1
|
Wang Z, Arnold JC. Cannabinoids and healthy ageing: the potential for extending healthspan and lifespan in preclinical models with an emphasis on Caenorhabditis elegans. GeroScience 2024; 46:5643-5661. [PMID: 38696056 PMCID: PMC11493940 DOI: 10.1007/s11357-024-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 10/23/2024] Open
Abstract
There is a significant global upsurge in the number and proportion of older persons in the population. With this comes an increasing prevalence of age-related conditions which pose a major challenge to healthcare systems. The development of anti-ageing treatments may help meet this challenge by targeting the ageing process which is a common denominator to many health problems. Cannabis-like compounds (cannabinoids) are reported to improve quality of life and general well-being in human trials, and there is increasing preclinical research highlighting that they have anti-ageing activity. Moreover, preclinical evidence suggests that endogenous cannabinoids regulate ageing processes. Here, we review the anti-ageing effects of the cannabinoids in various model systems, including the most extensively studied nematode model, Caenorhabditis elegans. These studies highlight that the cannabinoids lengthen healthspan and lifespan, with emerging evidence that they may also hinder the development of cellular senescence. The non-psychoactive cannabinoid cannabidiol (CBD) shows particular promise, with mechanistic studies demonstrating it may work through autophagy induction and activation of antioxidative systems. Furthermore, CBD improves healthspan parameters such as diminishing age-related behavioural dysfunction in models of both healthy and accelerated ageing. Translation into mammalian systems provides an important next step. Moreover, looking beyond CBD, future studies could probe the multitude of other cannabis constituents for their anti-ageing activity.
Collapse
Affiliation(s)
- Zhizhen Wang
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Chaves YC, Raymundi AM, Waltrick APF, de Souza Crippa JA, Stern CAJ, da Cunha JM, Zanoveli JM. Cannabidiol modulates contextual fear memory consolidation in animals with experimentally induced type-1 diabetes mellitus. Acta Neuropsychiatr 2024; 36:276-286. [PMID: 36805056 DOI: 10.1017/neu.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVES In view of the neuroprotective characteristic of cannabidiol (CBD) and its beneficial action on aversive memory in non-diabetic animals, we aimed to investigate in animals with experimentally induced type-1 diabetes mellitus (T1DM) whether CBD treatment would be able to impair the contextual fear memory consolidation, its generalisation and whether the effect would be lasting. We also investigated the CBD effect on anxiety-like responses. METHODS After T1DM induction, animals received single or more prolonged treatment with CBD and were submitted to the contextual fear conditioning test. As expression of activity-regulated cytoskeletal-associated (Arc) protein is necessary for memory consolidation, we evaluated its expression in the dorsal hippocampus (DH). For evaluating anxiety-related responses, animals were submitted to the elevated plus maze test (EPMT), in which the time and number of entries in the open arms were used as anxiety index. RESULTS A single injection of CBD impaired the contextual fear memory consolidation and its generalisation, which was evaluated by exposing the animal in a neutral context. This single injection was able to reduce the elevated expression of Arc in the DH from these animals. Interestingly, more prolonged treatment with CBD also impaired the persistence of context-conditioned fear memory and induced an anxiolytic-like effect, as the treated group spent more time in the open arms of the EPMT. CONCLUSION CBD interferes with contextual fear memory and the dosage regimen of treatment seems to be important. Moreover, we cannot rule out the involvement of emotional aspects in these processes related to fear memory.
Collapse
Affiliation(s)
- Yane Costa Chaves
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ana Maria Raymundi
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ana Paula Farias Waltrick
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM-CNPq), Ribeirão Preto, São Paulo, Brazil
| | | | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Lisboa SF, Stern CAJ, Gazarini L, Bertoglio LJ. Cannabidiol effects on fear processing and implications for PTSD: Evidence from rodent and human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:235-250. [PMID: 39029986 DOI: 10.1016/bs.irn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) modulates aversive memory and its extinction, with potential implications for treating anxiety- and stress-related disorders. Here, we summarize and discuss scientific evidence showing that CBD administered after the acquisition (consolidation) and retrieval (reconsolidation) of fear memory attenuates it persistently in rats and mice. CBD also reduces fear expression and enhances fear extinction. These effects involve the activation of cannabinoid type-1 (CB1) receptors in the dorsal hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, comprising the anterior cingulate, prelimbic, and infralimbic subregions. Serotonin type-1A (5-HT1A) receptors also mediate some CBD effects on fear memory. CBD effects on fear memory acquisition vary, depending on the aversiveness of the conditioning procedure. While rodent findings are relatively consistent and encouraging, human studies investigating CBD's efficacy in modulating aversive/traumatic memories are still limited. More studies are needed to investigate CBD's effects on maladaptive, traumatic memories, particularly in post-traumatic stress disorder patients.
Collapse
Affiliation(s)
- Sabrina Francesca Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of Sao Paulo, Brazil.
| | | | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Campus Três Lagoas, Três Lagoas, MS, Brazil
| | - Leandro José Bertoglio
- Pharmacology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Rosado‐Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap for the expression of canonical and extended endocannabinoid system receptors and metabolic enzymes in peripheral organs of preclinical animal models. Physiol Rep 2024; 12:e15947. [PMID: 38408761 PMCID: PMC10896677 DOI: 10.14814/phy2.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system have not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were no receptors with identical expression patterns among mice (three males and two females), rats (six females), and rhesus macaques (four males). Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J. J. Rosado‐Franco
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. L. Ellison
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - C. J. White
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. S. Price
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - C. F. Moore
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University Bayview CampusBaltimoreMarylandUSA
| | - R. E. Williams
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - L. B. Fridman
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - E. M. Weerts
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - D. W. Williams
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Division of Clinical PharmacologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Lo LA, MacCallum CA, Nanson K, Koehn M, Mitchell I, Milloy MJ, Walsh Z, Fehr F. Cannabidiol as a Harm Reduction Strategy for People Who Use Drugs: A Rapid Review. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2023; 68:557-571. [PMID: 37376827 PMCID: PMC10411365 DOI: 10.1177/07067437231183525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The drug poisoning crisis throughout North America necessitates novel harm reduction approaches. Emerging evidence suggests that cannabidiol (CBD) may have some utility as a harm reduction modality for those with problematic substance use. This rapid review aimed to synthesize available evidence on CBD as a potential harm reduction tool for people who use drugs while providing clinical and research insights. METHOD A systematic search in EMBASE, MEDLINE, CENTRAL, and CINAHL was completed in July 2022. For inclusion, studies had to meet the following criteria: (1) drawn from an adult population of people who use drugs; (2) investigates CBD as an intervention for problematic substance use or harm reduction-related outcomes; (3) be published after the year 2000 and in English; and (4) be primary research or a review article. A narrative synthesis was used to group outcomes relevant to harm reduction and provide clinical and research insights. RESULTS We screened 3,134 records, of which 27 studies (5 randomized trials) were included. The evidence remains limited, but available studies support the potential utility of CBD to reduce drug-induced craving and anxiety in opioid use disorder. There were low-quality studies suggesting that CBD may improve mood and general well-being of people who use drugs. Evidence suggests that CBD monotherapy may not be an adequate harm reduction strategy for problematic substance use but rather an adjunct to the standard of care. CONCLUSION Low-quality evidence suggests that CBD may reduce drug cravings and other addiction-related symptoms and that CBD may have utility as an adjunct harm reduction strategy for people who use drugs. However, there is a significant need for more research that accurately reflects CBD dosing and administration regimens used in a real-world context.
Collapse
Affiliation(s)
- Lindsay A. Lo
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Caroline A. MacCallum
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kate Nanson
- School of Nursing, Thompson Rivers University, Kamloops, BC, Canada
| | | | - Ian Mitchell
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael-John Milloy
- BC Centre on Substance Use and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zach Walsh
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Florriann Fehr
- School of Nursing, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
6
|
Rosado-Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap For The Expression Of Canonical and Extended Endocannabinoid System Receptors and Proteins in Peripheral Organs of Preclinical Animal Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544455. [PMID: 37333264 PMCID: PMC10274867 DOI: 10.1101/2023.06.10.544455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system has not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were only five receptors (CB2, GPR18, GPR55, TRPV2, and FAAH) that had identical expression patterns in mice, rats, and rhesus macaques. Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has profound implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A L Ellison
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - C J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A S Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - C F Moore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University Bayview Campus, Baltimore, Maryland, USA
| | - R E Williams
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - L B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - E M Weerts
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - D W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Winters ND, Yasmin F, Kondev V, Grueter BA, Patel S. Cannabidiol Differentially Modulates Synaptic Release and Cellular Excitability in Amygdala Subnuclei. ACS Chem Neurosci 2023. [PMID: 37163725 DOI: 10.1021/acschemneuro.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive constituent of the Cannabis plant that has purported effectiveness in treating an array of stress-related neuropsychiatric disorders. The amygdala is a subcortical brain structure that regulates emotional behavior, and its dysfunction has been linked to numerous disorders including anxiety and posttraumatic stress disorder. Despite this, the direct effects of CBD on synaptic and cellular function in the amygdala are not known. Using electrophysiology and pharmacology, we report that CBD reduces presynaptic neurotransmitter release in the amygdala, and these effects are dependent on subnucleus and cell type. Furthermore, CBD broadly decreases cellular excitability across amygdala subnuclei. These data reveal physiological mechanisms by which CBD modulates amygdala activity and could provide insights into how CBD could affect emotional and stress-related behavioral responses.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
8
|
Ghovanloo MR, Arnold JC, Ruben PC. Editorial: Cannabinoid interactions with ion channels, receptors, and the bio-membrane. Front Physiol 2023; 14:1211230. [PMID: 37228821 PMCID: PMC10203607 DOI: 10.3389/fphys.2023.1211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT, United States
| | - Jonathon C. Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
9
|
Corsato Alvarenga I, Panickar KS, Hess H, McGrath S. Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases. Annu Rev Anim Biosci 2023; 11:227-246. [PMID: 36790884 DOI: 10.1146/annurev-animal-081122-070236] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mechanisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeutic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the available scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.
Collapse
Affiliation(s)
- Isabella Corsato Alvarenga
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hill's Pet Nutrition, Inc., Topeka, Kansas, USA
| | - Hannah Hess
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| |
Collapse
|
10
|
Cannabidiol attenuates fear memory expression in female rats via hippocampal 5-HT 1A but not CB1 or CB2 receptors. Neuropharmacology 2023; 223:109316. [PMID: 36334768 DOI: 10.1016/j.neuropharm.2022.109316] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Growing evidence from male rodent and human studies suggests that cannabidiol (CBD) modulates the expression of aversive memories and anxiety-related responses. The limited data on whether and how CBD influences these aspects in females could have therapeutic implications given the increased susceptibility of women to anxiety- and stress-related disorders relative to men. Female studies are also essential to examine inherent aspects that potentially contribute to differences in responsiveness to CBD. Here we addressed these questions in adult female rats. Contextually fear-conditioned animals acutely treated with CBD (1.0-10 mg/kg) were tested 45 min later. In subsequent experiments, we investigated the estrous cycle effects and the contribution of dorsal hippocampus (DH) serotonin 1A (5-HT1A) and cannabinoid types 1 (CB1) and 2 (CB2) receptors to CBD-induced effects on memory retrieval/expression. The effects of pre-retrieval systemic or intra-DH CBD administration on subsequent fear extinction were also assessed. Lastly, we evaluated the open arms avoidance and stretched-attend postures in females exposed to the elevated plus-maze after systemic CBD treatment. CBD 3.0 and 10 mg/kg administered before conditioned context exposure reduced females' freezing. This action remained unchanged across the estrous cycle and involved DH 5-HT1A receptors activation. Pre-retrieval CBD impaired memory reconsolidation and lowered fear during early extinction. CBD applied directly to the DH was sufficient to reproduce the effects of systemic CBD treatment. CBD 3.0 and 10 mg/kg reduced anxiety-related responses scored in the elevated plus-maze. Our findings demonstrate that CBD attenuates the behavioral manifestation of learned fear and anxiety in female rats.
Collapse
|
11
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
12
|
Kwee CMB, van Gerven JMA, Bongaerts FLP, Cath DC, Jacobs G, Baas JMP, Groenink L. Cannabidiol in clinical and preclinical anxiety research. A systematic review into concentration-effect relations using the IB-de-risk tool. J Psychopharmacol 2022; 36:1299-1314. [PMID: 36239014 PMCID: PMC9716490 DOI: 10.1177/02698811221124792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Preclinical research suggests that cannabidiol (CBD) may have therapeutic potential in pathological anxiety. Dosing guidelines to inform future human studies are however lacking. AIM We aimed to predict the therapeutic window for anxiety-reducing effects of CBD in humans based on preclinical models. METHODS We conducted two systematic searches in PubMed and Embase up to August 2021, into pharmacokinetic (PK) and pharmacodynamic (PD) data of systemic CBD exposure in humans and animals, which includes anxiety-reducing and potential side effects. Risk of bias was assessed with SYRCLE's RoB tool and Cochrane RoB 2.0. A control group was an inclusion criterion in outcome studies. In human outcome studies, randomisation was required. We excluded studies that co-administered other substances. We used the IB-de-risk tool for a translational integration of outcomes. RESULTS We synthesised data from 87 studies. For most observations (70.3%), CBD had no effect on anxiety outcomes. There was no identifiable relation between anxiety outcomes and drug levels across species. In all species (humans, mice, rats), anxiety-reducing effects seemed to be clustered in certain concentration ranges, which differed between species. DISCUSSION A straightforward dosing recommendation was not possible, given variable concentration-effect relations across species, and no consistent linear effect of CBD on anxiety reduction. Currently, these results raise questions about the broad use as a drug for anxiety. Meta-analytic studies are needed to quantitatively investigate drug efficacy, including aspects of anxiety symptomatology. Acute and (sub)chronic dosing studies with integrated PK and PD outcomes are required for substantiated dose recommendations.
Collapse
Affiliation(s)
- Caroline MB Kwee
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands,Altrecht Academic Anxiety Centre, Utrecht, The Netherlands,Caroline MB Kwee, Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, The Netherlands.
| | | | - Fleur LP Bongaerts
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands
| | - Danielle C Cath
- University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands,Department of Specialist Trainings, GGZ Drenthe, Assen, The Netherlands
| | | | - Johanna MP Baas
- Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucianne Groenink
- Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Reis AL, Hammond JH, Stevanovski I, Arnold JC, McGregor IS, Deveson IW, Gururajan A. Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. iScience 2022; 25:104861. [PMID: 36039298 PMCID: PMC9418440 DOI: 10.1016/j.isci.2022.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the “epitranscriptome.”. Here, we present our analyses of the male and female mouse amygdala transcriptome and epitranscriptome, obtained using parallel Illumina RNA-seq and Oxford Nanopore dRNA-seq, associated with the acquisition of PTSD-like fear induced by Pavlovian cued-fear conditioning. We report significant sex-specific differences in the amygdala transcriptional response during fear acquisition and a range of shared and dimorphic epitranscriptomic signatures. Differential RNA modifications are enriched among mRNA transcripts associated with neurotransmitter regulation and mitochondrial function, many of which have been previously implicated in PTSD. Very few differentially modified transcripts are also differentially expressed, suggesting an influential, expression-independent role for epitranscriptional regulation in PTSD-like fear acquisition. PTSD-like trauma has sexually dimorphic effects on the amygdala transcriptome Most RNA modifications identified adhere to the known patterns associated with m6A There was enrichment of RNA modifications in neurological/PTSD-related genes There was little overlap between transcriptomic and epitranscriptomic signatures
Collapse
|
15
|
Zhou C, Assareh N, Arnold JC. The Cannabis Constituent Cannabigerol Does Not Disrupt Fear Memory Processes or Stress-Induced Anxiety in Mice. Cannabis Cannabinoid Res 2022; 7:294-303. [PMID: 34182770 PMCID: PMC9225414 DOI: 10.1089/can.2021.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Medicinal cannabis has proliferated around the world and there is increasing interest in the therapeutic potential of individual plant-derived cannabinoids (phytocannabinoids). Preclinical evidence suggests the phytocannabinoid cannabigerol (CBG) could be useful in treating brain disorders, including stress and anxiety-related disorders. In this study, we aimed to explore whether CBG disrupts various contextually conditioned fear memory processes and trauma-induced anxiety-related behavior in a mouse model of post-traumatic stress disorder (PTSD). Materials and Methods: All mice underwent contextual fear conditioning. CBG was administered between 1 and 60 mg/kg intraperitoneally (i.p.). We first assessed the effects of repeated CBG exposure on long-term fear memories. We also examined whether acute CBG affected various fear memory processes, namely expression, acquisition, consolidation, and reconsolidation of conditioned fear. Finally, the effect of acute CBG administration on stress-induced anxiety in the light/dark test was assessed. Results: Repeated CBG exposure did not affect long-term conditioned fear that was observed 24 days after the conditioning session. Moreover, acute CBG administration did not influence the acquisition, consolidation, reconsolidation, or expression of contextually conditioned fear. Acute CBG treatment also did not affect stress-induced anxiety-related behaviors in the light/dark test. Conclusions: CBG was ineffective in disrupting long-term fear memories, various conditioned fear memory processes, or stress-induced anxiety-related behavior in mice. These preclinical data suggest CBG may have limited scope in the treatment of PTSD and stress-related anxiety.
Collapse
Affiliation(s)
- Cilla Zhou
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Neda Assareh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia
| | - Jonathon C. Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Address correspondence to: Jonathon C. Arnold, PhD, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown 2050, New South Wales, Australia,
| |
Collapse
|
16
|
Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals (Basel) 2022; 15:ph15040473. [PMID: 35455470 PMCID: PMC9027088 DOI: 10.3390/ph15040473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated in several studies. However, the molecular mechanisms involved in these actions remain unclear. A total of 130 male mice were used. CBD’s ability to modulate emotional disturbances (anxiety and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and 30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects (20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A (2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1 mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice, contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD. Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a multimodal mechanism of action for CBD.
Collapse
|
17
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
18
|
Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers. Sci Rep 2022; 12:3683. [PMID: 35256692 PMCID: PMC8901777 DOI: 10.1038/s41598-022-07795-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 01/17/2023] Open
Abstract
Industrial hemp (IH) is defined as Cannabis sativa containing < 0.3% delta-9 tetrahydrocannabinol (THC) and was legalized in the 2018 Farm Bill. The impact of cannabinoids in IH fed to livestock, especially after repeat exposure, has not been thoroughly investigated. Sixteen male castrated Holstein cattle weighting (± SD) 447 ± 68 kg were enrolled onto the study. Cattle were allocated into two treatment groups either receiving IH (HEMP, n = 8) or a control (CNTL, n = 8). Cattle in the HEMP group were fed 25 g IH mixed in 200 g of grain once a day for 14 days to target a daily dose of 5.5 mg/kg of cannabidiolic acid (CBDA). Behavior was continuously monitored with accelerometers and blood samples were collected at predetermined time points for plasma cannabinoid, serum cortisol, serum haptoglobin, liver enzymes, serum amyloid A, and prostaglandin E2 concentrations. The HEMP group spent a mean 14.1 h/d (95% CI 13.6–14.6 h/d) lying compared to the 13.4 h/d (95% CI 12.9–13.8 h/d) for the CNTL cattle (P = 0.03). Cortisol concentrations in the HEMP group were lower than the CNTL group (P = 0.001). Cattle in the HEMP group demonstrated an 8.8% reduction in prostaglandin E2 concentrations from baseline compared to a 10.2% increase from baseline observed in the CNTL group. No differences for haptoglobin or serum amyloid A were observed. These results suggest that feeding IH with a high CBDA content for 14 days increases lying behavior and decreases biomarkers of stress and inflammation in cattle.
Collapse
|
19
|
Cannabidiol but not cannabidiolic acid reduces behavioural sensitisation to methamphetamine in rats, at pharmacologically effective doses. Psychopharmacology (Berl) 2022; 239:1593-1603. [PMID: 35435462 PMCID: PMC9110442 DOI: 10.1007/s00213-022-06119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Cannabidiol (CBD) and cannabidiolic acid (CBDA) are non-psychoactive components of the cannabis plant. CBD has been well characterised to have anxiolytic and anticonvulsant activity, whereas the behavioural effects of CBDA are less clear. Preclinical and clinical data suggests that CBD has antipsychotic properties and reduces methamphetamine self-administration in rats. An animal model that is commonly used to mimic the neurochemical changes underlying psychosis and drug dependence is methamphetamine (METH) sensitisation, where repeated administration of the psychostimulant progressively increases the locomotor effects of METH. OBJECTIVE The aim of this study was to determine whether CBD or CBDA attenuate METH-induced sensitisation of locomotor hyperactivity in rats. METHODS Eighty-six male Sprague Dawley rats underwent METH sensitisation protocol where they were subjected to daily METH (1 mg/kg on days 2 and 8, 5 mg/kg on days 3-7; i.p.) injections for 7 days. After 21 days of withdrawal, rats were given a prior injection of CBD (0, 40 and 80 mg/kg; i.p.) or CBDA (0, 0.1, 10 and 1000 µg/kg; i.p.) and challenged with acute METH (1 mg/kg; i.p.). Locomotor activity was then measured for 60 min. RESULTS Rats displayed robust METH sensitisation as evidenced by increased locomotor activity to METH challenge in METH-pretreated versus SAL-pretreated rats. CBD (40 and 80 mg/kg) reduced METH-induced sensitisation. There was no effect of any CBDA doses on METH sensitisation or acute METH-induced hyperactivity. CONCLUSION These results demonstrate that CBD, but not CBDA, reduces METH sensitisation of locomotor activity in rats at pharmacologically effective doses, thus reinforcing evidence that CBD has anti-addiction and antipsychotic properties.
Collapse
|
20
|
Anderson LL, Heblinski M, Absalom NL, Hawkins NA, Bowen M, Benson MJ, Zhang F, Bahceci D, Doohan PT, Chebib M, McGregor IS, Kearney JA, Arnold JC. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br J Pharmacol 2021; 178:4826-4841. [PMID: 34384142 PMCID: PMC9292928 DOI: 10.1111/bph.15661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis‐based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia‐induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia‐induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6‐Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy‐relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis‐based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class.
Collapse
Affiliation(s)
- L L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Heblinski
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N L Absalom
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M Bowen
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - M J Benson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - F Zhang
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - P T Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Chebib
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - I S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - J A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - J C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Franco V, Bialer M, Perucca E. Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research. Neuropharmacology 2021; 185:108442. [PMID: 33347884 DOI: 10.1016/j.neuropharm.2020.108442] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Valentina Franco
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel and David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy.
| |
Collapse
|
22
|
Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules 2020; 10:biom10111575. [PMID: 33228239 PMCID: PMC7699613 DOI: 10.3390/biom10111575] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments. Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD displays an interesting pharmacological profile without the potential for becoming a drug of abuse, unlike THC. In this review, we focused on the anxiolytic, antidepressant, and antipsychotic effects of CBD found in animal and human studies. In rodents, results suggest that the effects of CBD depend on the dose, the strain, the administration time course (acute vs. chronic), and the route of administration. In addition, certain key targets have been related with these CBD pharmacological actions, including cannabinoid receptors (CB1r and CB2r), 5-HT1A receptor and neurogenesis factors. Preliminary clinical trials also support the efficacy of CBD as an anxiolytic, antipsychotic, and antidepressant, and more importantly, a positive risk-benefit profile. These promising results support the development of large-scale studies to further evaluate CBD as a potential new drug for the treatment of these psychiatric disorders.
Collapse
|