1
|
Wu HH, Crames M, Wei Y, Liu D, Gueneva-Boucheva K, Son I, Frego L, Han F, Kroe-Barrett R, Nixon A, Michael M. Effect of the ADCC-modulating mutations and the selection of human IgG isotypes on physicochemical properties of Fc. J Pharm Sci 2022; 111:2411-2421. [PMID: 35760121 DOI: 10.1016/j.xphs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Monoclonal antibodies, particularly IgGs and Ig-based molecules, are a well-established and growing class of biotherapeutic drugs. In order to improve efficacy, potency and pharmacokinetics of these therapeutic drugs, pharmaceutical industries have investigated significantly in engineering fragment crystallizable (Fc) domain of these drugs to optimize the interactions of these drugs and Fc gamma receptors (FcγRs) in recent ten years. The biological function of the therapeutics with the antibody-dependent cellular cytotoxicity (ADCC) enhanced double mutation (S239D/I332E) of isotype IgG1, the ADCC reduced double mutation (L234A/L235A) of isotype IgG1, and ADCC reduced isotype IgG4 has been well understood. However, limited information regarding the effect of these mutations or isotype difference on physicochemical properties (PCP), developability, and manufacturability of therapeutics bearing these different Fc regions is available. In this report, we systematically characterize the effects of the mutations and IgG4 isotype on conformation stability, colloidal stability, solubility, and storage stability at accelerated conditions in two buffer systems using six Fc variants. Our results provide a basis for selecting appropriate Fc region during development of IgG or Ig-based therapeutics and predicting effect of the mutations on CMC development process.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA.
| | - Maureen Crames
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Yangjie Wei
- Amgen Inc., Drug Product Technologies, Thousand Oaks, California, USA
| | - Dongmei Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Kristina Gueneva-Boucheva
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Ikbae Son
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Fei Han
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Andrew Nixon
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Marlow Michael
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| |
Collapse
|
2
|
Jaworski JP. Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomed J 2021; 44:7-17. [PMID: 33589377 PMCID: PMC7685954 DOI: 10.1016/j.bj.2020.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has caused unprecedented global health and economic crises. Several vaccine approaches and repurposed drugs are currently under evaluation for safety and efficacy. However, none of them have been approved for COVID-19 yet. Meanwhile, several nMAbs targeting SARS-CoV-2 spike glycoprotein are in different stages of development and clinical testing. Preclinical studies have shown that cocktails of potent nMAbs targeting the receptor binding site of SARS-CoV-2, as well as broad-nMAbs targeting conserved regions within the virus spike, might be effective for the treatment and prophylaxis of COVID-19. Currently, several clinical trials have started to test safety, tolerability, PKs and efficacy of these nMAbs. One paramount limitation for the use of nMAbs in clinical settings is the production of large amounts of MAbs and the high costs related to it. Cooperation among public and private institutions coupled with speed of development, rapid safety evaluation and efficacy, and early planning for scale-up and manufacture will be critical for the control of COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- National Scientific and Technical Research Council, Buenos Aires, Argentina; National Agricultural Technology Institute, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Powell AB, Ren Y, Korom M, Saunders D, Hanley PJ, Goldstein H, Nixon DF, Bollard CM, Lynch RM, Jones RB, Cruz CRY. Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:78-88. [PMID: 33005704 PMCID: PMC7508916 DOI: 10.1016/j.omtm.2020.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/23/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023]
Abstract
While antiretroviral therapy (ART) can completely suppress viremia, it is not a cure for HIV. HIV persists as a latent reservoir of infected cells, able to evade host immunity and re-seed infection following cessation of ART. Two promising immunotherapeutic strategies to eliminate both productively infected cells and reactivated cells of the reservoir are the adoptive transfer of potent HIV-specific T cells and the passive administration of HIV-specific broadly neutralizing antibodies also capable of mediating antibody-dependent cellular cytotoxicity (ADCC). The simultaneous use of both as the basis of a single therapeutic has never been explored. We therefore sought to modify HIV-specific T cells from HIV-naive donors (to allow their use in the context of allotransplant, a promising platform for sterilizing cures) so they are able to secrete a broadly neutralizing antibody (bNAb) directed against the HIV envelope to elicit ADCC. We designed an antibody construct comprising bNAb 10-1074 heavy and light chains, fused to IgG3 Fc to elicit ADCC, with truncated cluster of differentiation 19 (CD19) as a selectable marker. HIV-specific T cells were expanded from HIV-naive donors by priming with antigen-presenting cells expressing overlapping HIV antigens in the presence of cytokines. T cells retained specificity against Gag, Nef, and Pol peptides (218.55 ± 300.14 interferon γ [IFNγ] spot-forming cells [SFC]/1 × 105) following transduction (38.92 ± 25.30) with the 10-1074 antibody constructs. These cells secreted 10-1074 antibodies (139.04 ± 114.42 ng/mL). The HIV-specific T cells maintained T cell function following transduction, and the secreted 10-1074 antibody bound HIV envelope (28.13% ± 19.42%) and displayed ADCC activity (10.47% ± 4.11%). Most critically, the 10-1074 antibody-secreting HIV-specific T cells displayed superior in vitro suppression of HIV replication. In summary, HIV-specific T cells can be engineered to produce antibodies mediating ADCC against HIV envelope-expressing cells. This combined innate/adaptive approach allows for synergy between the two immune arms, broadens the target range of the immune therapy, and provides further insight into what defines an effective anti-HIV response.
Collapse
Affiliation(s)
- Allison B. Powell
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Yanqin Ren
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Maria Korom
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Patrick J. Hanley
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Harris Goldstein
- Department of Pediatrics and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Catherine M. Bollard
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Conrad Russell Y. Cruz
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
- Corresponding author: Conrad Russell Y. Cruz, 111 Michigan Ave NW, Washington, DC 20010, USA.
| |
Collapse
|
4
|
Jaworski JP, Cahn P. Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV 2018; 5:e723-e731. [PMID: 30245003 DOI: 10.1016/s2352-3018(18)30174-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The viral plasticity and the vast diversity of HIV-1 circulating strains necessitates the identification of new approaches to control this global pandemic. New generation broadly neutralising monoclonal antibodies (bnMAbs) against the HIV-1 viral envelope protein (Env) can prevent virus acquisition, reduce viraemia, enhance immunity, and induce the killing of infected cells in animal models of HIV-1 infection. Most importantly, passively administered bnMAbs are effective at decreasing viraemia and delaying viral rebound in people chronically infected with HIV-1. Single antibody treatment is associated with the emergence of viral escape mutants, and virus suppression is not maintained in the long term. However, a combination of bnMAbs and bioengineered multivalent antibodies that target different sites on Env might increase the efficacy of immunotherapy, adding a new relevant tool for clinical use. The aim of this Review is to highlight the potential benefits of this novel prophylactic and therapeutic approach to fight HIV-1.
Collapse
Affiliation(s)
- Juan P Jaworski
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| |
Collapse
|
5
|
Saag MS, Benson CA, Gandhi RT, Hoy JF, Landovitz RJ, Mugavero MJ, Sax PE, Smith DM, Thompson MA, Buchbinder SP, Del Rio C, Eron JJ, Fätkenheuer G, Günthard HF, Molina JM, Jacobsen DM, Volberding PA. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2018 Recommendations of the International Antiviral Society-USA Panel. JAMA 2018; 320:379-396. [PMID: 30043070 PMCID: PMC6415748 DOI: 10.1001/jama.2018.8431] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Importance Antiretroviral therapy (ART) is the cornerstone of prevention and management of HIV infection. Objective To evaluate new data and treatments and incorporate this information into updated recommendations for initiating therapy, monitoring individuals starting therapy, changing regimens, and preventing HIV infection for individuals at risk. Evidence Review New evidence collected since the International Antiviral Society-USA 2016 recommendations via monthly PubMed and EMBASE literature searches up to April 2018; data presented at peer-reviewed scientific conferences. A volunteer panel of experts in HIV research and patient care considered these data and updated previous recommendations. Findings ART is recommended for virtually all HIV-infected individuals, as soon as possible after HIV diagnosis. Immediate initiation (eg, rapid start), if clinically appropriate, requires adequate staffing, specialized services, and careful selection of medical therapy. An integrase strand transfer inhibitor (InSTI) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) is generally recommended for initial therapy, with unique patient circumstances (eg, concomitant diseases and conditions, potential for pregnancy, cost) guiding the treatment choice. CD4 cell count, HIV RNA level, genotype, and other laboratory tests for general health and co-infections are recommended at specified points before and during ART. If a regimen switch is indicated, treatment history, tolerability, adherence, and drug resistance history should first be assessed; 2 or 3 active drugs are recommended for a new regimen. HIV testing is recommended at least once for anyone who has ever been sexually active and more often for individuals at ongoing risk for infection. Preexposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and appropriate monitoring is recommended for individuals at risk for HIV. Conclusions and Relevance Advances in HIV prevention and treatment with antiretroviral drugs continue to improve clinical management and outcomes for individuals at risk for and living with HIV.
Collapse
Affiliation(s)
| | | | - Rajesh T Gandhi
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer F Hoy
- The Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | - Paul E Sax
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Susan P Buchbinder
- San Francisco Department of Public Health and University of California San Francisco
| | - Carlos Del Rio
- Emory University Rollins School of Public Health and School of Medicine, Atlanta, Georgia
| | - Joseph J Eron
- University of North Carolina at Chapel Hill School of Medicine
| | - Gerd Fätkenheuer
- University Hospital of Cologne, Department I of Internal Medicine, Cologne, Germany, and German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Huldrych F Günthard
- University Hospital Zurich and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
6
|
Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now? J Pathog 2018; 2018:8724549. [PMID: 29973995 PMCID: PMC6009031 DOI: 10.1155/2018/8724549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) cases are on the rise globally. To date, there is still no effective measure to eradicate the causative agent, human immunodeficiency virus (HIV). Highly active antiretroviral therapy (HAART) is being used in HIV/AIDS management, but it results in long-term medication and has major drawbacks such as multiple side effects, high cost, and increasing the generation rate of escape mutants. In addition, HAART does not control HIV-related complications, and hence more medications and further management are required. With this, other alternatives are urgently needed. In the past, small-molecule inhibitors have shown potent antiviral effects, and some of them are now being evaluated in clinical trials. The challenges in developing these small molecules for clinical use include the off-target effect, poor stability, and low bioavailability. On the other hand, antibody-mediated therapy has emerged as an important therapeutic modality for anti-HIV therapeutics development. Many antiviral antibodies, namely, broad neutralizing antibodies (bnAbs) against multiple strains of HIV, have shown promising effects in vitro and in animal studies; further studies are ongoing in clinical trials to evaluate their uses in clinical applications. This short review aims to discuss the current development of therapeutic antibodies against HIV and the challenges in adopting them for clinical use.
Collapse
|
7
|
Boesch AW, Kappel JH, Mahan AE, Chu TH, Crowley AR, Osei-Owusu NY, Alter G, Ackerman ME. Enrichment of high affinity subclasses and glycoforms from serum-derived IgG using FcγRs as affinity ligands. Biotechnol Bioeng 2018; 115:1265-1278. [PMID: 29315477 DOI: 10.1002/bit.26545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
As antibodies continue to gain predominance in drug discovery and development pipelines, efforts to control and optimize their activity in vivo have matured to incorporate sophisticated abilities to manipulate engagement of specific Fc binding partners. Such efforts to promote diverse functional outcomes include modulating IgG-Fc affinity for FcγRs to alternatively potentiate or reduce effector functions, such as antibody-dependent cellular cytotoxicity and phagocytosis. While a number of natural and engineered Fc features capable of eliciting variable effector functions have been demonstrated in vitro and in vivo, elucidation of these important functional relationships has taken significant effort through use of diverse genetic, cellular and enzymatic techniques. As an orthogonal approach, we demonstrate use of FcγR as chromatographic affinity ligands to enrich and therefore simultaneously identify favored binding species from a complex mixture of serum-derived pooled polycloncal human IgG, a load material that contains the natural repertoire of Fc variants and post-translational modifications. The FcγR-enriched IgG was characterized for subclass and glycoform composition and the impact of this bioseparation step on antibody activity was measured in cell-based effector function assays including Natural Killer cell activation and monocyte phagocytosis. This work demonstrates a tractable means to rapidly distinguish complex functional relationships between two or more interacting biological agents by leveraging affinity chromatography followed by secondary analysis with high-resolution biophysical and functional assays and emphasizes a platform capable of surveying diverse natural post-translational modifications that may not be easily produced with high purity or easily accessible with recombinant expression techniques.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Zepteon, Inc., Boston, Massachusetts
| | - James H Kappel
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Alison E Mahan
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts
| | - Thach H Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Andrew R Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Nana Y Osei-Owusu
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| |
Collapse
|
8
|
Hua CK, Ackerman ME. Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Front Immunol 2017; 8:1655. [PMID: 29234320 PMCID: PMC5712301 DOI: 10.3389/fimmu.2017.01655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs' ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell-cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or "cure" in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy.
Collapse
Affiliation(s)
- Casey K. Hua
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
9
|
Abstract
In this issue of Immunity, Huang et al. (2016) describe an exceptionally broad and potent neutralizing antibody to HIV. This antibody, N6, is capable of neutralizing up to 98% of global isolates with a potent median IC50 of 0.04 μg/mL, making it the current "best-in-class" for bNAbs targeting the CD4 binding site.
Collapse
Affiliation(s)
- Devin Sok
- International AIDS Vaccine Initiative, New York, NY 10004, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. RECENT FINDINGS In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of "new-generation" anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy.
Collapse
Affiliation(s)
- Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), 1 Modderfontein Road, Sandringham, Johannesburg, Gauteng 2131 South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St. NW, Washington, DC 20001 USA
| |
Collapse
|
11
|
Huang Y, Ferrari G, Alter G, Forthal DN, Kappes JC, Lewis GK, Love JC, Borate B, Harris L, Greene K, Gao H, Phan TB, Landucci G, Goods BA, Dowell KG, Cheng HD, Bailey-Kellogg C, Montefiori DC, Ackerman ME. Diversity of Antiviral IgG Effector Activities Observed in HIV-Infected and Vaccinated Subjects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4603-4612. [PMID: 27913647 PMCID: PMC5137799 DOI: 10.4049/jimmunol.1601197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
Diverse Ab effector functions mediated by the Fc domain have been commonly associated with reduced risk of infection in a growing number of nonhuman primate and human clinical studies. This study evaluated the anti-HIV Ab effector activities in polyclonal serum samples from HIV-infected donors, VAX004 vaccine recipients, and healthy HIV-negative subjects using a variety of primary and cell line-based assays, including Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cell-mediated viral inhibition, and Ab-dependent cellular phagocytosis. Additional assay characterization was performed with a panel of Fc-engineered variants of mAb b12. The goal of this study was to characterize different effector functions in the study samples and identify assays that might most comprehensively and dependably capture Fc-mediated Ab functions mediated by different effector cell types and against different viral targets. Deployment of such assays may facilitate assessment of functionally unique humoral responses and contribute to identification of correlates of protection with potential mechanistic significance in future HIV vaccine studies. Multivariate and correlative comparisons identified a set of Ab-dependent cell-mediated viral inhibition and phagocytosis assays that captured different Ab activities and were distinct from a group of ADCC assays that showed a more similar response profile across polyclonal serum samples. The activities of a panel of b12 monoclonal Fc variants further identified distinctions among the ADCC assays. These results reveal the natural diversity of Fc-mediated Ab effector responses among vaccine recipients in the VAX004 trial and in HIV-infected subjects, and they point to the potential importance of polyfunctional Ab responses.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Donald N Forthal
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - John C Kappes
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Linda Harris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Tran B Phan
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Gary Landucci
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Brittany A Goods
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755; and
| | - Hao D Cheng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
12
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
13
|
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
14
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
15
|
Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnol Adv 2016; 34:1149-1158. [PMID: 27460206 DOI: 10.1016/j.biotechadv.2016.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022]
Abstract
Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date.
Collapse
Affiliation(s)
- Kyla R Rodgers
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Richard C Chou
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States; Section of Rheumatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States.
| |
Collapse
|
16
|
Polizzotto MN, Chen G, Tressler RL, Godfrey C. Leveraging Cancer Therapeutics for the HIV Cure Agenda: Current Status and Future Directions. Drugs 2016. [PMID: 26224205 DOI: 10.1007/s40265-015-0426-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Despite effective antiretroviral therapy (ART) and undetectable HIV RNA in the plasma, latent replication-competent HIV persists indefinitely in long-lived cells. Cessation of ART results in rebound of HIV from these persistent reservoirs. While this was thought to be an insurmountable obstacle to viral eradication, recent cases suggest otherwise. To date one patient has been "cured" of HIV and several others have been able to interrupt ART without viral rebound for prolonged periods. These events have sparked renewed interest in developing strategies that will allow eradication of HIV in infected individuals. We review the current knowledge of HIV latency and the viral reservoir, describe the potential utility of emerging cancer therapeutics in HIV cure research with an emphasis on pathways implicated in reservoir persistence, and outline opportunities and challenges in the context of the current clinical trial and regulatory environment.
Collapse
Affiliation(s)
- Mark N Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD, 20892, USA,
| | | | | | | |
Collapse
|
17
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
18
|
Ackerman ME, Mikhailova A, Brown EP, Dowell KG, Walker BD, Bailey-Kellogg C, Suscovich TJ, Alter G. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control. PLoS Pathog 2016; 12:e1005315. [PMID: 26745376 PMCID: PMC4706315 DOI: 10.1371/journal.ppat.1005315] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.
Collapse
Affiliation(s)
- Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail: (MEA); (GA)
| | - Anastassia Mikhailova
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Eric P. Brown
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karen G. Dowell
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Todd J. Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (MEA); (GA)
| |
Collapse
|