1
|
Sáez JC, Burrell JC, Cahill CM, Cullen DK, Devi LA, Gilbert RJ, Graham ZA, Gurvich VJ, Havton LA, Iyengar R, Khanna R, Palermo EF, Siddiq M, Toro CA, Vasquez W, Zhao W, Cardozo CP. Pharmacology of boldine: summary of the field and update on recent advances. Front Pharmacol 2024; 15:1427147. [PMID: 39346563 PMCID: PMC11427365 DOI: 10.3389/fphar.2024.1427147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade. Here we provide an overview of boldine's pharmacological properties, including its efficacy in rodent models of common human injuries and diseases, and of its absorption, distribution, pharmacokinetics, and metabolism.
Collapse
Affiliation(s)
- Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Justin C. Burrell
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Catherine M. Cahill
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, PA, United States
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lakshmi A. Devi
- Department of Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ryan J. Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Albany Stratton VA Medical Center, New York, NY, United States
| | - Zachary A. Graham
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Gainesville, FL, United States
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Leif A. Havton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Edmund F. Palermo
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Materials Science and Engineering, Rensselaer Polytechnic Institute, New York, NY, United States
| | - Mustafa Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Walter Vasquez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Catalán M, González-Herrera F, Maya JD, Lorenzo O, Pedrozo Z, Olmedo I, Suarez-Rozas C, Molina-Berrios A, Díaz-Araya G, Vivar R. Boldine prevents the inflammatory response of cardiac fibroblasts induced by SGK1-NFκB signaling pathway activation. Cell Signal 2024; 120:111241. [PMID: 38825173 DOI: 10.1016/j.cellsig.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Cardiac fibroblasts (CF) are mesenchymal-type cells responsible for maintaining the homeostasis of the heart's extracellular matrix (ECM). Their dysfunction leads to excessive secretion of ECM proteins, tissue stiffening, impaired nutrient and oxygen exchange, and electrical abnormalities in the heart. Additionally, CF act as sentinel cells in the cardiac tissue microenvironment, responding to various stimuli that may affect heart function. Deleterious stimuli induce an inflammatory response in CF, increasing the secretion of cytokines such as IL-1β and TNF-α and the expression of cell adhesion molecules like ICAM1 and VCAM1, initially promoting damage resolution by recruiting immune cells. However, constant harmful stimuli lead to a chronic inflammatory process and heart dysfunction. Therefore, it is necessary to study the mechanisms that govern CF inflammation. NFκB is a key regulator of the cardiac inflammatory process, making the search for mechanisms of NFκB regulation and CF inflammatory response crucial for developing new treatment options for cardiovascular diseases. SGK1, a serine-threonine protein kinase, is one of the regulators of NFκB and is involved in the fibrotic effects of angiotensin II and aldosterone, as well as in CF differentiation. However, its role in the CF inflammatory response is unknown. On the other hand, many bioactive natural products have demonstrated anti-inflammatory effects, but their role in CF inflammation is unknown. One such molecule is boldine, an alkaloid obtained from Boldo (Peumus boldus), a Chilean endemic tree with proven cytoprotective effects. However, its involvement in the regulation of SGK1 and CF inflammation is unknown. In this study, we evaluated the role of SGK1 and boldine in the inflammatory response in CF isolated from neonatal Sprague-Dawley rats. The involvement of SGK1 was analyzed using GSK650394, a specific SGK1 inhibitor. Our results demonstrate that SGK1 is crucial for LPS- and IFN-γ-induced inflammatory responses in CF (cytokine expression, cell adhesion molecule expression, and leukocyte adhesion). Furthermore, a conditioned medium (intracellular content of CF subject to freeze/thaw cycles) was used to simulate a sterile inflammation condition. The conditioned medium induced a potent inflammatory response in CF, which was completely prevented by the SGK1 inhibitor. Finally, our results indicate that boldine inhibits both SGK1 activation and the CF inflammatory response induced by LPS, IFN-γ, and CF-conditioned medium. Taken together, our results position SGK1 as an important regulator of the CF inflammatory response and boldine as a promising anti-inflammatory drug in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- M Catalán
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - F González-Herrera
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J D Maya
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - O Lorenzo
- IIS-Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Z Pedrozo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Olmedo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Suarez-Rozas
- Medicinal Chemistry Center, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - A Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Vivar
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
3
|
Ezhilarasan D, Shree Harini K, Karthick M, Lavanya P. Boldine protects against carbon tetrachloride-induced chronic liver injury by regulating NF-κB signaling pathway. J Biochem Mol Toxicol 2024; 38:e23691. [PMID: 38500399 DOI: 10.1002/jbt.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 β (IL-1β), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1β expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prathap Lavanya
- Department of Anatomy, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Lamba D, Dwivedi DK, Yadav M, Kumar Yr S. Boldine: a narrative review of the bioactive compound with versatile biological and pharmacological potential. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2023-0224. [PMID: 38234264 DOI: 10.1515/jcim-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Boldine is a plant-derived bioactive compound that has a beneficial impact on human health. Boldine is an aporphine alkaloid mainly obtained from the leaves and bark of the Chilean Boldo tree (Peumus boldus, Family: Monimiaceae). There are plenty of preclinical evidence supports that boldine exerts its beneficial effects against various diseases. Lumiskin™, a patented and marketed formulation by Revitol Skincare for skin brightening, contains Dicetyl boldine, a boldine derivative. CONTENT All the available information on the Chilean boldo tree (P. boldus Molina) species was actualized by systematically searching the scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, Scopus and others) and scientific literature. This article covers the recent advances in pharmacokinetic, toxicological, pharmacological/biological activities, and molecular mechanisms of the bioactive compound to understand health benefits of boldine better. SUMMARY Boldine exerts antioxidant, hepatoprotective, anti-atherosclerotic, anti-diabetic, analgesic, antipyretic, anti-inflammatory, anti-epileptic, neuroprotective, nephroprotective, anti-arthritis, anticancer and nootropic effects. Moreover, boldine exhibits its various pharmacological activities by altering antioxidant parameters (MDA, superoxide dismutase, glutathione), peroxynitrite, inflammatory markers apoptotic index, caspase-3, acetyl-cholinesterase, myeloperoxidase, TNF-α (Tumor necrosis factor-α), iNOS, Bcl-2-associated X protein (BAX), ACE-1(Angiotensin-converting enzyme-1), dopamine D2 receptors and nicotinic acetylcholine receptor. Boldine has the potential to modulate a variety of biological networks. OUTLOOK Due to its versatile pharmacological effects reported in various experimental animals as well as in randomized clinical trials for the treatment of facial melasma and for treatment of urinary stone lithotripsy in children as a complementary phytotherapy; in the future, this compound might be developed as a novel drug for a different indication.
Collapse
Affiliation(s)
- Deepak Lamba
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology, National Research Institute of Unani Medicine for Skin Disorders, (Under Central Council for Research in Unani Medicine, New Delhi), Erragadda, Hyderabad, Telangana, India
| | - Monu Yadav
- Department of Pharmacology, Amity University, Gurugram, Haryana, India
| | - Sanjaya Kumar Yr
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| |
Collapse
|
5
|
Akotkar L, Aswar U, Ganeshpurkar A, Raj R, Pawar A. An Overview of Chemistry, Kinetics, Toxicity and Therapeutic Potential of Boldine in Neurological Disorders. Neurochem Res 2023; 48:3283-3295. [PMID: 37462836 DOI: 10.1007/s11064-023-03992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 09/22/2023]
Abstract
Boldine is an alkaloid obtained from the medicinal herb Peumus boldus (Mol.) (Chilean boldo tree; boldo) and belongs to the family Monimiaceae. It exhibits a wide range of pharmacological effects such as antioxidant, anticancer, hepatoprotective, neuroprotective, and anti-diabetic properties. There is a dearth of information regarding its pharmacokinetics and toxicity in addition to its potential pharmacological activity. Boldine belongs to the aporphine alkaloid class and possesses lipophilic properties which enable its efficient absorption and distribution throughout the body, including the central nervous system. It exhibits potent free radical scavenging activity, thereby reducing oxidative stress and preventing neuronal damage. Through a variety of neuroprotective mechanisms, including suppression of AChE and BuChE activity, blocking of connexin-43 hemichannels, pannexin 1 channel, reduction of NF-κβ mediated interleukin release, and glutamate excitotoxicity which successfully reduces neuronal damage. These results point to its probable application in reducing neuroinflammation and oxidative stress in epilepsy, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, its effects on serotonergic, dopaminergic, opioid, and cholinergic receptors were further investigated in order to determine its applicability for neurobehavioral dysfunctions. The article investigates the pharmacokinetics of boldine and reveals that it has a low oral bioavailability and a short half-life, requiring regular dosage to maintain therapeutic levels. The review studies boldine's potential therapeutic uses and mode of action while summarizing its neuroprotective benefits. Given the favorable results for boldine as a potential neurotherapeutic drug in laboratory animals, more research is required. However, in order to optimise its therapeutic potential, it must be more bioavailable with fewer detrimental side effects.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Urmila Aswar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India.
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Ritik Raj
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| |
Collapse
|
6
|
Salarinejad A, Esmaeilpour K, Shabani M, Jafarinejad-Farsangi S, Pardakhty A, Asadi-Shekaari M, Ahmadi-Zeidabadi M. Effect of l-Dopa in acute temozolomide-induced cognitive impairment in male mice: a possible antineuroinflammatory role. Behav Pharmacol 2023:00008877-990000000-00047. [PMID: 37401406 DOI: 10.1097/fbp.0000000000000733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Temozolomide is used commonly in the treatment of some types of cancers, but it may also result in cognitive impairments such as memory deficits. l-Dopa, a well known medicine for the central nervous system, has been shown to have positive effects on some cognitive disorders. Here we sought to investigate the effect of l-Dopa on temozolomide-induced cognitive impairments. BALB/c mice were subjected to 3-days temozolomide and 6-days concomitant l-Dopa/benserazide administration in six groups (control, l-Dopa 25 mg/kg, l-Dopa 75 mg/kg, temozolomide, temozolomide + l-Dopa 25 mg/kg, and temozolomide + l-Dopa 75 mg/kg). Open field test, object location recognition, novel object recognition test, and shuttle-box test were carried out to determine the locomotor, anxiety-like behavior, and memory function of subjects. TNF-α and brain-derived neurotrophic factor (BDNF) gene expression in the hippocampus was measured by real-time PCR. Mice treated with temozolomide showed recognition memory impairment, along with hippocampal TNF-α and BDNF mRNA expression level raise, and detection of histological insults in hematoxylin and eosin hippocampal slides. Mice that received temozolomide + l-Dopa showed normal behavioral function and lower TNF-α and BDNF hippocampal mRNA expression levels, and histologically normal hippocampal CA1 region in comparison with mice in the temozolomide group. Our results provide evidence that l-Dopa prevents temozolomide-induced recognition memory deficit in mice at the acute phase probably via l-Dopa antineuroinflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | | |
Collapse
|
7
|
Otero C, Klagges C, Morales B, Sotomayor P, Escobar J, Fuentes JA, Moreno AA, Llancalahuen FM, Arratia-Perez R, Gordillo-Fuenzalida F, Herrera M, Martínez JL, Rodríguez-Díaz M. Anti-Inflammatory Chilean Endemic Plants. Pharmaceutics 2023; 15:pharmaceutics15030897. [PMID: 36986757 PMCID: PMC10051824 DOI: 10.3390/pharmaceutics15030897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 03/12/2023] Open
Abstract
Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.
Collapse
Affiliation(s)
- Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Carolina Klagges
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Universidad SEK, Santiago 8320000, Chile
| | - Bernardo Morales
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Paula Sotomayor
- Departamento de Urología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Jorge Escobar
- Laboratorio de Química Biológica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Adrian A. Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Felipe M. Llancalahuen
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Ramiro Arratia-Perez
- Center for Applied Nanoscience, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
| | - Michelle Herrera
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Jose L. Martínez
- Vicerrectoria de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Trujillo 13001, Peru
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13001, Peru
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| | - Maité Rodríguez-Díaz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| |
Collapse
|
8
|
Azamatov AA, Zhurakulov SN, Vinogradova VI, Tursunkhodzhaeva F, Khinkar RM, Malatani RT, Aldurdunji MM, Tiezzi A, Mamadalieva NZ. Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure-Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020477. [PMID: 36677539 PMCID: PMC9864514 DOI: 10.3390/molecules28020477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Isoquinoline alkaloids constitute one of the most common classes of alkaloids that have shown a pronounced role in curing various diseases. Finding ways to reduce the toxicity of these molecules and to increase their therapeutic margin is an urgent matter. Here, a one-step method for the synthesis of a series of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines was performed in 85-98% yield by the Pictet-Spengler reaction. This was accomplished using the reaction between 3,4-dimethoxyphenylethylamine and substituted benzaldehydes boiling in trifluoroacetic acid. Furthermore, 1-(3'-amino-, 4'-aminophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines were obtained in 94% and 97% yield by reduction in 1-(3'-nitro-, 4'-nitrophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines with SnCl2 × 2H2O. The structures of the substances obtained were confirmed by infrared (IR) and nuclear magnetic resonance (1H and 13C NMR) spectra. ADMET/TOPKAT in silico study concluded that the synthesized compounds exhibited acceptable pharmacodynamic and pharmacokinetic properties without carcinogenic or mutagenic potential but with variable hepatotoxicity. The acute toxicity and structure-toxicity relationship (STR) in the series of 20 derivatives of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines (3a-r, 4a, b) was studied via determination of acute toxicity and resorptive action in white mice employing intragastric step-by-step administration. The first compound, 1-phenyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (3a), showed the highest toxicity with LD50 of 280 mg/kg in contrast to 1-(3'-bromo -4'-hydroxyphenyl)-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (3e) which proved to be the safest of the compounds studied. Its toxicity was 13.75 times lower than that of the parent compound 3a. All compounds investigated showed high local anesthetic activity on rabbit eyes in the concentrations studied. Only 3r, 3n, and 4a caused eye irritation and redness. All investigated derivatives (except 4b) in 1% concentration were more active than lidocaine, providing longer duration of complete anesthesia. Therefore, based on the obtained results of in silico tests, local anesthesia, and acute toxicity, a conclusion can be drawn that the experimental compounds need further extensive future investigations and possible modifications so that they can act as promising drug candidates.
Collapse
Affiliation(s)
- Azizbek A. Azamatov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Sherzod N. Zhurakulov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- Department of Organic Chemistry, Faculty of Chemistry, National University of Uzbekistan Named after Mirzo Ulugbek, University Str. 4, Tashkent 100174, Uzbekistan
| | - Valentina I. Vinogradova
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Firuza Tursunkhodzhaeva
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Roaa M. Khinkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agro-Food and Forestal Systems, Tuscia University, 01100 Viterbo, Italy
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- Correspondence:
| |
Collapse
|
9
|
Khizrieva SS, Borisenko SN, Maksimenko EV, Vetrova EV, Borisenko NI, Minkin VI. Antioxidant Properties and Effects of Aporphine Alkaloids and Their Phenanthrene Seco-Isomers on Acetylcholinesterase Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202207010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
11
|
Wang FX, Zhu N, Zhou F, Lin DX. Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules 2021; 26:molecules26206117. [PMID: 34684698 PMCID: PMC8540223 DOI: 10.3390/molecules26206117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
The incidence and prevalence of metabolic syndrome has steadily increased worldwide. As a major risk factor for various diseases, metabolic syndrome has come into focus in recent years. Some natural aporphine alkaloids are very promising agents in the prevention and treatment of metabolic syndrome and its components because of their wide variety of biological activities. These natural aporphine alkaloids have protective effects on the different risk factors characterizing metabolic syndrome. In this review, we highlight the activities of bioactive aporphine alkaloids: thaliporphine, boldine, nuciferine, pronuciferine, roemerine, dicentrine, magnoflorine, anonaine, apomorphine, glaucine, predicentrine, isolaureline, xylopine, methylbulbocapnine, and crebanine. We particularly focused on their impact on metabolic syndrome and its components, including insulin resistance and type 2 diabetes mellitus, endothelial dysfunction, hypertension and cardiovascular disease, hyperlipidemia and obesity, non-alcoholic fatty liver disease, hyperuricemia and kidney damage, erectile dysfunction, central nervous system-related disorder, and intestinal microbiota dysbiosis. We also discussed the potential mechanisms of actions by aporphine alkaloids in metabolic syndrome.
Collapse
Affiliation(s)
- Fei-Xuan Wang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- Correspondence: ; Tel.: +86-13505140525
| | - Nan Zhu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| | - Fan Zhou
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dong-Xiang Lin
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| |
Collapse
|
12
|
Akhoundzadeh K, Shafia S. Association between GFAP-positive astrocytes with clinically important parameters including neurological deficits and/or infarct volume in stroke-induced animals. Brain Res 2021; 1769:147566. [PMID: 34237322 DOI: 10.1016/j.brainres.2021.147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The effect of GFAP-positive astrocytes, as positive or negative factors on stroke complications such as infarct volume and neurological deficits is currently under debate. This review was aimed to evaluate and compare the frequency of studies that showed a positive or negative relationship between astrocyte activation with the improvement of neurological deficits and/or the decrease of infarct volume. In addition, we reviewed two possible causes of differences in results including timepoint of stroke and stroke severity. Time of GFAP assessment was considered as time point and type of stroke induction and duration of stroke as stroke severity. According to our review in the most relevant English-language studies in the PubMed, Web of Science, and Google Scholar databases from 2005 to 2020, the majority of studies (77 vs. 28) showed a negative coincidence or correlation between GFAP-positive cells with neurological improvement as well as between GFAP-positive cells with infarct volume reduction. In most reviewed studies, GFAP expression was reported as a marker related to or coinciding with worse neurological function, or greater infarct volume. However, there were also studies that showed helpful effects of GFAP-positive cells on neurological function or stroke lesion. Although there are some elucidations that the difference in these findings is due to the time point of stroke and stroke severity, our review did not confirm these interpretations.
Collapse
Affiliation(s)
| | - Sakineh Shafia
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
14
|
Toledo JP, Fernández-Pérez EJ, Ferreira IL, Marinho D, Riffo-Lepe NO, Pineda-Cuevas BN, Pinochet-Pino LF, Burgos CF, Rego AC, Aguayo LG. Boldine Attenuates Synaptic Failure and Mitochondrial Deregulation in Cellular Models of Alzheimer's Disease. Front Neurosci 2021; 15:617821. [PMID: 33679301 PMCID: PMC7933475 DOI: 10.3389/fnins.2021.617821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia worldwide, characterized by both cognitive and behavioral deficits. Amyloid beta peptide (Aβ) oligomers (AβO) have been found to be responsible for several pathological mechanisms during the development of AD, including altered cellular homeostasis and synaptic function, inevitably leading to cell death. Such AβO deleterious effects provide a way for identifying new molecules with potential anti-AD properties. Available treatments minimally improve AD symptoms and do not extensively target intracellular pathways affected by AβO. Naturally-derived compounds have been proposed as potential modifiers of Aβ-induced neurodysfunction and cytotoxicity based on their availability and chemical diversity. Thus, the aim of this study was to evaluate boldine, an alkaloid derived from the bark and leaves of the Chilean tree Peumus boldus, and its capacity to block some dysfunctional processes caused by AβO. We examined the protective effect of boldine (1–10 μM) in primary hippocampal neurons and HT22 hippocampal-derived cell line treated with AβO (24–48 h). We found that boldine interacts with Aβ in silico affecting its aggregation and protecting hippocampal neurons from synaptic failure induced by AβO. Boldine also normalized changes in intracellular Ca2+ levels associated to mitochondria or endoplasmic reticulum in HT22 cells treated with AβO. In addition, boldine completely rescued the decrease in mitochondrial membrane potential (ΔΨm) and the increase in mitochondrial reactive oxygen species, and attenuated AβO-induced decrease in mitochondrial respiration in HT22 hippocampal cells. We conclude that boldine provides neuroprotection in AD models by both direct interactions with Aβ and by preventing oxidative stress and mitochondrial dysfunction. Additional studies are required to evaluate the effect of boldine on cognitive and behavioral deficits induced by Aβ in vivo.
Collapse
Affiliation(s)
- Juan P Toledo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Marinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nicolas O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Benjamin N Pineda-Cuevas
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Luis F Pinochet-Pino
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| |
Collapse
|
15
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
16
|
Nie X, Wei J, Hao Y, Tao J, Li Y, Liu M, Xu B, Li B. Consistent Biomarkers and Related Pathogenesis Underlying Asthma Revealed by Systems Biology Approach. Int J Mol Sci 2019; 20:ijms20164037. [PMID: 31430856 PMCID: PMC6720652 DOI: 10.3390/ijms20164037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Asthma is a common chronic airway disease worldwide. Due to its clinical and genetic heterogeneity, the cellular and molecular processes in asthma are highly complex and relatively unknown. To discover novel biomarkers and the molecular mechanisms underlying asthma, several studies have been conducted by focusing on gene expression patterns in epithelium through microarray analysis. However, few robust specific biomarkers were identified and some inconsistent results were observed. Therefore, it is imperative to conduct a robust analysis to solve these problems. Herein, an integrated gene expression analysis of ten independent, publicly available microarray data of bronchial epithelial cells from 348 asthmatic patients and 208 healthy controls was performed. As a result, 78 up- and 75 down-regulated genes were identified in bronchial epithelium of asthmatics. Comprehensive functional enrichment and pathway analysis revealed that response to chemical stimulus, extracellular region, pathways in cancer, and arachidonic acid metabolism were the four most significantly enriched terms. In the protein-protein interaction network, three main communities associated with cytoskeleton, response to lipid, and regulation of response to stimulus were established, and the most highly ranked 6 hub genes (up-regulated CD44, KRT6A, CEACAM5, SERPINB2, and down-regulated LTF and MUC5B) were identified and should be considered as new biomarkers. Pathway cross-talk analysis highlights that signaling pathways mediated by IL-4/13 and transcription factor HIF-1α and FOXA1 play crucial roles in the pathogenesis of asthma. Interestingly, three chemicals, polyphenol catechin, antibiotic lomefloxacin, and natural alkaloid boldine, were predicted and may be potential drugs for asthma treatment. Taken together, our findings shed new light on the common molecular pathogenesis mechanisms of asthma and provide theoretical support for further clinical therapeutic studies.
Collapse
Affiliation(s)
- Xiner Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jinyi Wei
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yinghong Li
- School of Biological Information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Mingwei Liu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Boying Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
17
|
Cassels BK, Fuentes-Barros G, Castro-Saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181113112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Boldo leaves (Boldo folium, from Peumus boldus Mol.) are very frequently used as a medicinal herb in Chile and are exported to many countries to be used in teas or as extracts included in herbal remedies, primarily as an aid to digestion and as a mild sedative. Scientific support for these uses is scanty, and boldine, an alkaloid viewed as characteristic of the tree and present in high concentration in the bark, is extracted by specialized companies and sold as the supposed main active constituent. Consequently, boldine has been the subject of a considerable number of research papers, while some of the other alkaloids present to a greater extent in the leaves have been relatively neglected except when found in large amounts in other species. These studies range from assays of antioxidant activity to anti-inflammatory, antineoplastic and other medical applications. The essential oil, usually containing a large percentage of the toxic ascaridole, was once used as a vermifuge and is now regarded with caution, but is still of interest as a possible natural insecticide, fungicide, antiparasitic and herbicide. The last decade has seen an explosive increase in papers pointing to possible uses of boldo and its constituents. This review attempts to bring these publications together in a comprehensive way with the purpose of stimulating and orienting further research into the useful properties of this Chilean endemic tree.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
18
|
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
(-)-α-bisabolol prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Eur J Pharmacol 2018; 842:270-280. [PMID: 30287152 DOI: 10.1016/j.ejphar.2018.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
The pathophysiology of ischemic stroke involves multiple events such as inflammation and oxidative stress which will lead to neuronal death and cognitive deficits. The (-)-α-bisabolol is a monocyclic sesquiterpene alcohol found in various plants and mainly in Matricaria chamomilla, which exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. The aim of this work was to investigate the neuroprotective effects of (-)-α-bisabolol in mice underwent permanent occlusion of the middle cerebral artery (pMCAO). Animals were treated with (-)-α-bisabolol (50, 100 and 200 mg/kg/day, orally) or vehicle (3% tween 80) one day before and 1 h after pMCAO and the treatment continued once daily for the following five days. The treatment with (-)-α-bisabolol (100 and 200 mg/kg) significantly reduced the infarcted area and neurological deficits caused by pMCAO. (-)-α-bisabolol at the 200 mg/kg dose increased cell viability and decreased neuronal degeneration, as evaluated by cresyl violet and Fluoro-Jade C stainings, respectively. (-)-α-bisabolol also increased the locomotor activity which was reduced by cerebral ischemia and improved pMCAO-induced working, spatial, object recognition, and aversive memories deficits. (-)-α-bisabolol (200 mg/kg) significantly prevented the increase of myeloperoxidase (MPO) activity, TNF-α immunoreactivity in the temporal cortex, and the increase of iNOS both in the temporal cortex and in the striatum. (-)-α-bisabolol treatment also prevented astrogliosis in these areas. These data showed that (-)-α-bisabolol provides neuroprotective action probably due to its anti-inflammatory activity, although other mechanisms cannot be discarded.
Collapse
|
20
|
Hosseini SM, Ziaee SM, Haider KH, Karimi A, Tabeshmehr P, Abbasi Z. Preconditioned neurons with NaB and nicorandil, a favorable source for stroke cell therapy. J Cell Biochem 2018; 119:10301-10313. [PMID: 30145846 DOI: 10.1002/jcb.27372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
Poor survival of stem cells in the harsh microenvironment at the site of stroke, especially during acute phase of injury, remains a serious obstacle to achieve the desired prognosis. We hypothesized that combined treatment of neural stem cells (NSCs) with small molecules would precondition them to become robust and survive better as compared with the native nonpreconditioned cells. Mouse ganglionic NSCs were isolated, cultured, and characterized. The cells were preconditioned by treatment with sodium butyrate (NaB) and nicorandil (Nico) and transplanted in an experimentally induced stroke model. Sham-operated animals without treatment or animals with experimental stroke treated with basal medium, native NSCs, NSCs preconditioned with NaB or Nico alone were used as controls. The tissue samples and cells with different treatments were used to measure brain-tissue-derived neurotrophic factor (BDNF) level and the activity of phosphatidylinositol-3 kinase (PI3K), apurinic/apyrimidinic endonuclease 1 (APE1), and nuclear factor-κB (NF-κB) p50 both in vitro and in vivo, respectively. Additionally, survival of the cells and recovery indices for stroke were studied. The combined treatment with NaB + Nico resulted in increased BDNF level and higher PI3K, APE1, and the downstream NF-κB activation, which were blocked by pretreatment with their respective inhibitors. Donor cell survival increased postengraftment as assessed by 5-bromo-2'-deoxyuridine immunostaining and reduced Terminal deoxynucleotide transferase dUTP Nick End Labeling positivity at the site of engraftment. There was reduction in proinflammatory cytokines and infiltration of both GFAP + and CD68 + at the injury site. There was reduction in the infarct size and neurological function was preserved in the preconditioned cell treatment group. Our preconditioning approach with small molecules effectively improved the survival as well as functionality of NSCs.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Faculty, Cell and Molecular Medicine Student Research Group, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohyeddin Ziaee
- Medical Faculty, Cell and Molecular Medicine Student Research Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Aliashghar Karimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Tabeshmehr
- Medical Faculty, Cell and Molecular Medicine Student Research Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Abbasi
- Medical Faculty, Cell and Molecular Medicine Student Research Group, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Jiang H, Wang Y, Liang X, Xing X, Xu X, Zhou C. Toll-Like Receptor 4 Knockdown Attenuates Brain Damage and Neuroinflammation After Traumatic Brain Injury via Inhibiting Neuronal Autophagy and Astrocyte Activation. Cell Mol Neurobiol 2018; 38:1009-1019. [PMID: 29222622 DOI: 10.1007/s10571-017-0570-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.
Collapse
Affiliation(s)
- Hongsheng Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Yanzhou Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Xin Liang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Xiaofeng Xing
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Xiuzhen Xu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Caifeng Zhou
- Department of Teaching, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China.
| |
Collapse
|
22
|
Moezi L, Yahosseini S, Jamshidzadeh A, Dastgheib M, Pirsalami F. Sub-chronic boldine treatment exerts anticonvulsant effects in mice. Neurol Res 2017; 40:146-152. [PMID: 29157166 DOI: 10.1080/01616412.2017.1402500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Boldine is an aporphine alkaloid which is best known for its antioxidant, anti-inflammatory and cytoprotective characteristics. It seems that all these activities are related to boldine ability to scavenge reactive free radicals. As indicated by several pieces of evidence, free radicals generation are involved in initiation and propagation of epilepsy. METHODS In this study, we investigated the sub-chronic effects of boldine on intraperitoneal and intravenous pentylenetetrazole (PTZ) models and electroshock-induced seizure in mice. Mice in treatment groups received different doses of boldine (once in a day for 8 days, ip.) and control group received solvent. We also evaluated the role of antioxidant activity of boldine as a part of its anti-seizure activity. RESULTS The results demonstrated that sub-chronic administration of boldine increased time latencies to the onset of myoclonic and clonic seizure induced by intraperitoneal PTZ model and increased clonic seizure threshold in intravenous PTZ model. It also decreased tonic hind limb extension duration in the electroshock-induced seizure model. Co-administration of boldine with a non-effective dose of vitamin C induced the anticonvulsant activity of vitamin C. Superoxide dismutase (SOD) activity in the brain tissue of animals was increased following sub-chronic administration of boldine which all indicated antioxidant activity of boldine may be a part of its anticonvulsant activity. DISCUSSION The anticonvulsant effects of boldine in three different animal models of epilepsy have been indicated. We have also shown that the antioxidant role of boldine might be a part of its anticonvulsant effect.
Collapse
Affiliation(s)
- Leila Moezi
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Siranoush Yahosseini
- c Department of Pharmacology and Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Akram Jamshidzadeh
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Pharmacology and Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mona Dastgheib
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Fateme Pirsalami
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
23
|
Yi C, Ezan P, Fernández P, Schmitt J, Sáez JC, Giaume C, Koulakoff A. Inhibition of glial hemichannels by boldine treatment reduces neuronal suffering in a murine model of Alzheimer's disease. Glia 2017; 65:1607-1625. [PMID: 28703353 DOI: 10.1002/glia.23182] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenju Yi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Paola Fernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Julien Schmitt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS-IBPS), Cerebellum Navigation and Memory team (CeZaMe), Paris, 75005, France
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Annette Koulakoff
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| |
Collapse
|
24
|
Zhang Y, Cao RY, Jia X, Li Q, Qiao L, Yan G, Yang J. Treadmill exercise promotes neuroprotection against cerebral ischemia-reperfusion injury via downregulation of pro-inflammatory mediators. Neuropsychiatr Dis Treat 2016; 12:3161-3173. [PMID: 28003752 PMCID: PMC5161395 DOI: 10.2147/ndt.s121779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) was conducted to establish a rat model of cerebral ischemia-reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34), MCAO (n=39), and MCAO plus treadmill exercise (n=28). The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays. RESULTS Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats. CONCLUSION This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral ischemia-reperfusion injury via the downregulation of proinflammatory mediators.
Collapse
Affiliation(s)
| | - Richard Y Cao
- Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences
| | - Xinling Jia
- School of Life sciences, Shanghai University
| | - Qing Li
- Department of Rehabilitation
| | | | - Guofeng Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | |
Collapse
|