1
|
Bright Y, Maas DA, Verheij MM, Paladini MS, Amatdjais-Groenen HI, Molteni R, Riva MA, Martens GJ, Homberg JR. The Natural Protoalkaloid Methyl-2-Amino-3-Methoxybenzoate (MAM) Alleviates Positive as well as Cognitive Symptoms in Rat and Mouse Schizophrenia Models. Curr Neuropharmacol 2024; 22:323-338. [PMID: 37475559 PMCID: PMC10788887 DOI: 10.2174/1570159x21666230720122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 07/22/2023] Open
Abstract
The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.
Collapse
Affiliation(s)
- Yami Bright
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dorien A. Maas
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Nijmegen, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maria S. Paladini
- Department of Pharmacological and Biomolecular Sciences, Universita’ degli Studi di Milano, Milan, Italy
- Altos Labs Bay Area Institute of Science, Altos Labs, Inc., Redwood City, CA, USA
| | | | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Universita’ degli Studi di Milano, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, Universita’ degli Studi di Milano, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Gerard J.M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Glasscott MW, Vannoy KJ, Iresh Fernando PA, Kosgei GK, Moores LC, Dick JE. Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Mori T, Itoh T, Yoshizawa K, Ise Y, Mizuo K, Saeki T, Komiya S, Masukawa D, Shibasaki M, Suzuki T. Involvement of μ- and δ-opioid receptor function in the rewarding effect of (±)-pentazocine. Addict Biol 2015; 20:724-32. [PMID: 25065832 DOI: 10.1111/adb.12169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most opioid receptor agonists have abuse potential, and the rewarding effects of opioids can be reduced in the presence of pain. While each of the enantiomers of pentazocine has a differential pharmacologic profile, (±)-pentazocine has been used clinically for the treatment of pain. However, little information is available regarding which components of pentazocine are associated with its rewarding effects, and whether the (±)-pentazocine-induced rewarding effects can be suppressed under pain. Therefore, the present study was performed to investigate the effects of pain on the acquisition of the rewarding effects of (±)-pentazocine, and to examine the mechanism of the rewarding effects of (±)-pentazocine using the conditioned place preference paradigm. (±)-Pentazocine and (-)-pentazocine, but not (+)-pentazocine, produced significant rewarding effects. Even though the rewarding effects induced by (±)-pentazocine were significantly suppressed under pain induced by formalin, accompanied by increase of preprodynorphin mRNA levels in the nucleus accumbens, a high dose of (±)-pentazocine produced significant rewarding effects under pain. In the normal condition, (±)-pentazocine-induced rewarding effects were blocked by a low dose of naloxone, whereas the rewarding effects induced by high doses of pentazocine under pain were suppressed by naltrindole (a δ-opioid receptor antagonist). Interestingly, (±)-pentazocine did not significantly affect dopamine levels in the nucleus accumbens. These findings suggest that the rewarding effects of (-)-pentazocine may contribute to the abuse potential of (±)-pentazocine through μ- as well as δ-opioid receptors, without robust activation of the mesolimbic dopaminergic system. We also found that neural adaptations can reduce the abuse potential of (±)-pentazocine under pain.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Toshimasa Itoh
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Kazumi Yoshizawa
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Yuya Ise
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Keisuke Mizuo
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Tomoya Saeki
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Sachiko Komiya
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Daiki Masukawa
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Masahiro Shibasaki
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| | - Tsutomu Suzuki
- Department of Toxicology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; Tokyo Japan
| |
Collapse
|
4
|
Fujita W, Gomes I, Devi LA. Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Br J Pharmacol 2015; 171:4155-76. [PMID: 24916280 DOI: 10.1111/bph.12798] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 12/24/2022] Open
Abstract
GPCRs can interact with each other to form homomers or heteromers. Homomers involve interactions with the same receptor type while heteromers involve interactions between two different GPCRs. These receptor-receptor interactions modulate not only the binding but also the signalling and trafficking properties of individual receptors. Opioid receptor heteromerization has been extensively investigated with the objective of identifying novel therapeutic targets that are as potent as morphine but without the side effects associated with chronic morphine use. In this context, studies have described heteromerization between the different types of opioid receptors and between opioid receptors and a wide range of GPCRs including adrenoceptors, cannabinoid, 5-HT, metabotropic glutamate and sensory neuron-specific receptors. Recent advances in the field involving the generation of heteromer-specific reagents (antibodies or ligands) or of membrane-permeable peptides that disrupt the heteromer interaction are helping to elucidate the physiological role of opioid receptor heteromers and the contribution of the partner receptor to the side effects associated with opioid use. For example, studies using membrane-permeable peptides targeting the heteromer interface have implicated μ and δ receptor heteromers in the development of tolerance to morphine, and heteromers of μ and gastrin-releasing peptide receptors in morphine-induced itch. In addition, a number of ligands that selectively target opioid receptor heteromers exhibit potent antinociception with a decrease in the side effects commonly associated with morphine use. In this review, we summarize the latest findings regarding the biological and functional characteristics of opioid receptor heteromers both in vitro and in vivo.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
5
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
6
|
Ito S, Itoga K, Yamato M, Akamatsu H, Okano T. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 2009; 267:27-38. [PMID: 19800932 DOI: 10.1016/j.tox.2009.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/30/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH(3)MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA*) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA* decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA* in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA* peak (AA*/H*>4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA* inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.
Collapse
Affiliation(s)
- Shinobu Ito
- Tokyo Women's Medical University, Institute of Advanced Biomedical Engineering and Science, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Abstract
The effects of dopamine receptor agonists and antagonists on hyperlocomotion in mice induced by the nonpeptide delta-opioid receptor agonist (+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) (SNC80) were investigated. SNC80 significantly increased locomotion (maximally at 2 mg/kg). In antagonism tests, naltrindole and naltriben completely attenuated this SNC80-induced hyperlocomotion, which suggests that SNC80-induced hyperlocomotion may be mainly mediated through delta-opioid receptors. Although haloperidol (dopamine D2-receptor antagonist) did not affect SNC80-induced hyperactivity, it inhibited morphine-induced hyperlocomotion. In combination tests, SNC80, at a dose that did not affect spontaneous activity, significantly potentiated hyperlocomotion induced by methamphetamine and the dopamine D1-receptor agonist 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepin hydrobromide (SKF81297), whereas the combination of SNC80 and the D2-like receptor agonist 7-OH-N,N-di-n-propyl-2-aminotetralin did not affect locomotor activity. An earlier study demonstrated that the combination of the D1-receptor agonist SKF81297 and the D2-like receptor agonist 7-OH-N,N-di-n-propyl-2-aminotetralin synergistically induced hyperactivity in mice. Therefore, the present findings suggest that stimulation of either D2-like receptors or delta-opioid receptors can enhance the hyperlocomotion induced by stimulation of D1 receptors by methamphetamine and SKF81297, and the mechanism that underlies the hyperactivity caused by SNC80 may be different from that which underlies the effects of morphine.
Collapse
|
8
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|