1
|
Borkar CD, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Neuropeptide CART prevents memory loss attributed to withdrawal of nicotine following chronic treatment in mice. Addict Biol 2019; 24:51-64. [PMID: 29193459 DOI: 10.1111/adb.12579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/24/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
Abstract
Although chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process. The mice on chronic nicotine treatment/withdrawal were subjected to novel object recognition task. The capability of the animal to discriminate between the novel and familiar objects was tested and represented as discrimination index (DI); reduction in the index suggested amnesia. Nicotine for 49 days had no effect on DI, but 8-hour withdrawal caused a significant reduction, followed by full recovery at 24-hour withdrawal timepoint. Bilateral CART infusion in dorsal hippocampus rescued deficits in DI at 8-hours, whereas CART-antibody infusion into the dorsal hippocampus attenuated the recovery at 24-hours. Commensurate changes were observed in the CART as well as CART mRNA profiles in the hippocampus. CART mRNA expression and the peptide immunoreactivity did not change significantly following chronic nicotine treatment. However, there was a significant reduction at 8-hour withdrawal, followed by a drastic increase in CART immunoreactivity as well as CART mRNA at 24-hour withdrawal, compared with 8-hour withdrawal. Distinct α7-nicotinic receptor immunoreactivity was detected on the hippocampal CART neurons, suggesting cholinergic inputs. An increase in the synaptophysin immunoreactive elements around CART cells in the dentate gyrus, cornu ammonis 3 and subiculum at 24-hour post-withdrawal timepoint suggested neuronal plasticity. CART circuit dynamics in the hippocampus seems to modulate short-term memory associated with nicotine withdrawal.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | - Amul J. Sakharkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| |
Collapse
|
2
|
Fu Q, Zhou X, Dong Y, Huang Y, Yang J, Oh KW, Hu Z. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction. PLoS One 2016; 11:e0159104. [PMID: 27404570 PMCID: PMC4942143 DOI: 10.1371/journal.pone.0159104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: ;
| |
Collapse
|
3
|
Abstract
Earlier studies suggesting an involvement of cocaine and amphetamine regulated transcript peptide (CARTp) in the actions of drugs of abuse are confirmed in the most recent publications. This seems especially true for the psychostimulants where CARTp in the nucleus accumbens inhibits or regulates the actions of these drugs; the regulation is lost after repeated drug use which may be an important mechanism in addiction. The other drugs, including nicotine, alcohol, opiates, and perhaps caffeine can affect CARTp or CART mRNA levels. While the exact mechanism is not always clear, the hope is that these findings may provide some insight for the development of medications. While binding studies indicate the existence of specific G-protein coupled receptors (GPCR) receptors for CARTp, major work to be done is the cloning of these receptors.
Collapse
Affiliation(s)
- Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Krügel U. Purinergic receptors in psychiatric disorders. Neuropharmacology 2015; 104:212-25. [PMID: 26518371 DOI: 10.1016/j.neuropharm.2015.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
5
|
Baliño P, Ledesma JC, Aragon CMG. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. Neuropharmacology 2015; 101:271-8. [PMID: 26449868 DOI: 10.1016/j.neuropharm.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Juan Carlos Ledesma
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Carlos M G Aragon
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
6
|
Cho JH, Cho YH, Kim HY, Cha SH, Ryu H, Jang W, Shin KH. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration. Neuropeptides 2015; 50:1-7. [PMID: 25820086 DOI: 10.1016/j.npep.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Yun Ha Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyo Young Kim
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Seung Ha Cha
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyun Ryu
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|