1
|
Szumlinski KK, Shin CB. Kinase interest you in treating incubated cocaine-craving? A hypothetical model for treatment intervention during protracted withdrawal from cocaine. GENES BRAIN AND BEHAVIOR 2017; 17:e12440. [PMID: 29152855 DOI: 10.1111/gbb.12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
A diagnostic criterion for drug addiction, persistent drug-craving continues to be the most treatment-resistant aspect of addiction that maintains the chronic, relapsing, nature of this disease. Despite the high prevalence of psychomotor stimulant addiction, there currently exists no FDA-approved medication for craving reduction. In good part, this reflects our lack of understanding of the neurobiological underpinnings of drug-craving. In humans, cue-elicited drug-craving is associated with the hyperexcitability of prefrontal cortical regions. Rodent models of cocaine addiction indicate that a history of excessive cocaine-taking impacts excitatory glutamate signaling within the prefrontal cortex to drive drug-seeking behavior during protracted withdrawal. This review summarizes evidence that the capacity of cocaine-associated cues to augment craving in highly drug-experienced rats relates to a withdrawal-dependent incubation of glutamate release within prelimbic cortex. We discuss how stimulation of mGlu1/5 receptors increases the activational state of both canonical and noncanonical intracellular signaling pathways and present a theoretical molecular model in which the activation of several kinase effectors, including protein kinase C, extracellular signal-regulated kinase and phosphoinositide 3-kinase (PI3K) might lead to receptor desensitization to account for persistent cocaine-craving during protracted withdrawal. Finally, this review discusses the potential for existing, FDA-approved, pharmacotherapeutic agents that target kinase function as a novel approach to craving intervention in cocaine addiction.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - C B Shin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
2
|
Miller BW, Wroten MG, Sacramento AD, Silva HE, Shin CB, Vieira PA, Ben-Shahar O, Kippin TE, Szumlinski KK. Cocaine craving during protracted withdrawal requires PKCε priming within vmPFC. Addict Biol 2017; 22:629-639. [PMID: 26769453 DOI: 10.1111/adb.12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 12/22/2022]
Abstract
In individuals with a history of drug taking, the capacity of drug-associated cues to elicit indices of drug craving intensifies or incubates with the passage of time during drug abstinence. This incubation of cocaine craving, as well as difficulties with learning to suppress drug-seeking behavior during protracted withdrawal, are associated with a time-dependent deregulation of ventromedial prefrontal cortex (vmPFC) function. As the molecular bases for cocaine-related vmPFC deregulation remain elusive, the present study assayed the consequences of extended access to intravenous cocaine (6 hours/day; 0.25 mg/infusion for 10 day) on the activational state of protein kinase C epsilon (PKCε), an enzyme highly implicated in drug-induced neuroplasticity. The opportunity to engage in cocaine seeking during cocaine abstinence time-dependently altered PKCε phosphorylation within vmPFC, with reduced and increased p-PKCε expression observed in early (3 days) and protracted (30 days) withdrawal, respectively. This effect was more robust within the ventromedial versus dorsomedial PFC, was not observed in comparable cocaine-experienced rats not tested for drug-seeking behavior and was distinct from the rise in phosphorylated extracellular signal-regulated kinase observed in cocaine-seeking rats. Further, the impact of inhibiting PKCε translocation within the vmPFC using TAT infusion proteins upon cue-elicited responding was determined and inhibition coinciding with the period of testing attenuated cocaine-seeking behavior, with an effect also apparent the next day. In contrast, inhibitor pretreatment prior to testing during early withdrawal was without effect. Thus, a history of excessive cocaine taking influences the cue reactivity of important intracellular signaling molecules within the vmPFC, with PKCε playing a critical role in the manifestation of cue-elicited cocaine seeking during protracted drug withdrawal.
Collapse
Affiliation(s)
- Bailey W. Miller
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Arianne D. Sacramento
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Hannah E. Silva
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Christina B. Shin
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Philip A. Vieira
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and Neuroscience Research Institute; University of California Santa Barbara; Santa Barbara CA USA
| |
Collapse
|
3
|
Wang Y, Yao Y, Nie H, He X. Implication of protein kinase C of the left intermediate medial mesopallium in memory impairments induced by early prenatal morphine exposure in one-day old chicks. Eur J Pharmacol 2016; 795:94-100. [PMID: 27940175 DOI: 10.1016/j.ejphar.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Previously we reported that prenatal morphine exposure during embryonic days 5-8 can cause cognitive deficits of one-trial passive avoidance learning (PAL) in one-day old chicks. Because protein kinase C (PKC) has been associated with memory capacity, we investigated the effects of prenatal morphine exposure on PKC isoforms expression in the left intermediate medial mesopallium (IMM) of chick brain at a time when memory tests were performed at 30, 120 and 360min respectively following training in PAL paradigm. We found that the level of PKCα in the membrane fractions in left IMM was decreased but that in the cytosol fractions showed a increased trend in prenatally morphine-exposed chicks with impaired long-term memory (120 and 360min). Moreover, the translocation of PKC δ from cytosol to membrane in left IMM was shown in prenatal morphine group which had significantly impaired long-term memory at 360min after training. Furthermore, there were no statistical differences between the two groups regarding the expressions of PKCα and PKC δ in the membrane fraction, although their levels in the cytosol fraction of prenatal morphine group which showed impaired intermediate-term memory at 30min after training, were quite different from that of prenatal saline group. Taken together, these results indicate that PKCα and PKC δ in the left IMM are differentially involved in the impairments of long-term memory induced by prenatal morphine exposure. Neither PKCα nor PKC δ in left IMM may be associated with the disruption of intermediate-term memory of chicks prenatally exposed to morphine.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China
| | - Yang Yao
- Department of Clinical Biochemistry, School of Medical Laboratory, Tianjin Medical University, Tianjin, PR China
| | - Han Nie
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Xingu He
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
4
|
Mao LM, Wang Q. Phosphorylation of group I metabotropic glutamate receptors in drug addiction and translational research. JOURNAL OF TRANSLATIONAL NEUROSCIENCE 2016; 1:17-23. [PMID: 28553558 PMCID: PMC5444875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors (mGluR1 and mGluR5 subtypes) which are widely distributed throughout the mammalian brain. Several common protein kinases are involved in this type of modification, including protein kinase A, protein kinase C, and extracellular signal-regulated kinase. Through constitutive and activity-dependent phosphorylation of mGluR1/5 at specific residues, protein kinases regulate trafficking, subcellular/subsynaptic distribution, and function of modified receptors. Increasing evidence demonstrates that mGluR1/5 phosphorylation in the mesolimbic reward circuitry is sensitive to chronic psychostimulant exposure and undergoes adaptive changes in its abundance and activity. These changes contribute to long-term excitatory synaptic plasticity related to the addictive property of drugs of abuse. The rapid progress in uncovering the neurochemical basis of addiction has fostered bench-to-bed translational research by targeting mGluR1/5 for developing effective pharmacotherapies for treating addiction in humans. This review summarizes recent data from the studies analyzing mGluR1/5 phosphorylation. Phosphorylation-dependent mechanisms in stimulant-induced mGluR1/5 and behavioral plasticity are also discussed in association with increasing interest in mGluR1/5 in translational medicine.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Qiang Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
5
|
Sesay JS, Gyapong RNK, Najafi LT, Kabler SL, Diz DI, Howlett AC, Awumey EM. Gαi/o-dependent Ca(2+) mobilization and Gαq-dependent PKCα regulation of Ca(2+)-sensing receptor-mediated responses in N18TG2 neuroblastoma cells. Neurochem Int 2015; 90:142-51. [PMID: 26190181 DOI: 10.1016/j.neuint.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 06/24/2015] [Accepted: 07/14/2015] [Indexed: 01/14/2023]
Abstract
A functional Ca(2+)-sensing receptor (CaS) is expressed endogenously in mouse N18TG2 neuroblastoma cells, and sequence analysis of the cDNA indicates high homology with both rat and human parathyroid CaS cDNAs. The CaS in N18TG2 cells appears as a single immunoreactive protein band at about 150 kDa on Western blots, consistent with native CaS from dorsal root ganglia. Both wild type (WT) and Gαq antisense knock-down (KD) cells responded to Ca(2+) and calindol, a positive allosteric modulator of the CaS, with a transient increase in intracellular Ca(2+) concentration ([Ca(2+)]i), which was larger in the Gαq KD cells. Stimulation with 1 mM extracellular Ca(2+) (Ca(2+)e) increased [Ca(2+)]i in N18TG2 Gαq KD compared to WT cells. Ca(2+) mobilization was dependent on pertussis toxin-sensitive Gαi/o proteins and reduced by 30 μM 2-amino-ethyldiphenyl borate and 50 μM nifedipine to the same plateau levels in both cell types. Membrane-associated PKCα and p-PKCα increased with increasing [Ca(2+)]e in WT cells, but decreased in Gαq KD cells. Treatment of cells with 1 μM Gӧ 6976, a Ca(2+)-specific PKC inhibitor reduced Ca(2+) mobilization and membrane-associated PKCα and p-PKCα in both cell types. The results indicate that the CaS-mediated increase in [Ca(2+)]i in N18TG2 cells is dependent on Gαi/o proteins via inositol-1,4,5-triphosphate (IP3) channels and store-operated Ca(2+) entry channels, whereas modulation of CaS responses involving PKCα phosphorylation and translocation to the plasma membrane occurs via a Gαq mechanism.
Collapse
Affiliation(s)
- John S Sesay
- Cardiovascular Disease Research Program, Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA; Department of Physiology and Pharmacology and Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Reginald N K Gyapong
- Cardiovascular Disease Research Program, Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Leila T Najafi
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO 63104, USA
| | - Sandra L Kabler
- Department of Physiology and Pharmacology and Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Debra I Diz
- Department of Physiology and Pharmacology and Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Department of Biology, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO 63104, USA; Department of Physiology and Pharmacology and Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Emmanuel M Awumey
- Cardiovascular Disease Research Program, Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA; Department of Physiology and Pharmacology and Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Schmidt HD, Kimmey BA, Arreola AC, Pierce RC. Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addict Biol 2015; 20:285-96. [PMID: 24506432 PMCID: PMC4380181 DOI: 10.1111/adb.12122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that type I metabotropic glutamate receptors (mGluRs) in the nucleus accumbens play a critical role in cocaine seeking. The present study sought to determine the role of accumbens core mGluR1, mGluR5 and protein kinase C (PKC) in cocaine priming-induced reinstatement of drug seeking. Here, we show that intra-accumbens core administration of the mGluR1/5 agonist DHPG (250 μM) promoted cocaine seeking in rats. Consistent with these results, administration of an mGluR1 (50.0 μM YM 298198) or mGluR5 (9.0 μM MPEP) antagonist directly into the accumbens core prior to a priming injection of cocaine (10 mg/kg) attenuated the reinstatement of drug seeking. mGluR1/5 stimulation activates a signaling cascade including PKC. Intracore microinjection of PKC inhibitors (10 μM Ro 31-8220 or 30.0 μM chelerythrine) also blunted cocaine seeking. In addition, cocaine priming-induced reinstatement of drug seeking was associated with increased phosphorylation of PKCγ, but not PKCα or PKCβII, in the core. There were no effects of pharmacological inhibition of mGluR1, mGluR5 or PKC in the accumbens core on sucrose seeking. Together, these findings indicate that mGluR1 and mGluR5 activation in the accumbens core promotes cocaine seeking and that these effects are reinforcer specific. Furthermore, stimulation of mGluR1 and mGluR5 in the accumbens core may regulate cocaine seeking, in part, through activation of PKCγ.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
7
|
de Velasco EMF, McCall N, Wickman K. GIRK Channel Plasticity and Implications for Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:201-38. [DOI: 10.1016/bs.irn.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Velásquez-Martínez MC, Vázquez-Torres R, Rojas LV, Sanabria P, Jiménez-Rivera CA. Alpha-1 adrenoreceptors modulate GABA release onto ventral tegmental area dopamine neurons. Neuropharmacology 2014; 88:110-21. [PMID: 25261018 DOI: 10.1016/j.neuropharm.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023]
Abstract
The ventral tegmental area (VTA) plays an important role in reward and motivational processes involved in drug addiction. Previous studies have shown that alpha1-adrenoreceptors (α1-AR) are primarily found pre-synaptically at this area. We hypothesized that GABA released onto VTA-dopamine (DA) cells is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using whole-cell voltage clamp technique. Phenylephrine (10 μM; α1-AR agonist) decreased the amplitude of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of afferent fibers (n = 7; p < 0.05). Prazosin (1 μM, α1-AR antagonist), blocked this effect. Paired-pulse ratios were increased by phenylephrine application (n = 13; p < 0.05) indicating a presynaptic site of action. Spontaneous IPSCs frequency but not amplitude, were decreased in the presence of phenylephrine (n = 7; p < 0.05). However, frequency or amplitude of miniature IPSCs were not changed (n = 9; p > 0.05). Phenylephrine in low Ca(2+) (1 mM) medium decreased IPSC amplitude (n = 7; p < 0.05). Chelerythrine (a protein kinase C inhibitor) blocked the α1-AR action on IPSC amplitude (n = 6; p < 0.05). Phenylephrine failed to decrease IPSCs amplitude in the presence of paxilline, a BK channel blocker (n = 7; p < 0.05). Taken together, these results demonstrate that α1-ARs at presynaptic terminals can modulate GABA release onto VTA-DA cells. Drug-induced changes in α1-AR could contribute to the modifications occurring in the VTA during the addiction process.
Collapse
Affiliation(s)
- Maria C Velásquez-Martínez
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA; Laboratorio de Neurociencias y Comportamiento, Departamento de Ciencias Básicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rafael Vázquez-Torres
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Legier V Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Priscila Sanabria
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Carlos A Jiménez-Rivera
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
9
|
Schmidt HD, Schassburger RL, Guercio LA, Pierce RC. Stimulation of mGluR5 in the accumbens shell promotes cocaine seeking by activating PKC gamma. J Neurosci 2013; 33:14160-9. [PMID: 23986250 PMCID: PMC3756760 DOI: 10.1523/jneurosci.2284-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate a critical role for metabotropic glutamate receptor 5 (mGluR5) in the reinstatement of cocaine seeking. However, the signal transduction pathways through which mGluR5s regulate cocaine seeking have not been identified. Here, we show that intra-accumbens shell administration of an mGluR5 (9.0 μm MPEP), but not mGluR1 (50.0 μm YM 298198), antagonist before a priming injection of cocaine (10 mg/kg) attenuated the reinstatement of drug seeking in rats. Consistent with these results, intra-shell microinjection of the mGluR1/5 agonist DHPG (250 μm) promoted cocaine seeking. Intra-shell administration of a phospholipase C (PLC) inhibitor (40.0 μm U73122) or a protein kinase C (PKC) inhibitor (10.0 μm Ro 31-8220 or 30.0 μm chelerythrine chloride) attenuated cocaine seeking. Pharmacological inhibition of PKC in the shell also blocked intra-shell DHPG-induced reinstatement of cocaine seeking. In addition, cocaine priming-induced reinstatement of drug seeking was associated with increased phosphorylation of PKCγ, but not PKCα or PKCβII, in the shell. Cocaine seeking previously was linked to increased phosphorylation of GluA2 at Ser880, a PKC phosphorylation site, which promotes the endocytosis of GluA2-containing AMPA receptors via interactions with Protein Associated with C Kinase (PICK1). The present results indicated that inhibition of PICK1 (100 μm FSC-231) in the shell attenuated cocaine seeking. There were no effects of any drug treatment in the shell on sucrose seeking. Together, these findings indicate that accumbens shell mGluR5 activation promotes cocaine seeking, in part, through activation of PLC and PKCγ. Moreover, the endocytosis of shell GluA2-containing AMPARs during cocaine seeking may depend on interactions with PKCγ and PICK1.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
10
|
Zeng L, Webster SV, Newton PM. The biology of protein kinase C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:639-61. [PMID: 22453963 DOI: 10.1007/978-94-007-2888-2_28] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.
Collapse
Affiliation(s)
- Lily Zeng
- School of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
11
|
Xue B, Guo ML, Jin DZ, Mao LM, Wang JQ. Cocaine facilitates PKC maturation by upregulating its phosphorylation at the activation loop in rat striatal neurons in vivo. Brain Res 2011; 1435:146-53. [PMID: 22208647 DOI: 10.1016/j.brainres.2011.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022]
Abstract
Newly synthesized protein kinase C (PKC) undergoes a series of phosphorylation to render a mature form of the enzyme. It is this mature PKC that possesses the catalytic competence to respond to second messengers for activation and downstream signaling. The first and rate-limiting phosphorylation occurs at a threonine residue in the activation loop (AL), which triggers the rest maturation processing of PKC and regulates PKC activity in response to cellular stimulation. Given the fact that PKC is enriched in striatal neurons, we investigated the regulation of PKC phosphorylation at the AL site in the rat striatum by the psychostimulant cocaine in vivo. We found that PKC was phosphorylated at the AL site at a moderate level in the normal rat brain. Acute systemic injection of cocaine increased the PKC-AL phosphorylation in the two striatal structures (caudate putamen and nucleus accumbens). Cocaine also elevated the PKC-AL phosphorylation in the medial prefrontal cortex. The cocaine-stimulated PKC phosphorylation in the striatum is rapid and transient. A reliable increase in PKC phosphorylation was seen 7 min after drug injection, which declined to the normal level by 1h. This kinetics corresponds to that seen for another striatum-enriched protein kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase, in response to cocaine. This study suggests a new model for exploring the impact of cocaine on protein kinases in striatal neurons. By modifying PKC phosphorylation at the AL site, cocaine is believed to possess the ability to alter the maturation processing of the kinase in striatal neurons in vivo.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
12
|
Xue B, J Berry T, Guo ML, Jin DZ, E Fibuch E, Sang Choe E, Mao LM, Q Wang J. WITHDRAWN: Upregulation of conventional protein kinase C phosphorylation and translocation in the rat nucleus accumbens following cocaine administration. Neuroscience 2011:S0306-4522(11)01277-2. [PMID: 22100275 DOI: 10.1016/j.neuroscience.2011.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Philibin SD, Hernandez A, Self DW, Bibb JA. Striatal signal transduction and drug addiction. Front Neuroanat 2011; 5:60. [PMID: 21960960 PMCID: PMC3176395 DOI: 10.3389/fnana.2011.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022] Open
Abstract
Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction.
Collapse
Affiliation(s)
- Scott D Philibin
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|