1
|
Zhang P, Fu G, Xu W, Gong K, Zhao Z, Sun K, Zhang C, Han R, Shao G. Up-regulation of miR-126 via DNA methylation in hypoxia-preconditioned endothelial cells may contribute to hypoxic tolerance of neuronal cells. Mol Biol Rep 2024; 51:808. [PMID: 39002003 DOI: 10.1007/s11033-024-09774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Gang Fu
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Wenqing Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, Department of Neurosurgery, University of California San Francisco, San Francisco, USA
| | - Zhujun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China
| | - Kai Sun
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
| | - Ruijuan Han
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China.
| | - Guo Shao
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third, People's Hospital of Longgang District, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
2
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Hanson BE, Feider AJ, Hanada S, Aldrich AW, Casey DP. Muscle blood flow and vasodilation are blunted at the onset of exercise following an acute bout of ischemia-reperfusion. J Appl Physiol (1985) 2023; 135:1053-1061. [PMID: 37767553 DOI: 10.1152/japplphysiol.00314.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury can attenuate endothelial function and impair nitric oxide bioavailability. We tested the hypothesis that I/R also blunts the rapid and steady-state hyperemic and vasodilatory responses to handgrip exercise. Ten subjects (8M/2F; 24 ± 4 yr) performed handgrip exercises before and after I/R (20 min of ischemia/20 min of reperfusion) and time control (40-min supine rest) trials. Forearm blood flow (FBF) and forearm vascular conductance (FVC) were assessed with Doppler ultrasound during single forearm contractions and 3 min of rhythmic handgrip exercise. Venous blood samples were drawn at rest and during exercise to assess plasma [nitrite]. Peak ΔFBF (from baseline) and ΔFVC following single contractions were attenuated following I/R (134 ± 48 vs. 103 ± 42 mL·min-1; 160 ± 55 vs. 118 ± 48 mL·min-1·100 mmHg-1, P < 0.05 for both), but not following time control (115 ± 63 vs. 124 ± 57 mL·min-1; 150 ± 80 vs. 148 ± 64 mL·min-1·100 mmHg-1, P = 0.16 and P = 0.95, respectively). Steady-state ΔFBF and ΔFVC during rhythmic exercise were unchanged in both I/R (192 ± 52 vs. 190 ± 53 mL·min-1; 208 ± 56 vs. 193 ± 60 mL·min-1·100 mmHg-1) and time control (188 ± 54 vs. 196 ± 48 mL·min-1; 206 ± 60 vs. 207 ± 49 mL·min-1·100 mmHg-1) trials (group × time interactions P = 0.34 and 0.21, respectively). Plasma [nitrite] under resting conditions and during steady-state rhythmic exercise was attenuated following I/R (P < 0.05 for both), but not following time control (P = 0.54 and 0.93). These data indicate that I/R blunts hyperemia and vasodilation at the onset of muscle contractions but does not attenuate these responses during steady-state exercise.NEW & NOTEWORTHY Ischemia-reperfusion can impair endothelial function; however, it remains unknown whether exercise hyperemia and vasodilation are also impaired. This study presents novel findings that ischemia-reperfusion blunts the hyperemic and vasodilatory responses at the onset of muscle contractions but not during steady-state exercise. Plasma [nitrite] was also blunted at baseline and during steady-state exercise following ischemia-reperfusion compared with time control. These attenuated responses at the onset of exercise may be associated with ischemia-reperfusion reductions in NO bioavailability.
Collapse
Affiliation(s)
- Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Aric W Aldrich
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Mühlenpfordt M, Olsen EB, Kotopoulis S, Torp SH, Snipstad S, Davies CDL, Olsman M. Real-Time Intravital Imaging of Acoustic Cluster Therapy-Induced Vascular Effects in the Murine Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1212-1226. [PMID: 36858913 DOI: 10.1016/j.ultrasmedbio.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The blood-brain barrier (BBB) is an obstacle for cerebral drug delivery. Controlled permeabilization of the barrier by external stimuli can facilitate the delivery of drugs to the brain. Acoustic Cluster Therapy (ACT®) is a promising strategy for transiently and locally increasing the permeability of the BBB to macromolecules and nanoparticles. However, the mechanism underlying the induced permeability change and subsequent enhanced accumulation of co-injected molecules requires further elucidation. METHODS In this study, the behavior of ACT® bubbles in microcapillaries in the murine brain was observed using real-time intravital multiphoton microscopy. For this purpose, cranial windows aligned with a ring transducer centered around an objective were mounted to the skull of mice. Dextrans labeled with 2 MDa fluorescein isothiocyanate (FITC) were injected to delineate the blood vessels and to visualize extravasation. DISCUSSION Activated ACT® bubbles were observed to alter the blood flow, inducing transient and local increases in the fluorescence intensity of 2 MDa FITC-dextran and subsequent extravasation in the form of vascular outpouchings. The observations indicate that ACT® induced a transient vascular leakage without causing substantial damage to the vessels in the brain. CONCLUSION The study gave novel insights into the mechanism underlying ACT®-induced enhanced BBB permeability which will be important considering treatment optimization for a safe and efficient clinical translation of ACT®.
Collapse
Affiliation(s)
- Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Exact Therapeutics AS, Oslo, Norway.
| | - Emma Bøe Olsen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Spiros Kotopoulis
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre H Torp
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pathology, St. Olav's Hospital, Trondheim University Hospital Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | | | - Marieke Olsman
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, Abdulle AE, van Roon AM, Stel A, van Goor H, Smit AJ, Westra J, Mulder DJ. Release of High-Mobility Group Box-1 after a Raynaud's Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:antiox12040794. [PMID: 37107169 PMCID: PMC10134976 DOI: 10.3390/antiox12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Raynaud's Phenomenon (RP) leading to repetitive ischemia and reperfusion (IR) stress, is the first recognizable sign of systemic sclerosis (SSc) leading to increased oxidative stress. High-mobility group box-1 (HMGB1) is a nuclear factor released by apoptotic and necrotic cells after oxidative stress. Since HMGB1 can signal through the receptor for advanced glycation end products (RAGE), we investigated whether an RP attack promotes the release of HMGB1, leading to fibroblast activation and the upregulation of interferon (IFN)-inducible genes. A cold challenge was performed to simulate an RP attack in patients with SSc, primary RP (PRP), and healthy controls. We measured levels of HMGB1 and IFN gamma-induced Protein 10 (IP-10) at different time points in the serum. Digital perfusion was assessed by photoplethysmography. In vitro, HMGB1 or transforming growth factor (TGF-β1) (as control) was used to stimulate healthy human dermal fibroblasts. Inflammatory, profibrotic, and IFN-inducible genes, were measured by RT-qPCR. In an independent cohort, sera were obtained from 20 patients with SSc and 20 age- and sex-matched healthy controls to determine HMGB1 and IP-10 levels. We found that HMGB1 levels increased significantly 30 min after the cold challenge in SSc compared to healthy controls. In vitro stimulation with HMGB1 resulted in increased mRNA expression of IP-10, and interleukin-6 (IL-6) while TGF-β1 stimulation promoted IL-6 and Connective Tissue Growth Factor (CTGF). In serum, both HMGB1 and IP-10 levels were significantly higher in patients with SSc compared to healthy controls. We show that cold challenge leads to the release of HMGB1 in SSc patients. HMGB1 induces IP-10 expression in dermal fibroblasts partly through the soluble RAGE (sRAGE) axis suggesting a link between RP attacks, the release of HMGB1 and IFN-induced proteins as a putative early pathogenetic mechanism in SSc.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Isabella M Atzeni
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amaal Eman Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anniek M van Roon
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Andries J Smit
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
Luo T, Cui JS, Peng H, Xiang X, Xu Y, Yang H. Effect of blood pressure on the prognosis of acute ischemic stroke patients caused by anterior circulation large vessel occlusion without recanalization. Clin Neurol Neurosurg 2022; 224:107540. [PMID: 36509017 DOI: 10.1016/j.clineuro.2022.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE To explore the effect of blood pressure on the prognosis of acute ischemic stroke patients caused by anterior circulation large vessel occlusion without recanalization. METHODS Acute ischemic stroke patients caused by anterior circulation large vessel occlusion without recanalization were retrospectively collected. All patients were divided into the functional independent group and non-functional independent group, death group and non-death group based on the 90-day mRS score. Logistic regression was applied to analyze the relationship between the highest systolic blood pressure, the average systolic blood pressure, the lowest systolic blood pressure, the highest diastolic blood pressure, the average diastolic blood pressure, the lowest diastolic blood pressure in the first 24 h after admission and the functional prognosis as well as the complications after 90 days. The independent impact factors selected from regression analysis were used to investigate the blood pressure with prognostic value by receiver operating characteristic curve (ROC). RESULTS A total of 70 patients were recruited in this study. Among them, 39 cases (55.71%) were male and 31 cases (44.29%) were female, with a mean age of 61.83 ± 15.24 years old. 15 cases (21.43%) had a favorable 90-day outcome, and the other 55 cases (78.57%) had a higher mRS Score. After a 90-day follow-up, univariate analysis showed that hypertension and hyperlipidemia, highest systolic blood pressure, mean systolic blood pressure and NIHSS score were statistically significant in two groups with or without functional independence, while the NIHSS score at admission, systolic blood pressure at admission, average systolic blood pressure, highest systolic blood pressure and diastolic blood pressure were statistically significant in patients with death outcomes (P < 0.05). Multivariate regression analysis suggested that the highest systolic blood pressure was statistically significant (P < 0.05), the further ROC curve results showed the cut-off value of the highest systolic blood pressure was 180.5 mmHg, with a sensitivity of 82.35% and a specificity of 81.13%. The highest Youden's index was 0.6348. CONCLUSION For acute ischemic stroke patients caused by anterior circulation large vessel occlusion without recanalization, the appropriate reduction of blood pressure within 24 h after admission may have a positive effect on the clinical prognosis. The 90-day mortality of acute ischemic stroke patients without revascularization was independently related to the highest systolic blood pressure. The risk of death was increased when the highest systolic blood pressure was greater than 180.5 mmHg.
Collapse
Affiliation(s)
- Tao Luo
- Clinical Medical College of Guizhou Medical University, Guizhou, China
| | - Jun Shuan Cui
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Han Peng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xin Xiang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Yuan Xu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China..
| |
Collapse
|
7
|
Roesel MJ, Sharma NS, Schroeter A, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Primary Graft Dysfunction: The Role of Aging in Lung Ischemia-Reperfusion Injury. Front Immunol 2022; 13:891564. [PMID: 35686120 PMCID: PMC9170999 DOI: 10.3389/fimmu.2022.891564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Transplant centers around the world have been using extended criteria donors to remedy the ongoing demand for lung transplantation. With a rapidly aging population, older donors are increasingly considered. Donor age, at the same time has been linked to higher rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to inferior short- and long-term survival. Understanding and improving the condition of older lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both experimental and clinical data on the effects of aging in augmenting the consequences of IRI and PGD in lung transplantation.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Nirmal S Sharma
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Hong JM, Kim DS, Kim M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front Neurol 2021; 12:703258. [PMID: 34917010 PMCID: PMC8669478 DOI: 10.3389/fneur.2021.703258] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
Symptomatic hemorrhagic transformation (HT) is one of the complications most likely to lead to death in patients with acute ischemic stroke. HT after acute ischemic stroke is diagnosed when certain areas of cerebral infarction appear as cerebral hemorrhage on radiological images. Its mechanisms are usually explained by disruption of the blood-brain barrier and reperfusion injury that causes leakage of peripheral blood cells. In ischemic infarction, HT may be a natural progression of acute ischemic stroke and can be facilitated or enhanced by reperfusion therapy. Therefore, to balance risks and benefits, HT occurrence in acute stroke settings is an important factor to be considered by physicians to determine whether recanalization therapy should be performed. This review aims to illustrate the pathophysiological mechanisms of HT, outline most HT-related factors after reperfusion therapy, and describe prevention strategies for the occurrence and enlargement of HT, such as blood pressure control. Finally, we propose a promising therapeutic approach based on biological research studies that would help clinicians treat such catastrophic complications.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| | - Da Sol Kim
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| | - Min Kim
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| |
Collapse
|
9
|
Yi Z, Zhang M, Ma Z, Tuo B, Liu A, Deng Z, Zhao Y, Li T, Liu X. Role of the posterior mucosal defense barrier in portal hypertensive gastropathy. Biomed Pharmacother 2021; 144:112258. [PMID: 34614465 DOI: 10.1016/j.biopha.2021.112258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Portal hypertensive gastropathy (PHG) is a complication of cirrhotic or noncirrhotic portal hypertension. PHG is very important in the clinic because it can cause acute or even massive blood loss, and its treatment efficacy and prognosis are poor. Currently, the incidence of PHG in patients with cirrhosis is 20-80%, but its pathogenesis is complicated and poorly understood. Studies have shown that portal hypertension can cause changes in gastric mucosal microcirculation hemodynamics, leading to changes in gastric mucosal histology and function and thereby weakening the mucosal defense barrier. However, no specific drug treatment plans are currently available. This article reviews the current literature to further our understanding of the mechanism underlying PHG and the relationship between PHG and the posterior mucosal defense barrier and to explore new therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Aimin Liu
- Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
10
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Lima VSS, Mariano DOC, Vigerelli H, Janussi SC, Baptista TVL, Claudino MA, Pimenta DC, Sciani JM. Effects of Kynurenic Acid on the Rat Aorta Ischemia-Reperfusion Model: Pharmacological Characterization and Proteomic Profiling. Molecules 2021; 26:2845. [PMID: 34064778 PMCID: PMC8150825 DOI: 10.3390/molecules26102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Kynurenic acid (KYNA) is derived from tryptophan, formed by the kynurenic pathway. KYNA is being widely studied as a biomarker for neurological and cardiovascular diseases, as it is found in ischemic conditions as a protective agent; however, little is known about its effect after ischemia-reperfusion in the vascular system. We induced ischemia for 30 min followed by 5 min reperfusion (I/R) in the rat aorta for KYNA evaluation using functional assays combined with proteomics. KYNA recovered the exacerbated contraction induced by phenylephrine and relaxation induced by acetylcholine or sodium nitroprussiate in the I/R aorta, with vessel responses returning to values observed without I/R. The functional recovery can be related to the antioxidant activity of KYNA, which may be acting on the endothelium-injury prevention, especially during reperfusion, and to proteins that regulate neurotransmission and cell repair/growth, expressed after the KYNA treatment. These proteins interacted in a network, confirming a protein profile expression for endothelium and neuron repair after I/R. Thus, the KYNA treatment had the ability to recover the functionality of injured ischemic-reperfusion aorta, by tissue repairing and control of neurotransmitter release, which reinforces its role in the post-ischemic condition, and can be useful in the treatment of such disease.
Collapse
Affiliation(s)
- Viviane Soares Souza Lima
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | | | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, 05503-900 São Paulo, Brazil;
| | - Sabrina Cardoso Janussi
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Thayz Vanalli Lima Baptista
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Mário Angelo Claudino
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Daniel Carvalho Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, 05503-900 São Paulo, Brazil; (D.O.C.M.); (D.C.P.)
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| |
Collapse
|
12
|
Charyshkin AL, Iashkov MV, Gumerov II, Maksin AA. [Lymphotropic therapy in patients after surgical revascularization of lower-limb vessels]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2021; 27:136-141. [PMID: 33825740 DOI: 10.33529/angio2021114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Occlusive and stenotic lesions of lower-limb arteries appear to be amongst the most common manifestations of the pathology of the cardiovascular system and are characterized by various degree of chronic arterial insufficiency. Revascularization is the main stage of treatment for chronic arterial insufficiency of the lower extremities. Performing a reconstructive operation aimed at restoring the arterial blood flow in the ischaemized extremity is accompanied and followed by the development of reperfusion syndrome. The purpose of this study was to assess efficacy of using regional lymphotropic therapy for treatment of reperfusion syndrome in patients with chronic ischaemia of lower limbs in the postoperative period. The study included two groups of patients: the comparison group with standard postoperative treatment and the study group where the standard therapy was supplemented with regional lymphotropic therapy. In the postoperative period, the patients in both groups developed reperfusion oedema of the operated lower limb on day 3 after arterial reconstruction, however, on POD 7 after revascularization, the severity of oedema was apparently less in the study group. Lymphorrhoea after operative treatment in the study group was encountered significantly less often as compared with the control group. According to the findings of ultrasonographic examination of soft tissues in the postoperative period, patients of both groups on POD 3 were found to have pronounced oedema of soft tissues. However, on POD 7 the study group patients demonstrated a dramatic decrease in the thickness of oedema of the subcutaneous fat versus the comparison group patients. Regional lymphotropic therapy after reconstructive operations on arteries of lower limbs promoted a decrease in the severity of reperfusion syndrome on the operated lower limb.
Collapse
Affiliation(s)
- A L Charyshkin
- Department of Vascular Surgery, Institute of Medicine, Ecology and Physical Culture, Ulyanovsk State University, Ulyanovsk, Russia
| | - M V Iashkov
- Department of Vascular Surgery, Institute of Medicine, Ecology and Physical Culture, Ulyanovsk State University, Ulyanovsk, Russia; Department of Thoracic Surgery, Ulyanovsk Regional Hospital, Ulyanovsk, Russia
| | - I I Gumerov
- Department of Vascular Surgery, Institute of Medicine, Ecology and Physical Culture, Ulyanovsk State University, Ulyanovsk, Russia; Department of Thoracic Surgery, Ulyanovsk Regional Hospital, Ulyanovsk, Russia
| | - A A Maksin
- Department of Vascular Surgery, Institute of Medicine, Ecology and Physical Culture, Ulyanovsk State University, Ulyanovsk, Russia; Department of Thoracic Surgery, Ulyanovsk Regional Hospital, Ulyanovsk, Russia
| |
Collapse
|
13
|
Minguet G, Franck T, Cavalier E, Daniel C, Serteyn D, Brichant J, Joris J. A preliminary study to assess neutrophil and endothelial response to knee arthroplasty with the use of a tourniquet : effects of spinal or sevoflurane anesthesia. ACTA ANAESTHESIOLOGICA BELGICA 2021. [DOI: 10.56126/72.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background : During orthopedic surgery, the use of a pneumatic tourniquet results in side effects secondary to ischemia-reperfusion phenomena. We tested the hypothesis that total knee arthroplasty with a tourniquet is associated with increase in plasma concentrations of biomarkers of neutrophil activation and endothelial injury. The second aim was to compare these changes during spinal or general inhalational anesthesia.
Methods : 40 adult ASA I-II patients scheduled for total knee arthroplasty with a tourniquet under spinal or sevoflurane anesthesia were included. Venous blood samples were collected before surgery, 1 h, 3 h, and 24 h after tourniquet deflation. To assess neutrophil activation, plasma concentrations of total and active fractions of myeloperoxidase, as well as elastase concentrations and proteolytic activity were measured. Endothelial injury was assessed by measurement of plasma concentrations of syndecan-1, soluble thrombomodulin, soluble E-selectin, and vascular endothelial growth factor. Results were analyzed with a two-way analysis of variance. P< 0.05 was considered statistically significant.
Results : Plasma concentrations of active but not total myeloperoxidase and elastase significantly increased following tourniquet deflation. The level of syndecan-1, soluble thrombomodulin, soluble E-selectin, but not vascular endothelial growth factor, significantly decreased postoperatively. These changes of biomarkers were similar during spinal and sevoflurane anesthesia.
Conclusions : Total knee arthroplasty with pneumatic tourniquet is associated with systemic release of markers of neutrophil activation which was comparable during spinal or sevoflurane anesthesia. Systemic expression of endothelial injury was not detected in our clinical conditions.
Collapse
|
14
|
Dynamic effects of calcium on in vivo and ex vivo platelet behavior after trauma. J Trauma Acute Care Surg 2021; 89:871-879. [PMID: 32852184 DOI: 10.1097/ta.0000000000002820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mobilization of intra and extracellular calcium is required for platelet activation, aggregation, and degranulation. However, the importance of alterations in the calcium-platelet axis after injury is unknown. We hypothesized that in injured patients, in vivo initial calcium concentrations (pretransfusion) predict ex vivo platelet activation and aggregation, viscoelastic clot strength, and transfusion of blood products. We additionally hypothesized that increasing calcium concentrations ex vivo increases the expression of platelet activation surface receptors and platelet aggregation responses to agonist stimulation in healthy donor blood. METHODS Blood samples were collected from 538 trauma patients on arrival to the emergency department. Standard assays (including calcium), platelet aggregometry (PA) and thromboelastometry (ROTEM) were performed. In PA, platelet activation (prestimulation impedance [Ω]) and aggregation responses to agonist stimulation (area under the aggregation curve [AUC]) with adenosine diphosphate (ADP), thrombin receptor-activating peptide, arachidonic acid (AA), and collagen (COL) were measured. Multivariable regression tested the associations of calcium with PA, ROTEM, and transfusions. To further examine the calcium-platelet axis, calcium was titrated in healthy blood. Platelet aggregometry and ROTEM were performed, and expression of platelet glycoprotein IIb/IIIa and P-selectin was measured by flow cytometry. RESULTS The patients were moderately injured with normal calcium and platelet counts. Higher calcium on arrival (pretransfusion) was independently associated with increased platelet activation (prestimulation, Ω; p < 0.001), aggregation (ADP-stimulated, AUC; p = 0.002; thrombin receptor-activating peptide-stimulated, AUC; p = 0.038), and clot strength (ROTEM max clot firmness; p < 0.001), and inversely associated with 24-hour transfusions of blood, plasma, and platelets (all p < 0.005). Up-titrating calcium in healthy blood increased platelet activation (prestimulation, Ω; p < 0.001), aggregation (ADP, AA, COL-stimulated AUCs; p < 0.050), and expression of P-selectin (p = 0.003). CONCLUSION Initial calcium concentrations (pretransfusion) are independently associated with platelet activation, aggregation, clot-strength, and transfusions after injury. These changes may be mediated by calcium driven expression of surface receptors necessary for platelet activation and aggregation. However, the therapeutic benefit of early, empiric calcium repletion in trauma patients remains undefined. LEVEL OF EVIDENCE Prognostic, level V.
Collapse
|
15
|
Liu W, Miao Y, Zhang L, Xu X, Luan Q. MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 2020; 11:189-200. [PMID: 32050841 PMCID: PMC7039642 DOI: 10.1080/21655979.2020.1729322] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of neuronal survival during cerebral ischemia/reperfusion injury. Accumulating evidence has shown that miR-211 plays a crucial role in regulating apoptosis and survival in various cell types. However, whether miR-211 is involved in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unknown. In this study, we aimed to explore the biological role of miR-211 in regulating neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) and transient cerebral ischemia/reperfusion (I/R) injury in vitro and in vivo. We found that miR-211 expression was significantly downregulated in PC12 cells in response to OGD/R and in the penumbra of mouse in response to MCAO. Overexpression of miR-211 alleviated OGD/R-induced PC12 cell apoptosis, whereas miR-211 inhibition facilitated OGD/R-induced PC12 cell apoptosis in vitro. Moreover, overexpression of miR-211 reduced infarct volumes, neurologic score, and neuronal apoptosis in vivo, whereas miR-211 inhibition increased infarct volumes, neurologic score and neuronal apoptosis in vivo. Notably, our results identified P53-up-regulated modulator of apoptosis (PUMA) as a target gene of miR-211. Our findings suggested that miR-211 may protect against MCAO injury by targeting PUMA in rats, which paves a potential new way for the therapy of cerebral I/R injury.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuanqing Miao
- Department of Medical Network Information Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaolin Xu
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qi Luan
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Li Y, Dubick MA, Yang Z, Barr JL, Gremmer BJ, Lucas ML, Necsoiu C, Jordan BS, Batchinsky AI, Cancio LC. Distal organ inflammation and injury after resuscitative endovascular balloon occlusion of the aorta in a porcine model of severe hemorrhagic shock. PLoS One 2020; 15:e0242450. [PMID: 33201908 PMCID: PMC7671515 DOI: 10.1371/journal.pone.0242450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Resuscitative Endovascular Balloon Occlusion of Aorta (REBOA) has emerged as a potential life-saving maneuver for the management of non-compressible torso hemorrhage in trauma patients. Complete REBOA (cREBOA) is inherently associated with the burden of ischemia reperfusion injury (IRI) and organ dysfunction. However, the distal organ inflammation and its association with organ injury have been little investigated. This study was conducted to assess these adverse effects of cREBOA following massive hemorrhage in swine. METHODS Spontaneously breathing and consciously sedated Sinclair pigs were subjected to exponential hemorrhage of 65% total blood volume over 60 minutes. Animals were randomized into 3 groups (n = 7): (1) Positive control (PC) received immediate transfusion of shed blood after hemorrhage, (2) 30min-cREBOA (A30) received Zone 1 cREBOA for 30 minutes, and (3) 60min-cREBOA (A60) given Zone 1 cREBOA for 60 minutes. The A30 and A60 groups were followed by resuscitation with shed blood post-cREBOA and observed for 4h. Metabolic and hemodynamic effects, coagulation parameters, inflammatory and end organ consequences were monitored and assessed. RESULTS Compared with 30min-cREBOA, 60min-cREBOA resulted in (1) increased IL-6, TNF-α, and IL-1β in distal organs (kidney, jejunum, and liver) (p < 0.05) and decreased reduced glutathione in kidney and liver (p < 0.05), (2) leukopenia, neutropenia, and coagulopathy (p < 0.05), (3) blood pressure decline (p < 0.05), (4) metabolic acidosis and hyperkalemia (p < 0.05), and (5) histological injury of kidney and jejunum (p < 0.05) as well as higher levels of creatinine, AST, and ALT (p < 0.05). CONCLUSION 30min-cREBOA seems to be a feasible and effective adjunct in supporting central perfusion during severe hemorrhage. However, prolonged cREBOA (60min) adverse effects such as distal organ inflammation and injury must be taken into serious consideration.
Collapse
Affiliation(s)
- Yansong Li
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
- * E-mail:
| | - Michael A. Dubick
- Department of Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Zhangsheng Yang
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Johnny L. Barr
- Department of Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Brandon J. Gremmer
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Michael L. Lucas
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Corina Necsoiu
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Bryan S. Jordan
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Andriy I. Batchinsky
- Department of Expeditionary Critical Care Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Leopoldo C. Cancio
- U. S. Army Burn Center, US Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| |
Collapse
|
17
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Mallis P, Michalopoulos E, Dinou A, Vlachou MS, Panagouli E, Papapanagiotou A, Kassi E, Giokas CS. Development of HLA-matched vascular grafts utilizing decellularized human umbilical artery. Hum Immunol 2018; 79:855-860. [PMID: 30213613 DOI: 10.1016/j.humimm.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Worldwide, there is a great need of small diameter vascular grafts that can be used in human disorders such as cardiovascular and peripheral vascular disease. Until now, severe adverse reactions are caused from the use of synthetic or animal derived grafts, while the use of autologous vessels is restricted only in a small number of patients. The limited availability of the vessels might be resolved by the use of HLA-matched vascular grafts utilizing the decellularized human umbilical arteries. In this study, human umbilical arteries were decellularized and then repopulated with Mesenchymal Stem Cells. The HLA-genotype of the repopulated grafts, analyzed by Next Generation Sequencing technology, indicated their successful production. The HLA-matched vascular grafts could be generated efficiently and might be used in personalized medicine.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece; Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Greece
| | | | - Amalia Dinou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Maria Spyropoulou Vlachou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece; Immunology Department-Tissue Typing Lab, "Alexandra" General Hospital of Athens, Greece
| | - Efrosyni Panagouli
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Aggeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Greece; 1(st) Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
19
|
Ozis SE, Akhayeva T, Guner S, Kilicoglu SS, Pampal A. Etanercept restores vasocontractile sensitivity affected by mesenteric ischemia reperfusion. J Surg Res 2018; 226:8-14. [PMID: 29661292 DOI: 10.1016/j.jss.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the study is to evaluate in vivo and in vitro effects of etanercept, a soluble tumor necrosis factor receptor, on the contractile responses of superior mesenteric artery in an experimental mesenteric ischemia and reperfusion model. MATERIAL AND METHODS After obtaining animal ethics committee approval, 24 Sprague-Dawley rats were allocated to three groups. Control group (Gr C, n = 6) underwent a sham operation, whereas ischemia/reperfusion and treatment groups underwent 90 min ischemia and 24-h reperfusion (Gr I/R, n = 12; Gr I/R+E, n = 6). The treatment group received 5 mg/kg etanercept intravenously at the beginning of reperfusion. At the end of reperfusion, all animals were sacrificed, and third branch of superior mesenteric artery was dissected for evaluation of contractile responses. In vitro effects of etanercept on vasocontractile responses were also evaluated. The excised ileums were analyzed under light microscope. Two-way analysis of variance following Bonferroni post hoc test was used for evaluation of contractile responses. RESULTS Endothelin-1 and phenylephrine-mediated vasocontractile sensitivity were found increased in Gr I/R when compared with Gr C. Both intravenous administration and organ bath incubation of etanercept decreased the sensitivity of contractile agents for Gr I/R. Mucosal injury, lamina propria disintegration, and denuded villous tips were observed in Gr I/R, whereas the epithelial injury and the subepithelial edema were found to be milder in Gr I/R+E. CONCLUSIONS Etanercept can be a promising agent in mesenteric ischemic reperfusion injury as it does not only inhibit inflammation by blocking tumor necrosis factor-α in circulation but also restores vascular contractility during reflow. These findings support an unexplained recuperative effect of drug beyond its anti-inflammatory effects.
Collapse
Affiliation(s)
- S Erpulat Ozis
- Department of General Surgery, Faculty of Medicine, TOBB-ETU University, Ankara, Turkey
| | - Tamila Akhayeva
- Department of Pharmacology, Astana Medical University, Astana, Kazakhstan
| | - Sahika Guner
- Department of Medical Pharmacology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Sibel S Kilicoglu
- Department of Histology and Embryology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Arzu Pampal
- Department of Pediatric Surgery, Faculty of Medicine, Ufuk University, Ankara, Turkey.
| |
Collapse
|
20
|
El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 2017; 18:ijms18122669. [PMID: 29232823 PMCID: PMC5751271 DOI: 10.3390/ijms18122669] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is caused by a disruption in blood supply to a region of the brain. It induces dysfunction of brain cells and networks, resulting in sudden neurological deficits. The cause of stroke is vascular, but the consequences are neurological. Decades of research have focused on finding new strategies to reduce the neural damage after cerebral ischemia. However, despite the incredibly huge investment, all strategies targeting neuroprotection have failed to demonstrate clinical efficacy. Today, treatment for stroke consists of dealing with the cause, attempting to remove the occluding blood clot and recanalize the vessel. However, clinical evidence suggests that the beneficial effect of post-stroke recanalization may be hampered by the occurrence of microvascular reperfusion failure. In short: recanalization is not synonymous with reperfusion. Today, clinicians are confronted with several challenges in acute stroke therapy, even after successful recanalization: (1) induce reperfusion, (2) avoid hemorrhagic transformation (HT), and (3) avoid early or late vascular reocclusion. All these parameters impact the restoration of cerebral blood flow after stroke. Recent advances in understanding the molecular consequences of recanalization and reperfusion may lead to innovative therapeutic strategies for improving reperfusion after stroke. In this review, we will highlight the importance of restoring normal cerebral blood flow after stroke and outline molecular mechanisms involved in blood flow regulation.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
21
|
Mechanisms of I/R-Induced Endothelium-Dependent Vasodilator Dysfunction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:331-364. [PMID: 29310801 DOI: 10.1016/bs.apha.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (I/R) induces leukocyte/endothelial cell adhesive interactions (LECA) in postcapillary venules and impaired endothelium-dependent, NO-mediated dilatory responses (EDD) in upstream arterioles. A large body of evidence has implicated reactive oxygen species, adherent leukocytes, and proteases in postischemic EDD dysfunction in conduit arteries. However, arterioles represent the major site for the regulation of vascular resistance but have received less attention with regard to the mechanisms underlying their reduced responsiveness to EDD stimuli in I/R. Even though leukocytes do not roll along, adhere to, or emigrate across arteriolar endothelium in postischemic intestine, recent work indicates that I/R-induced venular LECA is causally linked to EDD in arterioles. An emerging body of evidence suggests that I/R-induced EDD in arterioles occurs by a mechanism that is triggered by LECA in postcapillary venules and involves the formation of signals in the interstitium elicited by the proteolytic activity of emigrated leukocytes. This activity releases matricryptins from or exposes matricryptic sites in the extracellular matrix that interact with the integrin αvβ3 to induce mast cell chymase-dependent formation of angiotensin II (Ang II). Subsequent activation of NAD(P)H oxidase by Ang II leads to the formation of oxidants which inactivate NO and leads to eNOS uncoupling, resulting in arteriolar EDD dysfunction. This work establishes new links between LECA in postcapillary venules, signals generated in the interstitium by emigrated leukocytes, mast cell degranulation, and impaired EDD in upstream arterioles. These fundamentally important findings have enormous implications for our understanding of blood flow dysregulation in conditions characterized by I/R.
Collapse
|
22
|
Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1097/01819236-201710000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Solución salina hipertónica para modificar la lesión tisular por isquemia/reperfusión: modelo porcino de oclusión de aorta. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rca.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Escobar B, Guevara-Cruz OA, Navarro-Vargas JR, Giraldo-Fajardo AF, Dumar-Rodriguez JA, Borrero-Cortés C. Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rcae.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Xia M, Ding Q, Zhang Z, Feng Q. Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell Mol Neurobiol 2017; 37:1105-1114. [PMID: 27896629 DOI: 10.1007/s10571-016-0444-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Abstract
Remote limb ischemic preconditioning (RIPC) is a clinically feasible strategy to protect against ischemia/reperfusion injury, but the knowledge concerning the mechanism underlying RIPC is scarce. This study was performed to examine the effect of RIPC on brain tissue suffering from ischemia challenge and explore its underlying mechanism in a rat model. The animals were divided into four groups: Sham, middle cerebral artery occlusion (MCAO), RIPC, and MCAO+RIPC. We found that previous exposure to RIPC significantly attenuated neurological dysfunction and lessened brain edema in MCAO+RIPC group. Moreover, other important events were observed in MCAO+RIPC group, including substantial decrements in the concentrations of oxidative response indicators [malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl], significant reductions in levels of inflammation mediators [myeloperoxidase (MPO), tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), and IL-6], and significant decline in neuronal apoptosis revealed by a smaller number of TUNEL-positive cells. Interestingly, both MCAO and RIPC groups exhibited meaningful elevations in the levels of HIF-1a, HSP70, and AMP-activated protein kinase (AMPK) compared to Sham group, and previous exposure to RIPC further elevated the levels of HIF-1a, HSP70, and AMPK in MCAO+RIPC group. Furthermore, the administration of YC-1 (HIF-1 inhibitor), 8-bAMP (AMPK inhibitor), and Quercetin (HSP70 inhibitor) to MCAO+RIPC rats demonstrated that HIF-1α/AMPK/HSP70 was involved in RIPC-mediated protection against cerebral ischemia.
Collapse
Affiliation(s)
- Ming Xia
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Qian Ding
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Zhidan Zhang
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Qinggen Feng
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
26
|
Wu C, Li C, Zhou G, Yang L, Jiang G, Chen J, Li Q, Zhan Z, Xu X, Zhang X. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion. Acupunct Med 2017. [PMID: 28624772 DOI: 10.1136/acupmed-2016-011121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). METHODS 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. RESULTS Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. CONCLUSION Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA.
Collapse
Affiliation(s)
- Chunxiao Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chun Li
- School of Acupuncture & Moxibustion and Tui-na, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guoping Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.,Traditional Chinese Medicine-Integrated Hospital, The Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lu Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.,Traditional Chinese Medicine-Integrated Hospital, The Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guimei Jiang
- The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiushi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhulian Zhan
- Traditional Chinese Medicine-Integrated Hospital, The Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiuhong Xu
- Traditional Chinese Medicine-Integrated Hospital, The Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Zhang
- School of Acupuncture & Moxibustion and Tui-na, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
27
|
Zhao M, Jia HH, Liu LZ, Bi XY, Xu M, Yu XJ, He X, Zang WJ. Acetylcholine attenuated TNF-α-induced intracellular Ca 2+ overload by inhibiting the formation of the NCX1-TRPC3-IP3R1 complex in human umbilical vein endothelial cells. J Mol Cell Cardiol 2017; 107:1-12. [PMID: 28395930 DOI: 10.1016/j.yjmcc.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Hang-Huan Jia
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Long-Zhu Liu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xue-Yuan Bi
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Man Xu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
28
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Huang Q, Wang Q, Zhang S, Jiang S, Zhao L, Yu L, Hultström M, Patzak A, Li L, Wilcox CS, Lai EY. Increased hydrogen peroxide impairs angiotensin II contractions of afferent arterioles in mice after renal ischaemia-reperfusion injury. Acta Physiol (Oxf) 2016; 218:136-45. [PMID: 27362287 DOI: 10.1111/apha.12745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
AIM Renal ischaemia-reperfusion injury (IRI) increases angiotensin II (Ang II) and reactive oxygen species (ROS) that are potent modulators of vascular function. However, the roles of individual ROS and their interaction with Ang II are not clear. Here we tested the hypothesis that IRI modulates renal afferent arteriolar responses to Ang II via increasing superoxide (O2-) or hydrogen peroxide (H2 O2 ). METHODS Renal afferent arterioles were isolated and perfused from C57BL/6 mice 24 h after IRI or sham surgery. Responses to Ang II or noradrenaline were assessed by measuring arteriolar diameter. Production of H2 O2 and O2- was assessed in afferent arterioles and renal cortex. Activity of SOD and catalase, and mRNA expressions of Ang II receptors were assessed in pre-glomerular arterioles and renal cortex. RESULTS Afferent arterioles from mice after IRI had a reduced maximal contraction to Ang II (-27±2 vs. -42±1%, P < 0.001), but retained a normal contraction to noradrenaline. Arterioles after IRI had a 38% increase in H2 O2 (P < 0.001) and a 45% decrease in catalase activity (P < 0.01). Contractions were reduced in normal arterioles after incubation with H2 O2 (-22±2 vs. -42±1%, P < 0.05) similar to the effects of IRI. However, the impaired contractions were normalized by incubation with PEG catalase despite a reduced AT1 R expression. CONCLUSIONS Renal IRI in mice selectively impairs afferent arteriolar responses to Ang II because of H2 O2 accumulation that is caused by a reduced catalase activity. This could serve to buffer the effect of Ang II after IRI and may be a protective mechanism.
Collapse
Affiliation(s)
- Q. Huang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - Q. Wang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Zhang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Jiang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Zhao
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Yu
- College of Life Sciences; Zhejiang University; Hangzhou China
| | - M. Hultström
- Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Anesthesia and Intensive Care Medicine; Department of Surgical Sciences; Uppsala University; Uppsala Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - L. Li
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - C. S. Wilcox
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
30
|
Roos ST, Juffermans LJM, van Royen N, van Rossum AC, Xie F, Appelman Y, Porter TR, Kamp O. Unexpected High Incidence of Coronary Vasoconstriction in the Reduction of Microvascular Injury Using Sonolysis (ROMIUS) Trial. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1919-1928. [PMID: 27160847 DOI: 10.1016/j.ultrasmedbio.2016.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
High-mechanical-index ultrasound and intravenous microbubbles might prove beneficial in treating microvascular obstruction caused by microthrombi after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction (STEMI). Experiments in animals have revealed that longer-pulse-duration ultrasound is associated with an improvement in microvascular recovery. This trial tested long-pulse-duration, high-mechanical-index ultrasound in STEMI patients. Non-randomly assigned, non-blinded patients were included in this phase 2 trial. The primary endpoint was any side effect possibly related to the ultrasound treatment. The study was aborted after six patients were included; three patients experienced coronary vasoconstriction of the culprit artery, unresponsive to nitroglycerin. Therefore, coronary artery diameter was measured in five pigs. Coronary artery diameters distal to the injury site decreased after application of ultrasound, after balloon injury plus thrombus injection (from 1.89 ± 0.24 mm before to 1.78 ± 0.17 after ultrasound, p = 0.05). Long-pulse-duration ultrasound might cause coronary vasoconstriction distal to the culprit vessel location.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands.
| | - Lynda J M Juffermans
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Feng Xie
- University of Nebraska Medical Centre, Omaha, Nebraska, USA
| | - Yolande Appelman
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | | | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| |
Collapse
|
31
|
Luo R, Li L, Du X, Shi M, Zhou C, Wang C, Liao G, Lu Y, Zhong Z, Cheng J, Chen Y. Gene expression profile of vascular ischemia-reperfusion injury in rhesus monkeys. Gene 2016; 576:753-62. [DOI: 10.1016/j.gene.2015.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
|
32
|
Chui TYP, Pinhas A, Gan A, Razeen M, Shah N, Cheang E, Liu CL, Dubra A, Rosen RB. Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 2016; 36:290-302. [PMID: 26803289 DOI: 10.1111/opo.12273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). METHODS A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. RESULTS Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. CONCLUSIONS High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment.
Collapse
Affiliation(s)
- Toco Yuen Ping Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Gan
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Moataz Razeen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Nishit Shah
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Eric Cheang
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Stuyvesant High School, New York, NY, USA
| | - Chun L Liu
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Bronx High School of Science, New York, NY, USA
| | - Alfredo Dubra
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Kwong KK, Chan ST. Neuroprotection and acidosis induced by cortical spreading depression. Neuropsychiatr Dis Treat 2016; 12:3191-3194. [PMID: 28003755 PMCID: PMC5161389 DOI: 10.2147/ndt.s125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenneth K Kwong
- Department of Radiology, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Suk-Tak Chan
- Department of Radiology, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
34
|
Understanding the pathophysiology of traumatic brain injury and the mechanisms of action of neuroprotective interventions. J Trauma Nurs 2015; 21:30-5. [PMID: 24399316 DOI: 10.1097/jtn.0000000000000026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury continues to be a major socioeconomic problem, costing the United States $76.5 billion in the year of 2000. Despite the advances in the field of medicine, there are still no definitive treatments for traumatic brain injury. Goal of therapy is still gearing toward supportive cares such as intracranial pressure monitoring, lowering intracranial pressure, correcting cerebral ischemia, and manipulating serum osmolarity. The search for effective treatment in human studies has been unfruitful. In this review, the mechanisms of primary and secondary brain injury are discussed along with potential neuroprotective interventions such as hyperosmolar therapies, hypothermia, statins, and cyclosporin A.
Collapse
|
35
|
Zhao M, He X, Yang YH, Yu XJ, Bi XY, Yang Y, Xu M, Lu XZ, Sun Q, Zang WJ. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor. J Pharmacol Sci 2015; 127:481-8. [PMID: 25922231 DOI: 10.1016/j.jphs.2015.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 12/25/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yong-Hua Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xue-Yuan Bi
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yang Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Man Xu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xing-Zhu Lu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Qiang Sun
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
36
|
Jia S, Xie P, Hong SJ, Galiano R, Singer A, Clark RAF, Mustoe TA. Intravenous curcumin efficacy on healing and scar formation in rabbit ear wounds under nonischemic, ischemic, and ischemia-reperfusion conditions. Wound Repair Regen 2015; 22:730-9. [PMID: 25230783 DOI: 10.1111/wrr.12231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/05/2014] [Indexed: 11/27/2022]
Abstract
Curcumin, a spice found in turmeric, is widely used in alternative medicine for its purported anti-inflammatory and antioxidant activities. The goal of this study was to test the curcumin efficacy on rabbit ear wounds under nonischemic, ischemic, and ischemia-reperfusion conditions. Previously described models were utilized in 58 New Zealand White rabbits. Immediately before wounding, rabbits were given intravenous crude or pure curcumin (6 μg/kg, 30 μg/kg, or 60 μg/kg) dissolved in 1% ethanol. Specimens were collected at 7-8 days to evaluate the effects on wound healing and at 28 days to evaluate the effects on hypertrophic scarring. Student's t test was applied to screen difference between any treatment and control group, whereas analysis of variance was applied to further analyze for all treatment groups in aggregate in some specific experiments. Treatment with crude curcumin suggested accelerated wound healing that reached significance for reepithelialization in lower and medium doses and granulation tissue formation in lower dose. Purified curcumin became available and was used for all later experiments. Treatment with pure curcumin suggested accelerated wound healing that reached significance for reepithelialization in lower and medium doses and granulation tissue formation in lower dose. Treatment with pure curcumin significantly promoted nonischemic wound healing in a dose-response fashion compared with controls as judged by increased reepithelialization and granulation tissue formation. Improved wound healing was associated with significant decreases in pro-inflammatory cytokines interleukin (IL)-1 and IL-6 as well as the chemokine IL-8. Curcumin also significantly reduced hypertrophic scarring. The effects of curcumin were examined under conditions of impaired healing including ischemic and ischemia-reperfusion wound healing, and beneficial effects were also seen, although the dose response was less clear. Systemically administrated pure curcumin significantly promotes nonischemic wound healing and reduces hypertrophic scarring. Improvements in wound healing were associated with decreased inflammatory markers in wounds. Further study is needed to optimize dosing in ischemic and ischemia-reperfusion wound healing. In aggregate, the studies strongly support the systemic administration of curcumin to improve wound healing.
Collapse
Affiliation(s)
- Shengxian Jia
- The Laboratory for Wound Healing and Regenerative Medicine, Department of Surgery, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
37
|
Cheng Z, Li L, Mo X, Zhang L, Xie Y, Guo Q, Wang Y. Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. Int J Mol Med 2014; 34:957-66. [PMID: 25092271 PMCID: PMC4152138 DOI: 10.3892/ijmm.2014.1873] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) signaling pathway has been implicated in cell apoptosis and inflammatory processes. Ischemic preconditioning (IPC) and ischemic postconditioning (IPTC) inhibit both of these processes. In the present study, we investigated the role of phosphorylated STAT3 (p-STAT3)-mediated apoptosis and inflammation following non-invasive remote limb IPTC (NRIPoC) using a classic rat model of focal cerebral ischemia. Forty-five adult male Sprague-Dawley rats were divided randomly into 3 groups (n=15 per group): the sham-operated, ischemia/reperfusion (I/R) and NRIPoC groups. NRIPoC was implemented at the beginning of reperfusion. At 24 h after cerebral reperfusion, we evaluated the neurological deficit score (NDS), assessed the cerebral infarct size and tissue morphology, and evaluated neuronal apoptosis. The protein expression levels of Bcl-2, Bax, nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α) and p-STAT3 in the penumbra region were assessed by western blot analysis. The cerebral infarct volume, the number of apoptotic cells and the protein expression levels of Bcl-2, Bax, NF-κB and TNF-α were all found to be increased in the I/R group compared with the sham-operated group. However, these levels were decreased in the NRIPoC group compared with the I/R group. The number of apoptotic cells in the penumbra in the I/R group was increased compared with that in the NRIPoC and sham-operated groups. The protein expression of p-STAT3 was increased in the NRIPoC group compared with the sham-operated and I/R groups. These results indicate that the protective effects of NRIPoC against cerebral I/R injury may be related to the attenuation of neuronal apoptosis and inflammation through the activation of STAT3.
Collapse
Affiliation(s)
- Zhigang Cheng
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Li
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Mo
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lu Zhang
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongqiu Xie
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yunjiao Wang
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
38
|
Prieto-Moure B, Carabén-Redaño A, Aliena-Valero A, Cejalvo D, Toledo AH, Flores-Bellver M, Martínez-Gil N, Toledo-Pereyra LH, Lloris Carsí JM. Allopurinol in Renal Ischemia. J INVEST SURG 2014; 27:304-16. [DOI: 10.3109/08941939.2014.911395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Steinberg JP, Gurjala AN, Jia S, Hong SJ, Galiano RD, Mustoe TA. Evaluating the Effects of Subclinical, Cyclic Ischemia-Reperfusion Injury on Wound Healing Using a Novel Device in the Rabbit Ear. Ann Plast Surg 2014; 72:698-705. [DOI: 10.1097/sap.0b013e31826a1ae2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yang J, Huang Z, Zhou Y, Sai S, Zhu F, Lv R, Fa X. Effect of low-level laser irradiation on oxygen free radicals and ventricular remodeling in the infarcted rat heart. Photomed Laser Surg 2014; 31:447-52. [PMID: 24047222 DOI: 10.1089/pho.2013.3481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to assess the effects of low-level laser irradiation (LLLI) on the expression of oxygen free radicals (OFR) and ventricular remodeling (VR) in the model of rat myocardial infarction (RMMI). BACKGROUND DATA LLLI reduces the infarct size and formation of scar tissue in the rat heart after myocardial infarction (MI). However, the exact mechanism has not been demonstrated so far. METHODS RMMI was induced by ligating the left anterior descending coronary artery (LAD). After 3 weeks, LLLI (635 nm, 6 mW laser, 7.64 mW/cm(2), 125 sec, 0.96 J/cm(2)) was applied to the surface of heart directly. Four to six rats were euthanized at 1 h, 24 h, 48 h, 72 h, and 1 week after LLLI, and the infarcted myocardia were excised for the measurement of the activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA). At the end of 4 weeks after MI, the hearts were harvested for histological analysis. RESULTS Myocardial SOD activity with LLLI was lower compared with control (p<0.05), and myocardial MDA content with LLLI was higher compared with control (p<0.05), at all the time points. In all rats, the activity of SOD was down to the minimum and the content of MDA was up to the peak at 48 h after laser irradiation. The infarct size was reduced (35±10% vs. 18±9%, p<0.05), the left ventricular wall thickness was increased (0.31±0.03 vs. 0.84±0.02 mm, p<0.05) and the percentage of collagen fibers in the infarcted area was attenuated (64.34±2.20% vs. 30.97±2.60%) by LLLI. CONCLUSIONS LLLI could cause OFR accumulation, reduce infarct size, increase ventricular wall thickness, and attenuate the formation of collagen fibers, suggesting the beneficial effects of LLLI on improvement of VR after MI.
Collapse
Affiliation(s)
- Jitao Yang
- 1 Department of Cardiovascular Surgery, the Second Affiliated Hospital of Zhengzhou University , Zhengzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Thuillier R, Allain G, Giraud S, Saintyves T, Delpech PO, Couturier P, Billault C, Marchand E, Vaahtera L, Parkkinen J, Hauet T. Cyclodextrin curcumin formulation improves outcome in a preclinical pig model of marginal kidney transplantation. Am J Transplant 2014; 14:1073-83. [PMID: 24618351 DOI: 10.1111/ajt.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/27/2013] [Accepted: 12/29/2013] [Indexed: 01/25/2023]
Abstract
Decreasing organ quality is prompting research toward new methods to alleviate ischemia reperfusion injury (IRI). Oxidative stress and nuclear factor kappa beta (NF-κB) activation are well-described elements of IRI. We added cyclodextrin-complexed curcumin (CDC), a potent antioxidant and NF-κB inhibitor, to University of Wisconsin (UW) solution (Belzer's Solution, Viaspan), one of the most effective clinically approved preservative solutions. The effects of CDC were evaluated on pig endothelial cells and in an autologous donation after circulatory death (DCD) kidney transplantation model in large white pigs. CDC allowed rapid and lasting uptake of curcumin into cells. In vitro, CDC decreased mitochondrial loss of function, improved viability and lowered endothelial activation. In vivo, CDC improved function recovery, lowered histological injury and doubled animal survival (83.3% vs. 41.7%). At 3 months, immunohistochemical staining for epithelial-to-mesenchymal transition (EMT) and fibrosis markers was intense in UW grafts while it remained limited in the UW + CDC group. Transcriptional analysis showed that CDC treatment protected against up-regulation of several pathophysiological pathways leading to inflammation, EMT and fibrosis. Thus, use of CDC in a preclinical transplantation model with stringent IRI rescued kidney grafts from an unfavorable prognosis. As curcumin has proved well tolerated and nontoxic, this strategy shows promise for translation to the clinic.
Collapse
Affiliation(s)
- R Thuillier
- Inserm U1082, Faculté de Medecine et Pharmacie, Université de Poitiers, Poitiers, France; Département de Biochimie, CHU de Poitiers, Poitiers, France; FLIRT: Fédération pour L'étude de l'Ischémie Reperfusion en Transplantation, Poitiers, France; COPE: Consortium for Organ Preservation in Europe
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hummitzsch L, Zitta K, Bein B, Steinfath M, Albrecht M. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. Exp Cell Res 2014; 322:62-70. [PMID: 24394542 DOI: 10.1016/j.yexcr.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022]
Abstract
Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
43
|
|
44
|
de Vries DK, Kortekaas KA, Tsikas D, Wijermars LGM, van Noorden CJF, Suchy MT, Cobbaert CM, Klautz RJM, Schaapherder AFM, Lindeman JHN. Oxidative damage in clinical ischemia/reperfusion injury: a reappraisal. Antioxid Redox Signal 2013; 19:535-45. [PMID: 23305329 PMCID: PMC3717197 DOI: 10.1089/ars.2012.4580] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Ischemia/reperfusion (I/R) injury is a common clinical problem. Although the pathophysiological mechanisms underlying I/R injury are unclear, oxidative damage is considered a key factor in the initiation of I/R injury. Findings from preclinical studies consistently show that quenching reactive oxygen and nitrogen species (RONS), thus limiting oxidative damage, alleviates I/R injury. Results from clinical intervention studies on the other hand are largely inconclusive. In this study, we systematically evaluated the release of established biomarkers of oxidative and nitrosative damage during planned I/R of the kidney and heart in a wide range of clinical conditions. RESULTS Sequential arteriovenous concentration differences allowed specific measurements over the reperfused organ in time. None of the biomarkers of oxidative and nitrosative damage (i.e., malondialdehyde, 15(S)-8-iso-prostaglandin F2α, nitrite, nitrate, and nitrotyrosine) were released upon reperfusion. Cumulative urinary measurements confirmed plasma findings. As of these negative findings, we tested for oxidative stress during I/R and found activation of the nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of oxidative stress signaling. INNOVATION This comprehensive, clinical study evaluates the role of RONS in I/R injury in two different human organs (kidney and heart). Results show oxidative stress, but do not provide evidence for oxidative damage during early reperfusion, thereby challenging the prevailing paradigm on RONS-mediated I/R injury. CONCLUSION Findings from this study suggest that the contribution of oxidative damage to human I/R may be less than commonly thought and propose a re-evaluation of the mechanism of I/R.
Collapse
Affiliation(s)
- Dorottya K de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang WZ, Jones AW, Wang M, Durante W, Korthuis RJ. Preconditioning with soluble guanylate cyclase activation prevents postischemic inflammation and reduces nitrate tolerance in heme oxygenase-1 knockout mice. Am J Physiol Heart Circ Physiol 2013; 305:H521-32. [PMID: 23771693 DOI: 10.1152/ajpheart.00810.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that, unlike wild-type mice (WT), heme oxygenase-1 knockout (HO-1-/-) mice developed nitrate tolerance and were not protected from inflammation caused by ischemia-reperfusion (I/R) when preconditioned with a H2S donor. We hypothesized that stimulation (with BAY 41-2272) or activation (with BAY 60-2770) of soluble guanylate cyclase (sGC) would precondition HO-1-/- mice against an inflammatory effect of I/R and increase arterial nitrate responses. Intravital fluorescence microscopy was used to visualize leukocyte rolling and adhesion to postcapillary venules of the small intestine in anesthetized mice. Relaxation to ACh and BAY compounds was measured on superior mesenteric arteries isolated after I/R protocols. Preconditioning with either BAY compound 10 min (early phase) or 24 h (late phase) before I/R reduced postischemic leukocyte rolling and adhesion to sham control levels and increased superior mesenteric artery responses to ACh, sodium nitroprusside, and BAY 41-2272 in WT and HO-1-/- mice. Late-phase preconditioning with BAY 60-2770 was maintained in HO-1-/- and endothelial nitric oxide synthase knockout mice pretreated with an inhibitor (dl-propargylglycine) of enzymatically produced H2S. Pretreatment with BAY compounds also prevented the I/R increase in small intestinal TNF-α. We speculate that increasing sGC activity and related PKG acts downstream to H2S and disrupts signaling processes triggered by I/R in part by maintaining low cellular Ca²⁺. In addition, BAY preconditioning did not increase sGC levels, yet increased the response to agents that act on reduced heme-containing sGC. Collectively these actions would contribute to increased nitrate sensitivity and vascular function.
Collapse
Affiliation(s)
- Walter Z Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | | | | | | | | |
Collapse
|
46
|
Di Sabatino A, Brunetti L, Biancheri P, Ciccocioppo R, Guerci M, Casella C, Vidali F, MacDonald TT, Benazzo M, Corazza GR. Mucosal changes induced by ischemia-reperfusion injury in a jejunal loop transplanted in oropharynx. Intern Emerg Med 2013; 8:317-25. [PMID: 21553237 DOI: 10.1007/s11739-011-0615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Tissues exposed to ischemia and reperfusion develop an inflammatory response. We investigate the morphological and immunological changes occurring in the mucosa of a jejunal loop transplanted in the oropharynx of a man undergoing circular pharyngolaryngectomy. Jejunal biopsies were collected during the transplantation procedures (cold and warm ischemia, reperfusion), during the 7 post-operative days through an exteriorized jejunal segment for flap monitoring, and 45 days after transplantation through an upper endoscopy. Matrix metalloproteinase (MMP)-3 and MMP-12 increase was accompanied by a parallel rise in apoptotic enterocytes, and by a concomitant reduction of surface area to volume ratio and enterocyte height. Goblet cell hyperplasia is coupled with Paneth cell disappearance at the crypt base. CD8-positive intraepithelial lymphocytes initially decrease, then they increase in accordance with the peak of enterocyte apoptosis. We identified alterations in lymphocyte infiltration, mucosal architecture and epithelial cell turnover, which may give a window to mechanisms of small bowel ischemia-reperfusion in humans.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- First Department of Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ma Z, Qi J, Fu Z, Ling M, Li L, Zhang Y. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats. PLoS One 2013; 8:e61018. [PMID: 23580361 PMCID: PMC3620281 DOI: 10.1371/journal.pone.0061018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
Severe acidic pH-activated chloride channel (ICl,acid) has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and 4,4′-diisothiocyanatostilbene-2, 2′-disulfonic acid (DIDS) inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4) was lower for SHRs than Wistar rats (all <1). However, with nifedipine, the R4.4/5.4 was higher for SHRs than Wistar rats (both >1). Furthermore, patch clamp recordings of ICl,acid and intracellular Ca2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.
Collapse
Affiliation(s)
- Zhiyong Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Jia Qi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhijie Fu
- Department of Otorhinolaryngology, Shandong Provincial Qianfoshan Hospital, Clinical Medical College of Shandong University, Jinan, China
| | - Mingying Ling
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health; Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
48
|
MK2 plays an important role for the increased vascular permeability that follows thermal injury. Burns 2013; 39:923-34. [PMID: 23465795 DOI: 10.1016/j.burns.2012.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/21/2022]
Abstract
We previously reported Rho kinase is involved in vessel hyper-permeability caused by burns. Here we further explore the Rho kinase downstream signaling, it is found that its specific inhibitor Y27632 significantly diminishes the activation of JNK and p38 MAPKs but not ERK that induced by serum from burned rats (burn-serum). JNK activation was found involved in the expression of HUVEC adhesion molecules following thermal injury, although not in the process of stress fiber formation. Inhibition of various MAPKs by specific inhibitors showed that SB203580 (inhibitor of p38), but neither SP600125 (inhibitor of JNK) nor PD98059 (inhibitor of ERK), abolish activation of the p38 downstream kinase MK2. Demonstration of stress fibers by fluorescent-labeled phalloidin showed that inhibition of MK2, either by its specific inhibitor or by dominant negative adeno-viral-carried constructs, significantly reduced burn-serum-induced HUVEC stress-fiber formation, while inhibition of another downstream p38 MAPK kinase, PRAK, had no such effects. Transfection of dominant negative adeno-viral MK2 (Ad-MK2(A)) significantly inhibited thermal injury-induced blood vessel hyper-permeability in rats and, moreover, prolonged the survival of burned rats beyond 72 h following thermal injury. One of the mechanisms behind these phenomena is that Ad-MK2(A) causes a significant depression of burn-serum-induced HSP27-phosphorylation, while the adeno-viral transported dominant negative PRAK (Ad-PRAK(A)) does not block. Although the effect of blockade of MK2 through its adeno-viral approach requires further study and investigation of alternatives to know for sure, we may have found a new pathway behind thermal-injury-induced blood vessel hyper-permeability, namely: Rho kinase>p38>MK2>HSP27.
Collapse
|
49
|
Nowak K, Kölbel HC, Metzger RP, Hanusch C, Frohnmeyer M, Hohenberger P, Danilov SM. Immunotargeting of the pulmonary endothelium via angiotensin-converting-enzyme in isolated ventilated and perfused human lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 756:203-12. [PMID: 22836637 DOI: 10.1007/978-94-007-4549-0_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Vascular immunotargeting of catalase via angiotensin-converting-enzyme (ACE) attenuated lung ischemia reperfusion injury in the rat. As this might be a promising modality for extension of the viability of human lung grafts for transplantation we tested the hypothesis whether anti-ACE antibodies are suitable for human lung protection within the model of isolated perfused and ventilated human lung resections. Right after surgery for lung cancer, human lung specimens were isolated, ventilated and perfused under physiological conditions with 500 μg of either mouse monoclonal antibodies (mAb) to human ACE (9B9, I2H5, 3G8) or non-immune mouse IgG (as a negative control) followed by wash-out perfusion. Perfusion pressure, pH and lung weight gain were measured before and during perfusion. After mAb perfusion and wash-out perfusion period lung tissue was tested for the uptake of mAbs by immunohistochemistry and by enzyme-capture technique. Furthermore, antibody concentration and ACE shedding were measured within the perfusate. We found that ACE activity in tumor and normal lung tissue did not differ between the groups perfused with different mAbs. However, ACE activity in normal lung tissue (17.0 ± 6.0 U/g) was significantly higher compared to tumor tissue (6.0 ± 3.0; p < 0.01). Absolute retaining of mAbs was with 1.3 ± 1.1% of injected dose per gram of tissue in normal lung tissue, 0.7 ± 0.7% of injected dose per gram of tumor tissue and was significantly higher compared to non-immune mouse IgG (0.1 ± 0.1%/g; p < 0.01). Anti-ACE mAbs concentration in the perfusate dropped significantly to 47 ± 11% (p < 0.001) at 40 min of perfusion. No significant difference between different anti-ACE mAbs in the depletion from perfusate has been observed. mAb 9B9 showed the most intense immunostaining (i.e., most significant lung uptake) after each experiment in normal and tumor lung tissue compared to mAbs i2H5 and 3G8 (p < 0.01). These results validate the possibility of immunotargeting of pulmonary endothelium in the human lung tissue by anti-ACE mAbs under in vivo conditions. Furthermore, the model might be useful to investigate targeted therapies in lung cancer without side effects for the patient.
Collapse
Affiliation(s)
- Kai Nowak
- Department of Surgery, Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Gourdin M, Dubois P, Mullier F, Chatelain B, Dogné JM, Marchandise B, Jamart J, De Kock M. The Effect of Clonidine, an Alpha-2 Adrenergic Receptor Agonist, on Inflammatory Response and Postischemic Endothelium Function During Early Reperfusion in Healthy Volunteers. J Cardiovasc Pharmacol 2012; 60:553-60. [DOI: 10.1097/fjc.0b013e31827303fa] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|