1
|
Wilk AJ, Marceau JO, Kazer SW, Fleming I, Miao VN, Galvez-Reyes J, Kimata JT, Shalek AK, Holmes S, Overbaugh J, Blish CA. Pro-inflammatory feedback loops define immune responses to pathogenic Lentivirus infection. Genome Med 2024; 16:24. [PMID: 38317183 PMCID: PMC10840164 DOI: 10.1186/s13073-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood. METHODS We profile immune responses in a unique model of differential lentiviral pathogenicity where pig-tailed macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal single-cell transcriptomics to this cohort, along with single-cell resolution cell-cell communication techniques, to understand the immune mechanisms underlying lentiviral pathogenicity. RESULTS Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic Lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. CONCLUSIONS Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which in turn drives disease progression.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua O Marceau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Samuel W Kazer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ira Fleming
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vincent N Miao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, 02115, USA
| | - Jennyfer Galvez-Reyes
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Pichon F, Shen Y, Busato F, P Jochems S, Jacquelin B, Grand RL, Deleuze JF, Müller-Trutwin M, Tost J. Analysis and annotation of DNA methylation in two nonhuman primate species using the Infinium Human Methylation 450K and EPIC BeadChips. Epigenomics 2021; 13:169-186. [PMID: 33471557 DOI: 10.2217/epi-2020-0200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Nonhuman primates are essential for research on many human diseases. The Infinium Human Methylation450/EPIC BeadChips are popular tools for the study of the methylation state across the human genome at affordable cost. Methods: We performed a precise evaluation and re-annotation of the BeadChip probes for the analysis of genome-wide DNA methylation patterns in rhesus macaques and African green monkeys through in silico analyses combined with functional validation by pyrosequencing. Results: Up to 165,847 of the 450K and 261,545 probes of the EPIC BeadChip can be reliably used. The annotation files are provided in a format compatible with a variety of standard bioinformatic pipelines. Conclusion: Our study will facilitate high-throughput DNA methylation analyses in Macaca mulatta and Chlorocebus sabaeus.
Collapse
Affiliation(s)
- Fabien Pichon
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Yimin Shen
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.,Laboratory for Bioinformatics, Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - Florence Busato
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Simon P Jochems
- Institut Pasteur, HIV Inflammation & Persistence Unit, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Jean-Francois Deleuze
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.,Laboratory for Bioinformatics, Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | | | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
5
|
Abstract
The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103-10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006; Ances et al. J Infect Dis 201(3):336-340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279-1286, 2007; Lifson et al. HIV Clin Trials 9(3):177-185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787-794, 2009; Robbins et al. Clin Infect Dis 48(3):350-361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.
Collapse
Affiliation(s)
- Elena Bruzzesi
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Taleb K, Auffray C, Villefroy P, Pereira A, Hosmalin A, Gaudry M, Le Bon A. Chronic Type I IFN Is Sufficient To Promote Immunosuppression through Accumulation of Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:1156-1163. [PMID: 28003378 DOI: 10.4049/jimmunol.1502638] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 11/17/2016] [Indexed: 01/20/2023]
Abstract
Failure of the immune system to eradicate viruses results in chronic viral infections, which are associated with increased susceptibility to secondary infections. Pathogenic HIV or lymphocytic choriomeningitis virus chronic infections display a persistent type I IFN signature. In chronic lymphocytic choriomeningitis virus infection, blockade of type I IFN signaling partially restores antiviral responses. In a mouse model, we tested whether chronic administration of type I IFN, at doses mimicking chronic viral infection, induced immunosuppression. Chronic exposure of mice to IFN-α alone was sufficient to strongly suppress specific CD8+ T cells responses to subsequent vaccinia virus infection. It resulted in the accumulation of Ly6Chi monocytes. These monocytes were similar, phenotypically and functionally, to the myeloid-derived suppressor cells found in cancer because they exerted a potent suppression on CD8+ T cell responses in vitro. They acted at least partly through the l-arginine pathway. In vivo, their elimination restored antiviral CD8+ T cell responses. Our work provides a specific mechanism accounting for the role of IFN-α in immunosuppression and predicts that type I IFN modulation will be pivotal to cure human chronic infections, cancer, or autoimmune diseases.
Collapse
Affiliation(s)
- Kahina Taleb
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Cédric Auffray
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Pascale Villefroy
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Adrien Pereira
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Anne Hosmalin
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Muriel Gaudry
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Agnès Le Bon
- INSERM, U1016, Institut Cochin, 75014 Paris, France; .,CNRS UMR8104, 75014 Paris, France; and .,Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
7
|
Ma X, Tang W, Wang P, Guo X, Gao L. Extracting Stage-Specific and Dynamic Modules Through Analyzing Multiple Networks Associated with Cancer Progression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 15:647-658. [PMID: 27845671 DOI: 10.1109/tcbb.2016.2625791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Determining the dynamics of pathways associated with cancer progression is critical for understanding the etiology of diseases. Advances in biological technology have facilitated the simultaneous genomic profiling of multiple patients at different clinical stages, thus generating the dynamic genomic data for cancers. Such data provide enable investigation of the dynamics of related pathways. However, methods for integrative analysis of dynamic genomic data are inadequate. In this study, we develop a novel nonnegative matrix factorization algorithm for dynamic modules ( NMF-DM), which simultaneously analyzes multiple networks for the identification of stage-specific and dynamic modules. NMF-DM applies the temporal smoothness framework by balancing the networks at the current stage and the previous stage. Experimental results indicate that the NMF-DM algorithm is more accurate than the state-of-the-art methods in artificial dynamic networks. In breast cancer networks, NMF-DM reveals the dynamic modules that are important for cancer stage transitions. Furthermore, the stage-specific and dynamic modules have distinct topological and biochemical properties. Finally, we demonstrate that the stage-specific modules significantly improve the accuracy of cancer stage prediction. The proposed algorithm provides an effective way to explore the time-dependent cancer genomic data.
Collapse
|
8
|
Huot N, Rascle P, Garcia-Tellez T, Jacquelin B, Müller-Trutwin M. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 2016; 19:37-44. [PMID: 27447445 DOI: 10.1016/j.coviro.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
HIV-1/SIVmac infections deeply disturb innate host responses. Most studies have focused on the impact on dendritic cells and NK cells. A few but insufficient data are available on other innate immune cell types, such as neutrophils. It has been shown that innate lymphoid cells are depleted early and irreversibly during SIVmac/HIV-1 infections. Studies in natural hosts of SIV have contributed to pinpoint that early control of inflammation is crucial. In natural hosts, plasmacytoid dendritic cells, myeloid dendritic cells and NK cells are depleted during acute infection but return to normal levels by the end of acute infection. We summarize here the similarities and differences of various types of innate immune responses in natural hosts compared to pathogenic HIV/SIV mac infections.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France; Vaccine Research Institute, Créteil, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France
| | | | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
9
|
Tjernlund A, Burgener A, Lindvall JM, Peng T, Zhu J, Öhrmalm L, Picker LJ, Broliden K, McElrath MJ, Corey L. In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells--A Tool to Interrogate a Functional Immune Response Ex Vivo. PLoS One 2016; 11:e0149907. [PMID: 26986062 PMCID: PMC4795610 DOI: 10.1371/journal.pone.0149907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells.
Collapse
Affiliation(s)
- Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- * E-mail:
| | - Adam Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Ave. Winnipeg, MB, Canada
| | - Jessica M. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Tao Peng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Lars Öhrmalm
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - Louis J. Picker
- Department of Pathology, Vaccine and Gene Therapy Institute, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
10
|
Hejblum BP, Skinner J, Thiébaut R. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data. PLoS Comput Biol 2015; 11:e1004310. [PMID: 26111374 PMCID: PMC4482329 DOI: 10.1371/journal.pcbi.1004310] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/30/2015] [Indexed: 01/13/2023] Open
Abstract
Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package. Gene set analysis methods use prior biological knowledge to analyze gene expression data. This prior knowledge takes the form of predefined groups of genes, linked through their biological function. Gene set analysis methods have been successfully applied in transversal studies, their results being more sensitive and interpretable than those of methods investigating genomic data one gene at a time. The time-course gene set analysis (TcGSA) introduced here is an extension of such gene set analysis to longitudinal data. This method identifies a priori defined groups of genes whose expression is not stable over time, taking into account the potential heterogeneity between patients and between genes. When biological conditions are compared, it identifies the gene sets that have different expression dynamics according to these conditions. Data from 2 studies are analyzed: data from an HIV therapeutic vaccine trial, and data from a recent study on influenza and pneumococcal vaccines. In both cases, TcGSA provided new insights compared to standard approaches thanks to an increased sensitivity compared to other approaches. Those results highlight the benefits of the TcGSA method for analyzing gene expression dynamics.
Collapse
Affiliation(s)
- Boris P. Hejblum
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- INRIA, Team SISTM, F-33000 Bordeaux, France
- Vaccine Research Institute-VRI, Hôpital Henri Mondor, Créteil, France
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Jason Skinner
- Vaccine Research Institute-VRI, Hôpital Henri Mondor, Créteil, France
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Rodolphe Thiébaut
- Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- INRIA, Team SISTM, F-33000 Bordeaux, France
- Vaccine Research Institute-VRI, Hôpital Henri Mondor, Créteil, France
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
de Goede AL, Andeweg AC, van den Ham HJ, Bijl MA, Zaaraoui-Boutahar F, van IJcken WFJ, Wilgenhof S, Aerts JL, Gruters RA, Osterhaus ADME. DC immunotherapy in HIV-1 infection induces a major blood transcriptome shift. Vaccine 2015; 33:2922-9. [PMID: 25913415 DOI: 10.1016/j.vaccine.2015.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of dendritic cell (DC) vaccination against HIV-1 on host gene expression profiles. DESIGN Longitudinal PBMC samples were collected from participants of the DC-TRN trial for immunotherapy against HIV. Microarray-assisted gene expression profiling was performed to evaluate the effects of vaccination and subsequent interruption of antiretroviral therapy on host genome expression. Data from the DC-TRN trial were compared with results from other vaccination trials. METHODS We used Affymetrix GeneChips for microarray gene expression analysis. Data were analyzed by principal component analysis and differential gene expression was assessed using linear modeling. Gene ontology enrichment and gene set analysis were used to characterize differentially expressed genes. Transcriptome analysis included comparison with PBMCs obtained from DC-vaccinated melanoma patients and of healthy individuals who received seasonal influenza vaccination. RESULTS DC-TRN immunotherapy in HIV-infected individuals resulted in a major shift in the transcriptome. Longitudinal analysis demonstrated that changes in the transcriptome sustained also during interruption of antiretroviral therapy. After DC-vaccination, the transcriptome was enriched for cellular immunity associated genes that were also induced in healthy adults who received live attenuated influenza virus vaccination. These beneficial responses were accompanied by detrimental signals of general immune activation. CONCLUSIONS The DC-TRN induced changes in the transcriptome were profound, lasting, and consisted of both protective signals and signatures of inflammation and immune exhaustion, with a net result of decreased viral load, without clinical benefit. Thus transcriptome analysis provides useful information, dissecting both positive and negative effects, for the evaluation of safety and efficacy of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Anna L de Goede
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Maarten A Bijl
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Fatiha Zaaraoui-Boutahar
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Sofie Wilgenhof
- Department of Medical Oncology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Rob A Gruters
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
12
|
Abstract
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.
Collapse
|
13
|
Jasinska AJ, Schmitt CA, Service SK, Cantor RM, Dewar K, Jentsch JD, Kaplan JR, Turner TR, Warren WC, Weinstock GM, Woods RP, Freimer NB. Systems biology of the vervet monkey. ILAR J 2014; 54:122-43. [PMID: 24174437 DOI: 10.1093/ilar/ilt049] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.
Collapse
|
14
|
Ipp H, Zemlin AE, Erasmus RT, Glashoff RH. Role of inflammation in HIV-1 disease progression and prognosis. Crit Rev Clin Lab Sci 2014; 51:98-111. [PMID: 24479745 DOI: 10.3109/10408363.2013.865702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation and immune activation have been thrust to center stage in the understanding of HIV-1 disease pathogenesis and progression. Early work demonstrated that heightened levels of immune activation correlated with the extent of CD4 + T cell death in lymphoid tissue; however, this concept was not incorporated into the general view of disease pathogenesis. Since these early studies, the extension of life for patients on combination antiretroviral therapies (cART) has heralded a new era of non-AIDS-related diseases and incomplete restoration of immune function. The common link appears to be ongoing inflammation and immune activation. Thus, despite good control of viral loads, persons living with HIV (PLWH) remain at increased risk of inflammatory-associated complications such as cardiovascular disease and certain cancers. HIV-specific mechanisms as well as non-specific generalized responses to infection contribute to ongoing activation of the immune system. An early loss of gastrointestinal (GI) tract mucosal integrity, the pro-inflammatory cytokine milieu, co-infections and marked destruction of lymph node architecture are all factors contributing to the ongoing activation of the immune system as well as impaired immune recovery. It is becoming increasingly evident that the CD4 count and viral load do not provide a complete picture of the underlying state of the immune system. Heightened levels of inflammatory markers have been shown to predict increased mortality and other adverse events. Therefore, it will be important to incorporate these markers into management algorithms as soon as possible. This is particularly relevant in resource-poor countries where difficulties in cART roll-out and access are still encountered and, therefore, a mechanism for prioritizing individuals for therapy would be of value. This review will focus on the closely inter-related concepts of immune activation and inflammation. Both are broad concepts involving the interaction of various key players in the immune system. Importantly, immune activation promotes inflammation and thrombosis and similarly, inflammation and thrombosis induce immune activation. These concepts are thus intricately linked. Studies highlighting the potentially harmful effects of ongoing inflammation/immune activation are reviewed and the contributions of the GI tract "damage" and other co-infections such as CMV are explored. The complications resulting from persistent immune activation include enhanced CD4 + T cell death, lymphoid tissue destruction, and various pathologies related to chronic inflammation. Ultimately, we envision that the long-term management of the disease will incorporate both the identification and the amelioration of the potentially harmful effects of ongoing immune activation and inflammation.
Collapse
|
15
|
Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:111-23. [PMID: 23764256 PMCID: PMC3808516 DOI: 10.1016/j.dci.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 05/15/2023]
Abstract
Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, such as plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R-Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens' virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune strategies that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss the future prospects for research on natural pathogens of Drosophila.
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, United States.
| | | |
Collapse
|
16
|
Abstract
Host-pathogen interactions provide a fascinating example of two or more active genomes directly exerting mutual influence upon each other. These encounters can lead to multiple outcomes from symbiotic homeostasis to mutual annihilation, undergo multiple cycles of latency and lysogeny, and lead to coevolution of the interacting genomes. Such systems pose numerous challenges but also some advantages to modeling, especially in terms of functional, mathematical genome representations. The main challenges for the modeling process start with the conceptual definition of a genome for instance in the case of host-integrated viral genomes. Furthermore, hardly understood influences of the activity of either genome on the other(s) via direct and indirect mechanisms amplify the needs for a coherent description of genome activity. Finally, genetic and local environmental heterogeneities in both the host's cellular and the pathogen populations need to be considered in multiscale modeling efforts. We will review here two prominent examples of host-pathogen interactions at the genome level, discuss the current modeling efforts and their shortcomings, and explore novel ideas of representing active genomes which promise being particularly adapted to dealing with the modeling challenges posed by host-pathogen interactions.
Collapse
Affiliation(s)
- Arndt G Benecke
- Centre National de la Recherche Scientifique, Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440, Bures sur Yvette, France.
| |
Collapse
|
17
|
Current World Literature. Curr Opin Rheumatol 2013; 25:275-83. [DOI: 10.1097/bor.0b013e32835eb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ludewig B, Stein JV, Sharpe J, Cervantes-Barragan L, Thiel V, Bocharov G. A global "imaging'' view on systems approaches in immunology. Eur J Immunol 2013; 42:3116-25. [PMID: 23255008 DOI: 10.1002/eji.201242508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/02/2012] [Accepted: 10/27/2012] [Indexed: 12/30/2022]
Abstract
The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review.
Collapse
Affiliation(s)
- Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St Gallen, St Gallen, Switzerland.
| | | | | | | | | | | |
Collapse
|
19
|
Loss of a tyrosine-dependent trafficking motif in the simian immunodeficiency virus envelope cytoplasmic tail spares mucosal CD4 cells but does not prevent disease progression. J Virol 2012; 87:1528-43. [PMID: 23152518 DOI: 10.1128/jvi.01928-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A hallmark of pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections is the rapid and near-complete depletion of mucosal CD4(+) T lymphocytes from the gastrointestinal tract. Loss of these cells and disruption of epithelial barrier function are associated with microbial translocation, which has been proposed to drive chronic systemic immune activation and disease progression. Here, we evaluate in rhesus macaques a novel attenuated variant of pathogenic SIVmac239, termed ΔGY, which contains a deletion of a Tyr and a proximal Gly from a highly conserved YxxØ trafficking motif in the envelope cytoplasmic tail. Compared to SIVmac239, ΔGY established a comparable acute peak of viremia but only transiently infected lamina propria and caused little or no acute depletion of mucosal CD4(+) T cells and no detectable microbial translocation. Nonetheless, these animals developed T-cell activation and declining peripheral blood CD4(+) T cells and ultimately progressed with clinical or pathological features of AIDS. ΔGY-infected animals also showed no infection of macrophages or central nervous system tissues even in late-stage disease. Although the ΔGY mutation persisted, novel mutations evolved, including the formation of new YxxØ motifs in two of four animals. These findings indicate that disruption of this trafficking motif by the ΔGY mutation leads to a striking alteration in anatomic distribution of virus with sparing of lamina propria and a lack of microbial translocation. Because these animals exhibited wild-type levels of acute viremia and immune activation, our findings indicate that these pathological events are dissociable and that immune activation unrelated to gut damage can be sufficient for the development of AIDS.
Collapse
|
20
|
Distinct evolutionary pressures underlie diversity in simian immunodeficiency virus and human immunodeficiency virus lineages. J Virol 2012; 86:13217-31. [PMID: 23055550 DOI: 10.1128/jvi.01862-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques causes immune depletion and disease closely resembling human AIDS and is well recognized as the most relevant animal model for the human disease. Experimental investigations of viral pathogenesis and vaccine protection primarily involve a limited set of related viruses originating in sooty mangabeys (SIVsmm). The diversity of human immunodeficiency virus type 1 (HIV-1) has evolved in humans in about a century; in contrast, SIV isolates used in the macaque model evolved in sooty mangabeys over millennia. To investigate the possible consequences of such different evolutionary histories for selection pressures and observed diversity in SIVsmm and HIV-1, we isolated, sequenced, and analyzed 20 independent isolates of SIVsmm, including representatives of 7 distinct clades of viruses isolated from natural infection. We found SIVsmm diversity to be lower overall than HIV-1 M group diversity. Reduced positive selection (i.e., less diversifying evolution) was evident in extended regions of SIVsmm proteins, most notably in Gag p27 and Env gp120. In addition, the relative diversities of proteins in the two lineages were distinct: SIVsmm Env and Gag were much less diverse than their HIV-1 counterparts. This may be explained by lower SIV-directed immune activity in mangabeys relative to HIV-1-directed immunity in humans. These findings add an additional layer of complexity to the interpretation and, potentially, to the predictive utility of the SIV/macaque model, and they highlight the unique features of human and simian lentiviral evolution that inform studies of pathogenesis and strategies for AIDS vaccine design.
Collapse
|
21
|
Expression sequence tag library derived from peripheral blood mononuclear cells of the chlorocebus sabaeus. BMC Genomics 2012; 13:279. [PMID: 22726727 PMCID: PMC3539953 DOI: 10.1186/1471-2164-13-279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND African Green Monkeys (AGM) are amongst the most frequently used nonhuman primate models in clinical and biomedical research, nevertheless only few genomic resources exist for this species. Such information would be essential for the development of dedicated new generation technologies in fundamental and pre-clinical research using this model, and would deliver new insights into primate evolution. RESULTS We have exhaustively sequenced an Expression Sequence Tag (EST) library made from a pool of Peripheral Blood Mononuclear Cells from sixteen Chlorocebus sabaeus monkeys. Twelve of them were infected with the Simian Immunodeficiency Virus. The mononuclear cells were or not stimulated in vitro with Concanavalin A, with lipopolysacharrides, or through mixed lymphocyte reaction in order to generate a representative and broad library of expressed sequences in immune cells. We report here 37,787 sequences, which were assembled into 14,410 contigs representing an estimated 12% of the C. sabaeus transcriptome. Using data from primate genome databases, 9,029 assembled sequences from C. sabaeus could be annotated. Sequences have been systematically aligned with ten cDNA references of primate species including Homo sapiens, Pan troglodytes, and Macaca mulatta to identify ortholog transcripts. For 506 transcripts, sequences were quasi-complete. In addition, 6,576 transcript fragments are potentially specific to the C. sabaeus or corresponding to not yet described primate genes. CONCLUSIONS The EST library we provide here will prove useful in gene annotation efforts for future sequencing of the African Green Monkey genomes. Furthermore, this library, which particularly well represents immunological and hematological gene expression, will be an important resource for the comparative analysis of gene expression in clinically relevant nonhuman primate and human research.
Collapse
|