1
|
Dannewitz Prosseda S, Tian X, Kuramoto K, Boehm M, Sudheendra D, Miyagawa K, Zhang F, Solow-Cordero D, Saldivar JC, Austin ED, Loyd JE, Wheeler L, Andruska A, Donato M, Wang L, Huebner K, Metzger RJ, Khatri P, Spiekerkoetter E. FHIT, a Novel Modifier Gene in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019; 199:83-98. [PMID: 30107138 PMCID: PMC6353016 DOI: 10.1164/rccm.201712-2553oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.
Collapse
Affiliation(s)
- Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Xuefei Tian
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Mario Boehm
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | | | - Kazuya Miyagawa
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
- Department of Pediatrics
| | - Fan Zhang
- Wall Center for Pulmonary Vascular Disease
| | | | | | - Eric D. Austin
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - James E. Loyd
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Lisa Wheeler
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Adam Andruska
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Michele Donato
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Lingli Wang
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kay Huebner
- Molecular Genetics and Cancer Biology Program, Ohio State University, Columbus, Ohio
| | | | - Purvesh Khatri
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
| |
Collapse
|
3
|
Nassif E, Thibault C, Vano Y, Fournier L, Mauge L, Verkarre V, Timsit MO, Mejean A, Tartour E, Oudard S. Sunitinib in kidney cancer: 10 years of experience and development. Expert Rev Anticancer Ther 2016; 17:129-142. [PMID: 27967249 DOI: 10.1080/14737140.2017.1272415] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Sunitinib is a multi-target, anti-angiogenic tyrosine kinase inhibitor and a key molecule in the treatment of metastatic renal cell carcinoma (mRCC). Since it first demonstrated its efficacy ten years ago, overall survival of mRCC has more than doubled, in part due to sunitinib. In most recent years, progress has been made in the comprehension of its mechanism of action and resistance. Areas Covered: In this article, clinical trials involving sunitinib in kidney cancer have been reviewed, defining its different indications in metastatic and localized RCC. The rationale of sunitinib's efficacy, preclinical trials, past-clinical trials and ongoing clinical trials are summarized. Dose and scheme base are discussed, as the recommended dosage is frequently not well tolerated. Combination therapies appear to be toxic. Novel immunotherapies are changing the landscape of mRCC treatment and challenging sunitinib. Special attention has been paid towards cancer cell biology and immunity involved in treatment response. Expert Commentary: Sunitinib's place in the therapeutic arsenal is being redefined with the arrival of major challengers. Dosage and scheduling of sunitinib remains a major challenge.
Collapse
Affiliation(s)
- Elise Nassif
- a Oncology Department , Georges Pompidou European Hospital , Paris , France
| | - Constance Thibault
- a Oncology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Yann Vano
- a Oncology Department , Georges Pompidou European Hospital , Paris , France.,b Cordeliers Research Center, UMRS1138 Team 13 Cancer, Immune Control and Escape , Paris , France .,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Laure Fournier
- c Radiology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Laetitia Mauge
- d Biological Hematology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Virginie Verkarre
- d Biological Hematology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Marc-Olivier Timsit
- e Urology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Arnaud Mejean
- e Urology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Eric Tartour
- f Immunology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| | - Stéphane Oudard
- a Oncology Department , Georges Pompidou European Hospital , Paris , France.,g Université Paris Descartes Sorbonne Paris-Cité , Paris 5 , France
| |
Collapse
|
5
|
Carlisle B, Demko N, Freeman G, Hakala A, MacKinnon N, Ramsay T, Hey S, London AJ, Kimmelman J. Benefit, Risk, and Outcomes in Drug Development: A Systematic Review of Sunitinib. J Natl Cancer Inst 2016; 108:djv292. [PMID: 26547927 PMCID: PMC5943825 DOI: 10.1093/jnci/djv292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the total patient burden associated with clinical development and where burdens fall most heavily during a drug development program. Our goal was to quantify the total patient burden/benefit in developing a new drug. METHODS We measured risk using drug-related adverse events that were grade 3 or higher, benefit by objective response rate, and trial outcomes by whether studies met their primary endpoint with acceptable safety. The differences in risk (death rate) and benefit (overall response rate) between industry and nonindustry trials were analyzed with an inverse-variance weighted fixed effects meta-analysis implemented as a weighted regression analysis. All statistical tests were two-sided. RESULTS We identified 103 primary publications of sunitinib monotherapy, representing 9092 patients and 3991 patient-years of involvement over 10 years and 32 different malignancies. In total, 1052 patients receiving sunitinib monotherapy experienced objective tumor response (15.7% of intent-to-treat population, 95% confidence interval [CI] = 15.3% to 16.0%), 98 died from drug-related toxicities (1.08%, 95% CI = 1.02% to 1.14%), and at least 1245 experienced grade 3-4 drug-related toxicities (13.7%, 95% CI = 13.3% to 14.1%). Risk/benefit worsened as the development program matured, with several instances of replicated negative studies and almost no positive trials after the first responding malignancies were discovered. CONCLUSIONS Even for a successful drug, the risk/benefit balance of trials was similar to phase I cancer trials in general. Sunitinib monotherapy development showed worsening risk/benefit, and the testing of new indications responded slowly to evidence that sunitinib monotherapy would not extend to new malignancies. Research decision-making should draw on evidence from whole research programs rather than a narrow band of studies in the same indication.
Collapse
Affiliation(s)
- Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nadine Demko
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Georgina Freeman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Amanda Hakala
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nathalie MacKinnon
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Tim Ramsay
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Spencer Hey
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Alex John London
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL).
| |
Collapse
|