1
|
Zhu Q, Zhou J, Zhang Y, Huang H, Han J, Cao B, Xu D, Zhao Y, Chen G. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci 2023; 17:1196722. [PMID: 37284659 PMCID: PMC10239956 DOI: 10.3389/fnins.2023.1196722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the upper and lower motor neurons. Though the pathogenesis of ALS is still unclear, exploring the associations between risk factors and ALS can provide reliable evidence to find the pathogenesis. This meta-analysis aims to synthesize all related risk factors of ALS to understand this disease comprehensively. Methods We searched the following databases: PubMed, EMBASE, Cochrane library, Web of Science, and Scopus. Moreover, observational studies, including cohort studies, and case-control studies, were included in this meta-analysis. Results A total of 36 eligible observational studies were included, and 10 of them were cohort studies and the rest were case-control studies. We found six factors exacerbated the progression of disease: head trauma (OR = 1.26, 95% CI = 1.13, 1.40), physical activity (OR = 1.06, 95% CI = 1.04, 1.09), electric shock (OR = 2.72, 95% CI = 1.62, 4.56), military service (OR = 1.34, 95% CI = 1.11, 1.61), pesticides (OR = 1.96, 95% CI = 1.7, 2.26), and lead exposure (OR = 2.31, 95% CI = 1.44, 3.71). Of note, type 2 diabetes mellitus was a protective factor for ALS. However, cerebrovascular disease (OR = 0.99, 95% CI = 0.75, 1.29), agriculture (OR = 1.22, 95% CI = 0.74, 1.99), industry (OR = 1.24, 95% CI = 0.81, 1.91), service (OR = 0.47, 95% CI = 0.19, 1.17), smoking (OR = 1.25, 95% CI = 0.5, 3.09), chemicals (OR = 2.45, 95% CI = 0.89, 6.77), and heavy metal (OR = 1.5, 95% CI = 0.47, 4.84) were not risk factors for ALS based on meta-analyses. Conclusions Head trauma, physical activity, electric shock, military service, pesticides, and lead were risk factors for ALS onset and progression. But DM was a protective factor. This finding provides a better understanding of ALS risk factors with strong evidence for clinicians to rationalize clinical intervention strategies. INPLSY registration number https://inplasy.com/inplasy-2022-9-0118/, INPLASY202290118.
Collapse
Affiliation(s)
- Qiaochu Zhu
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yijie Zhang
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hai Huang
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Jie Han
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Biwei Cao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Dandan Xu
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Yan Zhao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Gang Chen
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
3
|
Filippini T, Mandrioli J, Malagoli C, Costanzini S, Cherubini A, Maffeis G, Vinceti M. Risk of Amyotrophic Lateral Sclerosis and Exposure to Particulate Matter from Vehicular Traffic: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030973. [PMID: 33499343 PMCID: PMC7908475 DOI: 10.3390/ijerph18030973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with still unknown etiology. Some occupational and environmental risk factors have been suggested, including long-term air pollutant exposure. We carried out a pilot case-control study in order to evaluate ALS risk due to particulate matter with a diameter of ≤10 µm (PM10) as a proxy of vehicular traffic exposure. (2) Methods: We recruited ALS patients and controls referred to the Modena Neurology ALS Care Center between 1994 and 2015. Using a geographical information system, we modeled PM10 concentrations due to traffic emissions at the geocoded residence address at the date of case diagnosis. We computed the odds ratio (OR) and 95% confidence interval (CI) of ALS according to increasing PM10 exposure, using an unconditional logistic regression model adjusted for age and sex. (3) Results: For the 132 study participants (52 cases and 80 controls), the average of annual median and maximum PM10 concentrations were 5.2 and 38.6 µg/m3, respectively. Using fixed cutpoints at 5, 10, and 20 of the annual median PM10 levels, and compared with exposure <5 µg/m3, we found no excess ALS risk at 5-10 µg/m3 (OR 0.87, 95% CI 0.39-1.96), 10-20 µg/m3 (0.94, 95% CI 0.24-3.70), and ≥20 µg/m3 (0.87, 95% CI 0.05-15.01). Based on maximum PM10 concentrations, we found a statistically unstable excess ALS risk for subjects exposed at 10-20 µg/m3 (OR 4.27, 95% CI 0.69-26.51) compared with those exposed <10 µg/m3. However, risk decreased at 20-50 µg/m3 (OR 1.49, 95% CI 0.39-5.75) and ≥50 µg/m3 (1.16, 95% CI 0.28-4.82). ALS risk in increasing tertiles of exposure showed a similar null association, while comparison between the highest and the three lowest quartiles lumped together showed little evidence for an excess risk at PM10 concentrations (OR 1.13, 95% CI 0.50-2.55). After restricting the analysis to subjects with stable residence, we found substantially similar results. (4) Conclusions: In this pilot study, we found limited evidence of an increased ALS risk due to long-term exposure at high PM10 concentration, though the high statistical imprecision of the risk estimates, due to the small sample size, particularly in some exposure categories, limited our capacity to detect small increases in risk, and further larger studies are needed to assess this relation.
Collapse
Affiliation(s)
- Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Carlotta Malagoli
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Sofia Costanzini
- DIEF Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | | | | | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Correspondence:
| |
Collapse
|
4
|
Malik R, Wiedau M. Therapeutic Approaches Targeting Protein Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:98. [PMID: 32581709 PMCID: PMC7296057 DOI: 10.3389/fnmol.2020.00098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease that targets motor neurons (MNs) in the brain and spinal cord. It leads to gradual loss of motor signals to muscles leading to atrophy and weakness. Most patients do not survive for more than 3–5 years after disease onset. Current ALS treatments provide only a small delay of disease progression. Therefore, it is of utmost importance to explore new therapeutic approaches. One of the major hindrances in achieving this goal is poor understanding of causes of the disease. ALS has complex pathophysiological mechanisms in its genetic and sporadic forms. Protein aggregates are a common hallmark of ALS regardless of cause making protein pathways attractive therapeutic targets in ALS. Here, we provide an overview of compounds in different stages of pharmacological development and their protein pathway targets.
Collapse
Affiliation(s)
- Ravinder Malik
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martina Wiedau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Oliveri Conti G, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M. Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082882. [PMID: 32331298 PMCID: PMC7216189 DOI: 10.3390/ijerph17082882] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Objectives: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with still unknown etiology. We aimed at investigating the association between environmental and occupational factors with ALS risk. Methods: We performed a population-based case-control study in four Italian provinces (Catania, Modena, Novara, and Reggio Emilia) by administration of tailored questionnaires to ALS cases (n = 95) and randomly selected population referents (n = 135). We estimated ALS risk by calculating the odds ratio (OR) with its 95% confidence interval (CI) using an unconditional logistic regression model. Results: We found a positive association with disease risk for history of occupation in the agricultural sector (OR = 2.09, 95% CI 0.79-7.54), especially for longer than 10 years (OR = 2.72, 95% 1.02-7.20). Overall occupational exposure to solvents also suggested a positive association, especially for thinners (OR = 2.27, 95% CI 1.14-4.54) and paint removers (OR = 2.01, 95% CI 0.90-4.48). Both occupational and environmental exposure to electromagnetic fields show a slightly increased risk with OR = 1.69 (95% CI 0.70-4.09) and 2.41 (95% CI 1.13-5.12), respectively. Occupational but not environmental exposure to pesticides (OR = 1.22, 95% CI 0.63-2.37), particularly fungicides, and exposure to metals (OR = 4.20, 95% CI 1.88-9.38), particularly lead, mercury, and selenium, showed an imprecise but positive association. Finally, there was an indication of increased risk for living in proximity to water bodies. Conclusions: Despite the caution that needs to be used due to some study limitations, such as the low number of exposed subjects and the possibility of recall bias, these results suggest the potential role of some environmental and occupational factors in ALS etiology.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Correspondence:
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Maria Fiore
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Federica Violi
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Laura Iacuzio
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Public Health, Local Health Unit, 41121 Modena, Italy
| | - Elisa Arcolin
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Elisabetta Zucchi
- Neurology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Letizia Mazzini
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Fabrizio Pisano
- Neurological Rehabilitation Division, Policlinico San Marco di Zingonia, 24046 Zingonia (BG), Italy;
| | - Ileana Gagliardi
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Francesco Patti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
6
|
Nabais MF, Lin T, Benyamin B, Williams KL, Garton FC, Vinkhuyzen AAE, Zhang F, Vallerga CL, Restuadi R, Freydenzon A, Zwamborn RAJ, Hop PJ, Robinson MR, Gratten J, Visscher PM, Hannon E, Mill J, Brown MA, Laing NG, Mather KA, Sachdev PS, Ngo ST, Steyn FJ, Wallace L, Henders AK, Needham M, Veldink JH, Mathers S, Nicholson G, Rowe DB, Henderson RD, McCombe PA, Pamphlett R, Yang J, Blair IP, McRae AF, Wray NR. Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. NPJ Genom Med 2020; 5:10. [PMID: 32140259 PMCID: PMC7046630 DOI: 10.1038/s41525-020-0118-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case–control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62–0.68], p = 8.3 × 10−22). The maximum AUC achieved was 0.69 (CI95% = [0.66–0.71], p = 4.3 × 10−34) when cell-type proportion was included in the predictor.
Collapse
Affiliation(s)
- Marta F Nabais
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK
| | - Tian Lin
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Beben Benyamin
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,3Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia, Adelaide, SA 5001 Australia
| | - Kelly L Williams
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Fleur C Garton
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anna A E Vinkhuyzen
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Futao Zhang
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Costanza L Vallerga
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Restuadi Restuadi
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anna Freydenzon
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ramona A J Zwamborn
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Paul J Hop
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Matthew R Robinson
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Jacob Gratten
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,6Mater Research Institute, The University of Queensland, Brisbane, QLD 4101 Australia
| | - Peter M Visscher
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Eilis Hannon
- 2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK
| | - Jonathan Mill
- 2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK.,8Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF UK
| | - Matthew A Brown
- 9Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD 4102 Australia
| | - Nigel G Laing
- 10The Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009 Australia.,11Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009 Australia
| | - Karen A Mather
- 12Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031 Australia.,13Neuroscience Research Australia Institute, Randwick, NSW 2031 Australia
| | - Perminder S Sachdev
- 12Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031 Australia.,14Neuropsychiatric Institute, The Prince of Wales Hospital, University of New South Wales, Randwick, NSW 2031 Australia
| | - Shyuan T Ngo
- 7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia.,15The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia
| | - Frederik J Steyn
- 15The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia
| | - Leanne Wallace
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anjali K Henders
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Merrilee Needham
- 17Fiona Stanley Hospital, Perth, WA 6150 Australia.,18The University of Notre Dame Australia, Fremantle, WA 6160 Australia.,19Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150 Australia
| | - Jan H Veldink
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Susan Mathers
- 20Calvary Health Care Bethlehem, Parkdale, VIC 3195 Australia
| | - Garth Nicholson
- 21ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW 2139 Australia
| | - Dominic B Rowe
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Robert D Henderson
- 7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia.,22Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029 Australia
| | - Pamela A McCombe
- 16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia.,22Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029 Australia
| | - Roger Pamphlett
- 23Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | - Jian Yang
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ian P Blair
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Allan F McRae
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Naomi R Wray
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
7
|
Trabjerg BB, Garton FC, van Rheenen W, Fang F, Henderson RD, Mortensen PB, Agerbo E, Wray NR. ALS in Danish Registries: Heritability and links to psychiatric and cardiovascular disorders. NEUROLOGY-GENETICS 2020; 6:e398. [PMID: 32211514 PMCID: PMC7073454 DOI: 10.1212/nxg.0000000000000398] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Objective To investigate the genetic contribution to amyotrophic lateral sclerosis (ALS) and the phenotypic and genetic associations between ALS and psychiatric and cardiovascular disorders (CVD) we used the national registry data from Denmark linked to first-degree relatives to estimate heritability and cross-trait parameters. Methods ALS cases and 100 sex and birth-matched controls per case from the Danish Civil Registration System were linked to their records in the Danish National Patient Registry. Cases and controls were compared for (1) risk of ALS in first-degree relatives, used to estimate heritability, (2) comorbidity with psychiatric disorders and CVD, and (3) risk of psychiatric disorders and CVD in first-degree relatives. Results 5,808 ALS cases and 580,800 controls were identified. Fifteen percent of cases and controls could be linked to both parents and full siblings, whereas 70% could be linked to children. (1) We estimated the heritability of ALS to be 0.43 (95% CI, 0.34–0.53). (2) We found increased rates of diagnosis of mental disorders (risk ratio = 1.18; 95% CI, 1.09–1.29) and CVD in those later diagnosed with ALS. (3) In first-degree relatives of those with ALS, we found increased rate of schizophrenia (1.17; 95% CI, 0.96–1.42), but no evidence for increased risk CVD. Conclusions Heritability of ALS is lower than commonly reported. There is likely a genetic relationship between ALS and schizophrenia, and a nongenetic relationship between ALS and CVD.
Collapse
Affiliation(s)
- Betina B Trabjerg
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Fleur C Garton
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Wouter van Rheenen
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Fang Fang
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Robert D Henderson
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Preben Bo Mortensen
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Esben Agerbo
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| | - Naomi R Wray
- National Centre for Register-Based Research NCRR (B.B.T., P.B.M., E.A.), Aarhus University; Centre for Integrated Register-Based Research CIRRAU (B.B.T., P.B.M., E.A.), Aarhus University; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (B.B.T., P.B.M., E.A.), iPSYCH, Denmark; Institute for Molecular Bioscience (F.C.G., N.R.W.), University of Queensland, Brisbane, Australia; Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics (F.F.), Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research (R.D.H.), The University of Queensland, Brisbane; Queensland Brain Institute (R.D.H., N.R.W.), University of Queensland, Brisbane; Department of Neurology (R.D.H.), Royal Brisbane and Women's Hospital, Australia
| |
Collapse
|
8
|
Dickerson AS, Hansen J, Specht AJ, Gredal O, Weisskopf MG. Population-based study of amyotrophic lateral sclerosis and occupational lead exposure in Denmark. Occup Environ Med 2019; 76:208-214. [PMID: 30705111 DOI: 10.1136/oemed-2018-105469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Previous research has indicated links between lead (Pb) exposure and increased risk of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In this study, we evaluated the association between occupational Pb exposures and ALS. METHODS ALS cases were ascertained through the Danish National Patient Registry from 1982 to 2013 and age and sex-matched to 100 controls. Using complete employment history since 1964 from the Danish Pension Fund, cumulative Pb exposure was estimated for each subject via a Danish job exposure matrix. Associations were evaluated using conditional logistic regression analyses and stratified by sex. RESULTS For men with >50% probability of exposure, there was an increase in odds of ALS for exposures in the 60th percentile or higher during any time 5 years prior to diagnosis (aOR: 1.35; 95% CI 1.04 to 1.76) and 10 years prior to diagnosis (aOR: 1.33; 95% CI 1.03 to 1.72). No significant associations were observed in women, and there were no linear trends seen for Pb exposures for either sex. CONCLUSIONS Our study indicates an association between consistently higher occupational Pb exposures and ALS. These findings support those of previously reported associations between ALS and specific occupations that commonly experience Pb exposure.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Johnni Hansen
- Occupation Research Unit, Institute of Cancer Epidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Aaron J Specht
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ole Gredal
- Occupation Research Unit, Institute of Cancer Epidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Dickerson AS, Hansen J, Gredal O, Weisskopf MG. Amyotrophic Lateral Sclerosis and Exposure to Diesel Exhaust in a Danish Cohort. Am J Epidemiol 2018; 187:1613-1622. [PMID: 29590300 DOI: 10.1093/aje/kwy069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies have suggested an increased risk of amyotrophic lateral sclerosis (ALS) and other motor neuron diseases for persons in occupations commonly involving exposure to diesel exhaust (DE). In this study, we investigated the association between occupational exposure to DE and odds of ALS. ALS cases were identified from the Danish National Patient Registry (1982-2013) and individually matched to 100 controls per case on the basis of birth year and sex. Using information on occupational history from 1964 onward obtained from the Danish Pension Fund, we estimated cumulative DE exposures using a job exposure matrix. We evaluated associations using conditional logistic regression analyses and stratified the analyses by sex. Using a 10-year lag period, DE exposure was positively associated with ALS among men who had ever been exposed (adjusted odds ratio (aOR) = 1.20, 95% confidence interval (CI): 1.05, 1.38). For men with greater than 50% probability of DE exposure, we observed a positive association between ALS and highest-quartile exposure during the 5-year (aOR = 1.35, 95% CI: 1.07, 1.70) and 10-year (aOR = 1.41, 95% CI: 1.11, 1.79) lag periods. Our study suggests an association between consistently higher exposures to DE and ALS in men, but not in women. These findings support previous reports of associations between ALS and occupations commonly involving DE exposure.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Departments of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Johnni Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ole Gredal
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marc G Weisskopf
- Departments of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
10
|
Military Service and Amyotrophic Lateral Sclerosis in a Population-based Cohort: Extended Follow-up 1979-2011. Epidemiology 2018; 28:e15-e16. [PMID: 27893489 DOI: 10.1097/ede.0000000000000589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Lin H, Hu H, Duan W, Liu Y, Tan G, Li Z, Liu Y, Deng B, Song X, Wang W, Wen D, Wang Y, Li C. Intramuscular Delivery of scAAV9-hIGF1 Prolongs Survival in the hSOD1 G93A ALS Mouse Model via Upregulation of D-Amino Acid Oxidase. Mol Neurobiol 2018; 55:682-695. [PMID: 27995572 DOI: 10.1007/s12035-016-0335-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Self-complementary adeno-associated viral vector 9 (scAAV9) has been confirmed to be an efficient AAV serotype for gene transfer to the central nervous system (CNS). Neurotrophic factors have been considered to be therapeutic targets for amyotrophic lateral sclerosis (ALS). In the present study, we intramuscularly injected scAAV9 encoding human insulin-like growth factor 1 (hIGF1) into an hSOD1G93A ALS mouse model. We observed that scAAV9-hIGF1 significantly reduced the loss of motor neurons of the anterior horn in the lumbar spinal cord and delayed muscle atrophy in ALS mice. Importantly, IGF1 significantly delayed disease onset and prolonged the life span of ALS mice. In addition, scAAV9-hIGF1 protected motor neurons from apoptosis through upregulation of D-amino acid oxidase (DAO), which controls the level of D-serine. Moreover, to further verify these results, we used CRISPR-Cas9 system to target the central nervous system knockdown of IGF1. This experiment supported the continued investigation of neurotrophic factor gene therapies targeting the central nervous system as a potential treatment for ALS.
Collapse
Affiliation(s)
- HuiQian Lin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - HaoJie Hu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - WeiSong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - YaLing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - GuoJun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - ZhongYao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - YaKun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - BinBin Deng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - XueQin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - Wan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - ChunYan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
- Key Laboratory of Hebei Neurology, Shijiazhuang, China.
| |
Collapse
|
12
|
Occupational formaldehyde and amyotrophic lateral sclerosis. Eur J Epidemiol 2017; 32:893-899. [PMID: 28585120 DOI: 10.1007/s10654-017-0249-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
Prior studies have yielded inconsistent evidence regarding the association between formaldehyde exposure and amyotrophic lateral sclerosis (ALS). We conducted a population case-control study in the Danish National Registries on the relationship between occupationally-derived formaldehyde exposure and ALS. Occupational history was obtained from a comprehensive and prospectively recorded pension database of all paid work in Denmark since 1964, and was linked to a job-exposure matrix to derive individual exposure estimates. Each case was matched to 4 age- and sex-matched population controls alive on the date of the case diagnosis via risk set sampling, and odds ratios and confidence intervals (CI) were calculated via conditional logistic regression, adjusting for potential confounders. There were 3650 incident cases of ALS in the Danish National Patient Register from 1982 to 2009. Among controls, 25% were ever employed in jobs with a positive prevalence of formaldehyde exposure. Exposure to formaldehyde was associated with a 1.3-fold increased rate of ALS (95% CI 1.2-1.4). This study suggests that formaldehyde exposure, or employment in formaldehyde-exposed occupations, is related to the risk of ALS.
Collapse
|
13
|
Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders. Pharmacol Ther 2016; 167:108-119. [PMID: 27524729 PMCID: PMC5341142 DOI: 10.1016/j.pharmthera.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
Neurological disorders account for a majority of non-malignant disability in humans and are often associated with dysfunction of the blood-brain barrier (BBB). Recent evidence shows that despite apparent variation in the origin of neural damage, the central nervous system has a common injury response mechanism involving platelet-derived growth factor (PDGF)-CC activation in the neurovascular unit and subsequent dysfunction of BBB integrity. Inhibition of PDGF-CC signaling with imatinib in mice has been shown to prevent BBB dysfunction and have neuroprotective effects in acute damage conditions, including traumatic brain injury, seizures or stroke, as well as in neurodegenerative diseases that develop over time, including multiple sclerosis and amyotrophic lateral sclerosis. Stroke and traumatic injuries are major risk factors for age-associated neurodegenerative disorders and we speculate that restoring BBB properties through PDGF-CC inhibition might provide a common therapeutic opportunity for treatment of both acute and progressive neuropathology in humans. In this review we will summarize what is known about the role of PDGF-CC in neurovascular signaling events and the variety of seemingly different neuropathologies it is involved in. We will also discuss the pharmacological means of therapeutic interventions for anti-PDGF-CC therapy and ongoing clinical trials. In summary: inhibition of PDGF-CC signaling can be protective for immediate injury and decrease the long-term neurodegenerative consequences.
Collapse
Affiliation(s)
- Sebastian A Lewandowski
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| | - Linda Fredriksson
- Vascular Biology Groups, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Ulf Eriksson
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| |
Collapse
|
14
|
Schwartz GG, Klug MG. Motor neuron disease mortality rates in U.S. states are associated with well water use. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:528-534. [PMID: 27324739 PMCID: PMC5152538 DOI: 10.1080/21678421.2016.1195409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an unknown cause and invariably fatal outcome. We sought to evaluate a correlation between motor neuron disease (MND) mortality rates and residential radon levels that was previously reported for counties in the United Kingdom. We examined the relationships between age-adjusted MND mortality rates in U.S. states with residential radon levels, well water use, and other variables using structural equation modeling. We observed a significant correlation between MND mortality rates and radon levels. However, in structural equation models, radon did not have a significant, direct effect on MND mortality rates. Conversely, MND mortality rates were significantly and directly predicted by race and by the percentage of the population of each state using well water (p < 0.001 and p = 0.022). We observed similar, significant effects for well water use and MND mortality for males and females separately (p < 0.05). In conclusion, we hypothesize that the association of MND mortality rates with well water use reflects contamination of wells with Legionella, a bacterium common in well water that is known to cause neurologic disease. A Legionella hypothesis is a biologically plausible cause of ALS and suggests new avenues for etiologic research.
Collapse
Affiliation(s)
- Gary G. Schwartz
- Department of Population Health, University of North Dakota School of Medicine & Health Sciences,
Grand Forks,
ND,
USA
| | - Marilyn G. Klug
- Department of Population Health, University of North Dakota School of Medicine & Health Sciences,
Grand Forks,
ND,
USA
| |
Collapse
|
15
|
Beard JD, Engel LS, Richardson DB, Gammon MD, Baird C, Umbach DM, Allen KD, Stanwyck CL, Keller J, Sandler DP, Schmidt S, Kamel F. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology. ENVIRONMENT INTERNATIONAL 2016; 91:104-115. [PMID: 26923711 PMCID: PMC4876822 DOI: 10.1016/j.envint.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Factors underlying a possible excess of amyotrophic lateral sclerosis (ALS) among military veterans remain unidentified. Limitations of previous studies on this topic include reliance on ALS mortality as a surrogate for ALS incidence, low statistical power, and sparse information on military-related factors. OBJECTIVES We evaluated associations between military-related factors and ALS using data from a case-control study of U.S. military veterans. METHODS From 2005 to 2010, we identified medical record-confirmed ALS cases via the National Registry of Veterans with ALS and controls via the Veterans Benefits Administration's Beneficiary Identification and Records Locator System database. In total, we enrolled 621 cases and 958 frequency-matched controls in the Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis study. We collected information on military service and deployments and 39 related exposures. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We used inverse probability weighting to adjust for potential bias from confounding, missing covariate data, and selection arising from a case group that disproportionately included long-term survivors and a control group that may or may not differ from U.S. military veterans at large. RESULTS The odds of ALS did not differ for veterans of the Air Force, Army, Marines, and Navy. We found higher odds of ALS for veterans whose longest deployment was World War II or the Korean War and a positive trend with total years of all deployments (OR=1.27; 95% CI: 1.06, 1.52). ALS was positively associated with exposure to herbicides for military purposes, nasopharyngeal radium, personal pesticides, exhaust from heaters or generators, high-intensity radar waves, contaminated food, explosions within one mile, herbicides in the field, mixing and application of burning agents, burning agents in the field, and Agent Orange in the field, with ORs between 1.50 and 7.75. CONCLUSIONS Although our results need confirmation, they are potentially important given the large number of U.S. military veterans, and they provide clues to potential factors underlying the apparent increase of ALS in veteran populations.
Collapse
Affiliation(s)
- John D Beard
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marilie D Gammon
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Coleen Baird
- Environmental Medicine Program, US Army Public Health Command, Aberdeen Proving Ground, MD, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kelli D Allen
- Durham VA Medical Center, Durham, NC, USA; Department of Medicine and Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine L Stanwyck
- Durham VA Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Silke Schmidt
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|