Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano and ENETS Center of Excellence, Milan, Italy
| | | | - Maria Di Bartolomeo
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy.,University of Milan, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology Unit-1, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano and ENETS Center of Excellence, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
12
|
Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, Wong MKK, Brownell I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 2019; 15:763-776. [PMID: 30287935 PMCID: PMC6319370 DOI: 10.1038/s41571-018-0103-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer associated with advanced age and immunosuppression. Over the past decade, an association has been discovered between MCC and either integration of the Merkel cell polyomavirus, which likely drives tumorigenesis, or somatic mutations owing to ultraviolet-induced DNA damage. Both virus-positive and virus-negative MCCs are immunogenic, and inhibition of the programmed cell death protein 1 (PD-1)–programmed cell death 1 ligand 1 (PD-L1) immune checkpoint has proved to be highly effective in treating patients with metastatic MCC; however, not all patients have a durable response to immunotherapy. Despite these rapid advances in the understanding and management of patients with MCC, many basic, translational and clinical research questions remain unanswered. In March 2018, an International Workshop on Merkel Cell Carcinoma Research was held at the US National Cancer Institute, at which academic, government and industry experts met to identify the highest-priority research questions. Here, we review the biology and treatment of MCC and report the consensus-based recommendations agreed upon during the workshop. Merkel cell carcinoma (MCC) is a rare and aggressive form of nonmelanoma skin cancer. The availability of immune checkpoint inhibition has improved the outcomes of a subset of patients with MCC, although many unmet needs continue to exist. In this Consensus Statement, the authors summarize developments in our understanding of MCC while also providing consensus recommendations for future research.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Michael K K Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| | | |
Collapse
|
13
|
Ma Y, Zhao W, Li Y, Pan Y, Wang S, Zhu Y, Kong L, Guan Z, Wang J, Zhang L, Yang Z. Structural optimization and additional targets identification of antisense oligonucleotide G3139 encapsulated in a neutral cytidinyl-lipid combined with a cationic lipid in vitro and in vivo. Biomaterials 2019; 197:182-193. [PMID: 30660994 DOI: 10.1016/j.biomaterials.2018.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
Antisense oligonucleotides (ASOs) usually contain a fully phosphorothioate (PS) backbone, which possibly interact with many genes and proteins under intracellular conditions. G3139 is an ASO that targets Bcl-2 mRNA and induces cell apoptosis. Here, we report a kind of cytidinyl-lipid combined with a cationic lipid (DNCA/CLD, molar ration, 28:3, named mix), which may interact with oligonucleotides via H-bond formation, pi-stacking and electrostatic interaction, accompanied by low zeta potentials. The IC50 value of G3139 delivered by mix-lipid reduced from above 20 μM to 0.158 μM for MCF-7/ADR, and exhibited stronger antiproliferation upon other cancer cell lines. In addition, PS modification in the 3'-half of G3139 (especially at positions 13-16) enhanced serum stability, target specificity and anticancer activity. Also, a locked nucleic acid (LNA) gapmer G3139 (LNA-G3139) showed superior antiproliferation (78.5%) and Bcl-2 mRNA suppression effects (85.5%) at 200 nM, mainly due to its high complementary RNA affinity. More apoptosis-associated targets were identified, and a lower level of non-specific protein binding (HSA) revealed that both antisense and aptamer mechanisms might simultaneously exist. A combination of a new delivery system and chemical modifications, such as in LNA-G3139, may have potential clinical application prospects in the future.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wenting Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yiding Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lingxuan Kong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
14
|
Merkel Cell Carcinoma: Updates on Pathogenesis, Diagnosis, and Management. CURRENT DERMATOLOGY REPORTS 2018. [DOI: 10.1007/s13671-018-0221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Annealing novel nucleobase-lipids with oligonucleotides or plasmid DNA based on H-bonding or π-π interaction: Assemblies and transfections. Biomaterials 2018; 178:147-157. [PMID: 29933101 DOI: 10.1016/j.biomaterials.2018.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
Abstract
Lipid derivatives of nucleoside analogs have been highlighted for their potential for effective gene delivery. A novel class of nucleobase-lipids are rationally designed and readily synthesized, comprising thymine/cytosine, an ester/amide linker and an oleyl lipid. The diversity of four nucleobase-lipids termed DXBAs (DOTA, DNTA, DOCA and DNCA) is investigated. Besides, DNCA is demonstrated to be an effective neutral transfection material for nucleic acid delivery, which enbles to bind to oligonucleotides via H-bonding and π-π stacking with reduced toxicity in vitro and in vivo. Several kinds of nucleic acid drugs including aptamer, ssRNA, antisense oligonucleotide, and plasmid DNAs can be delivered by DXBAs, especially DNCA. In particular, G4-aptamer AS1411 encapsulated by DNCA exhibits cellular uptake enhancement, lysosome degradation reduction, cell apoptosis promotion, cell cycle phase alteration in vitro and duration prolongation in vivo, resulting in significant anti-proliferative activity. Our results demonstrate that DNCA is a promising transfection agent for G4-aptamers and exhibites bright application prospects in the permeation improvement of single-stranded oligonucleotides or plasmid DNAs.
Collapse
|
16
|
Banks PD, Sandhu S, Gyorki DE, Johnston ML, Rischin D. Recent Insights and Advances in the Management of Merkel Cell Carcinoma. J Oncol Pract 2017; 12:637-46. [PMID: 27407160 DOI: 10.1200/jop.2016.013367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine malignancy with a propensity for recurrence and a poor prognosis. Incidence of MCC is on the rise and is known to increase with advanced age, immunosuppression, and UV exposure. Merkel cell polyomavirus is implicated in the pathogenesis of virus-positive MCC and accounts for 80% of MCCs in the northern hemisphere and 25% in southern latitudes. In contrast, tumorigenesis of virus-negative MCC is linked to UV-induced DNA damage. Interplay between ubiquitous Merkel cell polyomavirus skin infections that commonly occur in healthy skin and other established risk factors, such as immunosuppression and UV exposure, remains poorly understood. Surgery and radiotherapy achieves excellent locoregional control; however, invariably, a significant proportion of patients develop disseminated disease that is incurable. Chemotherapy offers a high response rate for metastatic disease, but responses are short-lived and the impact on survival is not established. Recent advances in our understanding of the genetic landscape and immunobiology of MCC has led to investigation of novel treatments, including immune checkpoint inhibitors, which are likely to rapidly transform the way we manage these patients. We review epidemiologic, clinical, and histopathologic features of MCC; describe recent insights in MCC biology; and discuss novel therapeutic approaches.
Collapse
Affiliation(s)
- Patricia D Banks
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - David E Gyorki
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | - Danny Rischin
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Barksdale SK. Advances in Merkel cell carcinoma from a pathologist's perspective. Pathology 2017; 49:568-574. [DOI: 10.1016/j.pathol.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
18
|
Zanetti I, Coati I, Alaibac M. Interaction between Merkel cell carcinoma and the immune system: Pathogenetic and therapeutic implications. Mol Clin Oncol 2017; 7:729-732. [PMID: 29142746 DOI: 10.3892/mco.2017.1406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive primary cutaneous neuroendocrine carcinoma. It usually appears on the face and neck of elderly Caucasian people as a flesh-colored, erythematous or violaceous dome-shaped, non-tender nodule with a smooth surface. In immunocompromised patients with T-cell dysfunction, such as patients with acquired immunodeficiency syndrome (AIDS) or solid organ transplant recipients, the incidence of this disease is markedly increased. This suggests a link between the development of MCC and the immune system. Merkel cell polyolmavirus (MCPyV) is clonally integrated into the majority of MCCs, suggesting its causative role in the pathogenesis of the majority of these tumors. Despite wide local excision, sentinel lymph node biopsy, and eventually, adjuvant radiation therapy, which remains the first-line treatment for MCC, the identification of MCPyV has opened novel therapeutic insights. Novel therapeutic strategies could be to inhibit MCPyV oncoproteins and to stimulate immune responses against virus-infected tumor cells by immunostimulatory cytokines, including interferons and interleukin-2.
Collapse
Affiliation(s)
- Irene Zanetti
- Unit of Dermatology, University of Padua, I-35128 Padua, Italy
| | - Ilaria Coati
- Unit of Dermatology, University of Padua, I-35128 Padua, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, I-35128 Padua, Italy
| |
Collapse
|
19
|
G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov Today 2017; 22:1165-1186. [PMID: 28506718 DOI: 10.1016/j.drudis.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
Recently, therapeutic implications of BCL-2 quadruplex invigorated the field of clinical oncology. This Keynote review discusses how a BCL-2 quadruplex-selective approach circumvents the limitations of existing therapeutics; and which improvisations might ameliorate the recent trends of quadruplex-based treatment.
Collapse
|
20
|
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat Rev 2016; 50:35-47. [PMID: 27612280 DOI: 10.1016/j.ctrv.2016.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.
Collapse
Affiliation(s)
- Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Tothill R, Estall V, Rischin D. Merkel cell carcinoma: emerging biology, current approaches, and future directions. Am Soc Clin Oncol Educ Book 2016:e519-26. [PMID: 25993218 DOI: 10.14694/edbook_am.2015.35.e519] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine cutaneous cancer that predominantly occurs in patients who are older, and is associated with a high rate of distant failure and mortality. Current management strategies that incorporate surgery and radiotherapy achieve high rates of locoregional control, but distant failure rates remain problematic, highlighting the need for new effective systemic therapies. Chemotherapy can achieve high response rates of limited duration in the metastatic setting, but its role in definitive management remains unproven. Recent developments in our knowledge about the biology of MCC have led to the identification of new potential therapeutic targets and treatments. A key finding has been the discovery that a human polyomavirus may be a causative agent. However, emerging data suggests that MCC may actually be two distinct entities, viral-associated and viral-negative MCC, which is likely to have implications for the management of MCC in the future and for the development of new treatments. In this review, we discuss recent discoveries about the biology of MCC, current approaches to management, and new therapeutic strategies that are being investigated.
Collapse
Affiliation(s)
- Richard Tothill
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Vanessa Estall
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Danny Rischin
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Mauzo SH, Ferrarotto R, Bell D, Torres-Cabala CA, Tetzlaff MT, Prieto VG, Aung PP. Molecular characteristics and potential therapeutic targets in Merkel cell carcinoma. J Clin Pathol 2016; 69:382-90. [PMID: 26818033 DOI: 10.1136/jclinpath-2015-203467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/03/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin tumour occurring preferentially in elderly and immunosuppressed individuals. Multiple studies have provided insight into the molecular alterations of MCC, leading to the design of several ongoing clinical trials testing chemotherapy, targeted therapy and immunotherapy in patients with recurrent or metastatic disease. The results of some of these studies are available, whereas others are eagerly awaited and will likely shed light on the understanding of MCC biology and potentially improve the clinical outcomes of patients with this rare disease.
Collapse
Affiliation(s)
- Shakuntala H Mauzo
- Department of Pathology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Samimi M, Gardair C, Nicol JTJ, Arnold F, Touzé A, Coursaget P. Merkel cell polyomavirus in merkel cell carcinoma: clinical and therapeutic perspectives. Semin Oncol 2014; 42:347-58. [PMID: 25843739 DOI: 10.1053/j.seminoncol.2014.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and often aggressive cutaneous cancer with a poor prognosis. The incidence of this cancer increases with age, immunodeficiency and sun exposure. Merkel cell polyomavirus (MCPyV), a new human polyomavirus identified in 2008, is detected in the majority of the MCCs and there is a growing body of evidence that healthy human skin harbors resident or transient MCPyV. A causal link between MCPyV and MCC has been evidenced and this is the first polyomavirus to be clearly implicated as a causal agent underlying a human cancer, and MCPyV was recently classified as a 2A carcinogen. MCC is thus a rare tumor caused by a very common viral skin infection. The aim of this review is to provide a basic overview of the epidemiological, clinical, and pathological characteristics of MCC, to present the current knowledge on MCPyV polyomavirus and its causal association with MCC development, and to describe the therapeutic implications of this causal link.
Collapse
Affiliation(s)
- Mahtab Samimi
- Université François Rabelais, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Charlotte Gardair
- CHRU de Tours-Hôpital Trousseau, Service d׳Anatomie et Cytologie Pathologiques, Tours, France
| | - Jérome T J Nicol
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Francoise Arnold
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Antoine Touzé
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | | |
Collapse
|
24
|
Rübsam A, Erb-Eigner K, Lohneis P, Bertelmann E. [Unusual cause of orbital mass]. Ophthalmologe 2014; 111:1073-6. [PMID: 24961174 DOI: 10.1007/s00347-014-3066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CASE REPORT A 54-year-old female presented with a progressive swelling of the upper eyelid since 6 months. Magnetic resonance imaging (MRI) showed an extraconal supratemporal orbital lesion. After resection the histopathological diagnosis confirmed a Merkel cell carcinoma in the lacrimal gland. CLINICAL COURSE Due to an incomplete resection the patient underwent adjuvant radiochemotherapy and is relapse-free for 1.5 years. CONCLUSION Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor, usually occurring on sun-exposed skin and in 10% in the region of the eyelids. The occurrence of MCC in the lacrimal gland is even less common with only two published cases.
Collapse
Affiliation(s)
- A Rübsam
- Klinik für Augenheilkunde, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Deutschland,
| | | | | | | |
Collapse
|
25
|
Systemic Therapy for Merkel Cell Carcinoma: What's on the Horizon? Cancers (Basel) 2014; 6:1180-94. [PMID: 24840048 PMCID: PMC4074823 DOI: 10.3390/cancers6021180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
Merkel cell carcinoma is an aggressive neuroendocrine skin cancer that usually affects elderly patients. Despite being uncommon, incidence has been steadily increasing over the last two decades, likely due to increased awareness, better diagnostic methods and aging of the population. It is currently one of the most lethal cutaneous malignancies, with a five-year overall survival of approximately 50%. With the better understanding of the molecular pathways that lead to the development of Merkel cell carcinoma, there has been an increasing excitement and optimism surrounding novel targeted therapies, in particular to immunotherapy. Some of the concepts surrounding the novel targeted therapies and currently ongoing clinical trials are reviewed here.
Collapse
|
26
|
Merritt H, Sniegowski MC, Esmaeli B. Merkel cell carcinoma of the eyelid and periocular region. Cancers (Basel) 2014; 6:1128-37. [PMID: 24821131 PMCID: PMC4074820 DOI: 10.3390/cancers6021128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/16/2022] Open
Abstract
Merkel cell carcinoma (MCC) in the eyelid and periocular region can be treated surgically, in most cases, with preservation of the eye and reasonable visual function. Adjuvant radiation therapy, sentinel lymph node biopsy, and chemotherapy should be considered for MCC of the eyelid and periocular region, especially for larger tumors that are T2b or more advanced and lesions that present with regional nodal or distant metastasis.
Collapse
Affiliation(s)
- Helen Merritt
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Unit 1488, Houston, TX 77030, USA
| | - Matthew C Sniegowski
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Unit 1488, Houston, TX 77030, USA
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Unit 1488, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Merkel cell carcinoma dependence on bcl-2 family members for survival. J Invest Dermatol 2014; 134:2241-2250. [PMID: 24614157 PMCID: PMC4181590 DOI: 10.1038/jid.2014.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 01/20/2023]
Abstract
Merkel cell carcinoma (MCC), a rare but aggressive cutaneous neoplasm with high metastatic potential, has a poor prognosis at late stages of disease with no proven chemotherapeutic regimens. Using an enriched culture medium, we established and characterized 11 MCC cell lines for Bcl-2 family profiling and functional studies. Immunoblot analysis revealed collectively high protein levels of pro-survival Bcl-2 members in cell lines and a panel of MCC tumors. Down-regulation of individual Bcl-2 proteins by RNAi promoted death in a subset of MCC cell lines, whereas simultaneous inhibition of multiple family members using the small molecule antagonist ABT-263 led to dramatic induction of cell death in 10 of 11 lines. ABT-263 induced Bax-dependent apoptosis with rapid cleavage of caspase-3 and PARP, regardless of Bcl-2 family profile or presence of Merkel cell polyomavirus. Furthermore, ABT-263 treatment led to rapid and sustained growth suppression of MCC xenografts from a representative cell line, accompanied by a striking increase in apoptosis. Our results establish that concurrent inhibition of multiple pro-survival Bcl-2 proteins leads to effective induction of apoptosis, and strongly support the concept that targeting MCC addiction to these molecules may be useful therapeutically by reversing an intrinsic resistance to cell death.
Collapse
|
28
|
Hughes MP, Hardee ME, Cornelius LA, Hutchins LF, Becker JC, Gao L. Merkel Cell Carcinoma: Epidemiology, Target, and Therapy. CURRENT DERMATOLOGY REPORTS 2014; 3:46-53. [PMID: 24587977 PMCID: PMC3931972 DOI: 10.1007/s13671-014-0068-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumor of the skin with a rising incidence. MCC has metastatic potential regardless the size of the primary tumor and a 5-year disease associated mortality rate is 46 %. Surgery and radiation are the mainstays of management for primary MCC. There is no evidence-based effective chemotherapy for recurrent or metastatic diseases to date. In-depth mechanistic studies in MCC have uncovered important cellular events and the association with a polyomavirus, which has provided direct evidence for molecular targeted and immunotherapy. Further perspective studies and clinical trials are warranted to provide reliable evidence of possible pitfalls and effectiveness of molecular targeted immunotherapy alone or in combination with chemotherapy in MCC.
Collapse
Affiliation(s)
- Mathew P. Hughes
- Department of Dermatology, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., # 576, Little Rock, 72205 USA
| | - Matthew E. Hardee
- Department of Radiation Oncology, UAMS, 4301 W. Markham St., # 771, Little Rock, 72205 USA
| | - Lynn A. Cornelius
- Department of Internal Medicine, Division of Dermatology, Washington University School of Medicine in St. Louis, St. Louis, 63110 USA
| | - Laura F. Hutchins
- Department of Medicine, UAMS, 4301 W. Markham St., # 508, Little Rock, 72205 USA
| | - Jurgen C. Becker
- General Dermatology and Immunology, Medical University of Gaze, Auenbruggerplatz 8, 8036 Graz, Austria
| | - Ling Gao
- Department of Dermatology, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., # 576, Little Rock, 72205 USA
| |
Collapse
|
29
|
|
30
|
Miller NJ, Bhatia S, Parvathaneni U, Iyer JG, Nghiem P. Emerging and mechanism-based therapies for recurrent or metastatic Merkel cell carcinoma. Curr Treat Options Oncol 2013; 14:249-63. [PMID: 23436166 PMCID: PMC3651762 DOI: 10.1007/s11864-013-0225-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with a disease-specific mortality of approximately 40 %. The association of MCC with a recently discovered polyomavirus, combined with the increased incidence and mortality of MCC among immunocompromised patients, highlight the importance of the immune system in controlling this cancer. Initial management of MCC is summarized within the NCCN guidelines and in recently published reviews. The high rate of recurrent and metastatic disease progression in MCC, however, presents a major challenge in a cancer that lacks mechanism-based, disease-specific therapies. Traditional treatment approaches have focused on cytotoxic chemotherapy that, despite frequent initial efficacy, rarely provides durable responses and has high morbidity among the elderly. In addition, the immunosuppressive nature of chemotherapy is of concern when treating a virus-associated cancer for which survival is unusually tightly linked to immune function. With a median survival of 9.6 months after development of an initial metastasis (n = 179, described herein), and no FDA-approved agents for this cancer, there is an urgent need for more effective treatments. We review diverse management options for patients with advanced MCC, with a focus on emerging and mechanism-based therapies, some of which specifically target persistently expressed viral antigens. These treatments include single-dose radiation and novel immunotherapies, some of which are in clinical trials. Due to their encouraging efficacy, low toxicity, and lack of immune suppression, these therapies may offer viable alternatives to traditional cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Natalie J. Miller
- Departments of Medicine/Dermatology, Pathology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Shailender Bhatia
- Department of Medicine/Medical Oncology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Seattle Cancer Care Alliance, 825 Eastlake Ave E, Seattle, WA 98109, USA
| | - Upendra Parvathaneni
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195-6043, USA
| | - Jayasri G. Iyer
- Departments of Medicine/Dermatology, Pathology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Paul Nghiem
- Departments of Medicine/Dermatology, Pathology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Seattle Cancer Care Alliance, 825 Eastlake Ave E, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Merkel cell carcinoma: chemotherapy and emerging new therapeutic options. J Skin Cancer 2013; 2013:327150. [PMID: 23476782 PMCID: PMC3582102 DOI: 10.1155/2013/327150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/10/2012] [Indexed: 01/01/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine skin tumor that typically occurs in elderly, immunosuppressed patients. Infection with Merkel cell virus (MCV) and immunosuppression play an important role in the development of MCC. Different staging systems make it difficult to compare the existing clinical data. Furthermore, there predominantly exist single case reports and case series, but no randomized controlled trials. However, it is necessary to develop further therapy options because MCC tends to grow rapidly and metastasizes early. In the metastatic disease, therapeutic attempts were made with various chemotherapeutic combination regimens. Because of the high toxicity of these combinations, especially those established in SCLC, and regarding the unsatisfying results, the challenge is to balance the pros and cons of chemotherapy individually and carefully. Up to now, emerging new therapy options as molecular-targeted agents, for example, pazopanib, imatinib, or somatostatin analogues as well as immunologicals, for example, imiquimod and interferons, also showed less success concerning the disease-free response rates. According to the literature, neither chemotherapy nor molecular-targeted agents or immunotherapeutic strategies have shown promising effects in the therapy of the metastatic disease of MCC so far. There is a great demand for randomized controlled studies and a need for an MCC registry and multicenter clinical trials due to the tumors curiosity.
Collapse
|
32
|
Nicolaidou E, Mikrova A, Antoniou C, Katsambas AD. Advances in Merkel cell carcinoma pathogenesis and management: a recently discovered virus, a new international consensus staging system and new diagnostic codes. Br J Dermatol 2011; 166:16-21. [PMID: 21824123 DOI: 10.1111/j.1365-2133.2011.10562.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Merkel cell carcinoma is a rare but aggressive neuroendocrine carcinoma of the skin with a rising incidence and a high mortality rate. It occurs primarily in sun-exposed skin of older individuals. It is characterized by a high rate of local recurrence, regional lymph node metastases and distant metastases, occurring even after prompt treatment. Many controversies exist regarding its pathogenesis and optimal management. The discovery of Merkel cell polyomavirus has been a major breakthrough in understanding the aetiology of the disease. A recently adopted new international consensus staging system in combination with new international diagnostic codes are expected to facilitate future clinical trials and improve the management of patients. According to recent (2010) guidelines, most patients should be managed with a combination of surgery and radiotherapy.
Collapse
Affiliation(s)
- E Nicolaidou
- 1st Department of Dermatology and Venereology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece.
| | | | | | | |
Collapse
|
33
|
Singh J, Kaur H, Kaushik A, Peer S. A Review of Antisense Therapeutic Interventions for Molecular Biological Targets in Various Diseases. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.294.315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Abstract
Merkel cell carcinoma is a rare, highly aggressive neuroendocrine cutaneous neoplasm with a variable clinical presentation. Histologically, it is a predominantly dermal-based lesion composed of monotonous small round cells with scanty cytoplasm, often difficult to differentiate from small round cell tumors, metastatic small cell carcinoma, blastic hematologic malignancies, and melanoma. The malignant cells express both epithelial and neuroendocrine immunohistochemical markers, a unique feature that helps differentiate this neoplasm from other entities. The pathogenesis of Merkel cell carcinoma has remained a mystery despite its association with various chromosomal abnormalities and with growth signaling and apoptotic pathways. The discovery of the Merkel cell polyomavirus suggests another clue to its pathogenesis. This virus integrates into band 3p14 and promotes carcinogenesis by altering the activity of tumor suppressor and cell cycle regulatory proteins. This discovery of the Merkel cell polyomavirus may greatly enhance our understanding of this rare aggressive neoplasm and allow further advancements in treatment.
Collapse
Affiliation(s)
- Hannah H Wong
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA.
| | | |
Collapse
|
35
|
Speirs CK, Hwang M, Kim S, Li W, Chang S, Varki V, Mitchell L, Schleicher S, Lu B. Harnessing the cell death pathway for targeted cancer treatment. Am J Cancer Res 2010; 1:43-61. [PMID: 21969218 PMCID: PMC3180107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/29/2010] [Indexed: 05/31/2023] Open
Abstract
Genotoxic agents have long targeted apoptotic cell death as a primary means of treating cancer. However, the presence of cellular defects in many cancers has contributed to an acquired resistance to apoptotic cell death, lowering the effectiveness of chemo- and radiotherapies. The mechanisms by which cells achieve this resistance to treatment are still being investigated, but an alternative approach is the study of cell death pathways that are mechanistically distinct from apoptosis. These pathways, including autophagy and necrosis, have arisen as attractive targets for cancer therapy. This review will discuss apoptosis, autophagy, and necrosis in the context of tumorigenesis and drug resistance, as well as provide an up-to-date preclinical and clinical review of inhibitors targeting these cell death pathways for multiple cancer types. The goal of these studies is to identify molecular targets that will enhance the efficacy and specificity of current cancer therapies.
Collapse
Affiliation(s)
- Christina K Speirs
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center Nashville Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs 2010; 16:59-70. [PMID: 20812891 DOI: 10.1517/14728214.2010.515210] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Bcl-2 family proteins are a component of the antiapoptotic machinery and are overexpressed in different malignancies. Accordingly, their enhanced expression has been attributed to the observed chemoresistance in most of the cancers. Therefore, targeting Bcl-2 family members becomes an important and attractive approach towards cancer therapy and is currently a very rapidly evolving area of research. This article highlights the numerous advancements that have been made in the design and synthesis of small molecule inhibitors (SMI) of pro-survival Bcl-2 proteins. AREAS COVERED This review comprehensively describes the progress made over the last 2 decades on this subject, including the clinical status of SMIs of Bcl-2 family proteins. Newer insights on the status of our knowledge on SMIs of Bcl-2 family proteins, their most beneficial application as well as current and future directions in this field are discussed. EXPERT OPINION Targeting Bcl-2 family proteins using SMI strategies is gaining momentum, with the emergence of certain new classes of inhibitors in Phase I and II clinical settings. In view of the tremendous progress toward the development of such inhibitors, this innovative approach certainly holds promise and has the potential to become a future mainstay for cancer therapy. The stage is set for the next generation of SMIs, for not only Bcl-2 proteins but also for Mcl-1. Other emerging molecules in the apoptotic machinery will also be explored and targeted.
Collapse
Affiliation(s)
- Asfar S Azmi
- Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, Barbara Ann Karmanos Cancer Institute, Department of Pathology, 4100 John R, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
37
|
|