1
|
Wang J, Gao T, Zhang D, Tang Y, Gu J. Phospholipase C epsilon 1 as a therapeutic target in cardiovascular diseases. J Adv Res 2025:S2090-1232(25)00051-7. [PMID: 39855298 DOI: 10.1016/j.jare.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress. It is well established that the cardiac-specific Plce1 knockout confers cardioprotective benefits. Therefore, the development of tissue/cell-specific targeting approaches is critical for advancing therapeutic interventions. AIM OF REVIEW This review aims to distill the foundational biology and functional significance of PLCε1 in cardiovascular diseases, as well as to explore potential avenues for research and the development of novel therapeutic strategies targeting PLCε1. KEY SCIENTIFIC CONCEPTS OF REVIEW Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, with incidence rates escalating annually. A comprehensive understanding of the multifaceted role of PLCε1 is essential for enhancing the diagnosis, management, and prognostic assessment of patients suffering from cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongmei Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Ohri V, Samassekou K, Muralidharan K, Garland-Kuntz EE, Fisher IJ, Hogan WC, Davis BM, Lyon AM. RhoA Allosterically Activates Phospholipase Cε via its EF Hands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623250. [PMID: 39605621 PMCID: PMC11601306 DOI: 10.1101/2024.11.14.623250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Phospholipase Cε (PLCε) cleaves phosphatidylinositol lipids to increase intracellular Ca 2+ and activate protein kinase C (PKC) in response to stimulation of cell surface receptors. PLCε is activated via direct binding of small GTPases at the cytoplasmic leaflets of cellular membranes. In the cardiovascular system, the RhoA GTPase regulates PLCε to initiate a cardioprotective pathway, but the underlying molecular mechanism is not known. We present here the cryo-electron microscopy (cryo-EM) reconstruction of RhoA bound to PLCε. The G protein binds a unique insertion in the PLCε EF hands. Deletion of or mutations to this PLCε insertion decrease RhoA-dependent activation without impacting regulation by other G proteins. Together, our data support a model wherein RhoA binding to PLCε allosterically activates the lipase and increases its interactions with the membrane, resulting in maximum activity and cardiomyocyte survival.
Collapse
|
3
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Thabet NM, Abdel-Rafei MK, Moustafa EM. Boswellic acid protects against Bisphenol-A and gamma radiation induced hepatic steatosis and cardiac remodelling in rats: role of hepatic PPAR-α/P38 and cardiac Calcineurin-A/NFATc1/P38 pathways. Arch Physiol Biochem 2022; 128:767-785. [PMID: 32057248 DOI: 10.1080/13813455.2020.1727526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA) and gamma-radiation are two risky environmental pollutants that human beings are exposed to in everyday life and consequently they threaten human health via inducing oxidative stress, inflammation, and eventually tissue damage. This study aims at appraising the protective effect of Boswellic Acid (BA) (250 mg/kg/day, orally) administration on BPA (150 mg/kg/day, i.p) and γ-irradiation (IR) (3 Gy/week for 4 weeks up to cumulative dose of 12 Gy/experimental course) for 4 weeks-induced damage to liver and heart tissues of rats. The present results indicated a significant improvement against damage induced by BPA and IR revealed in biochemical investigations (hepatic PPAR-α/P38 and cardiac ET-1/Calcineurin-A/NFATc1/P38) and histopathological examination of liver and heart. It could be concluded that BA possesses a protective effect against these two deleterious environmental pollutants which attracted major global concerns due to their serious toxicological impact on human health.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Ye L, Zeng Q, Ling M, Ma R, Chen H, Lin F, Li Z, Pan L. Inhibition of IP3R/Ca2+ Dysregulation Protects Mice From Ventilator-Induced Lung Injury via Endoplasmic Reticulum and Mitochondrial Pathways. Front Immunol 2021; 12:729094. [PMID: 34603302 PMCID: PMC8479188 DOI: 10.3389/fimmu.2021.729094] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Rationale Disruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model. Methods C57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV). Mice were pretreated with the IP3R agonist carbachol, IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) or the Ca2+ chelator BAPTA-AM. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected to measure Ca2+ concentrations, inflammatory responses and mRNA/protein expression associated with ER stress, NLRP3 inflammasome activation and inflammation. Analyses were conducted in concert with cultured murine lung cell lines. Results Lungs from mice subjected to HTV displayed upregulated IP3R expression in ER and mitochondrial-associated-membranes (MAMs), with enhanced formation of MAMs. Moreover, HTV disrupted Ca2+ homeostasis, with increased flux from the ER to the cytoplasm and mitochondria. Administration of carbachol aggravated HTV-induced lung injury and inflammation while pretreatment with 2-APB or BAPTA-AM largely prevented these effects. HTV activated the IRE1α and PERK arms of the ER stress signaling response and induced mitochondrial dysfunction-NLRP3 inflammasome activation in an IP3R-dependent manner. Similarly, disruption of IP3R/Ca2+ in MLE12 and RAW264.7 cells using carbachol lead to inflammatory responses, and stimulated ER stress and mitochondrial dysfunction. Conclusion Increase in IP3R-mediated Ca2+ release is involved in the inflammatory pathophysiology of VILI via ER stress and mitochondrial dysfunction. Antagonizing IP3R/Ca2+ and/or maintaining Ca2+ homeostasis in lung tissue represents a prospective treatment approach for VILI.
Collapse
Affiliation(s)
- Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qi Zeng
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Riliang Ma
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haishao Chen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
Muralidharan K, Van Camp MM, Lyon AM. Structure and regulation of phospholipase Cβ and ε at the membrane. Chem Phys Lipids 2021; 235:105050. [PMID: 33422547 DOI: 10.1016/j.chemphyslip.2021.105050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.
Collapse
Affiliation(s)
- Kaushik Muralidharan
- Department of Biological Sciences, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| | - Michelle M Van Camp
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| | - Angeline M Lyon
- Department of Biological Sciences, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States; Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
7
|
Rugema NY, Garland-Kuntz EE, Sieng M, Muralidharan K, Van Camp MM, O'Neill H, Mbongo W, Selvia AF, Marti AT, Everly A, McKenzie E, Lyon AM. Structure of phospholipase Cε reveals an integrated RA1 domain and previously unidentified regulatory elements. Commun Biol 2020; 3:445. [PMID: 32796910 PMCID: PMC7427993 DOI: 10.1038/s42003-020-01178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Phospholipase Cε (PLCε) generates lipid-derived second messengers at the plasma and perinuclear membranes in the cardiovascular system. It is activated in response to a wide variety of signals, such as those conveyed by Rap1A and Ras, through a mechanism that involves its C-terminal Ras association (RA) domains (RA1 and RA2). However, the complexity and size of PLCε has hindered its structural and functional analysis. Herein, we report the 2.7 Å crystal structure of the minimal fragment of PLCε that retains basal activity. This structure includes the RA1 domain, which forms extensive interactions with other core domains. A conserved amphipathic helix in the autoregulatory X-Y linker of PLCε is also revealed, which we show modulates activity in vitro and in cells. The studies provide the structural framework for the core of this critical cardiovascular enzyme that will allow for a better understanding of its regulation and roles in disease.
Collapse
Affiliation(s)
- Ngango Y Rugema
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | | | - Monita Sieng
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - Kaushik Muralidharan
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | | | - Hannah O'Neill
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - William Mbongo
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - Arielle F Selvia
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - Andrea T Marti
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | - Amanda Everly
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - Emmanda McKenzie
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA
| | - Angeline M Lyon
- Department of Chemistry, Purdue University, West Lafayette, 47907, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
8
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
9
|
Garland-Kuntz EE, Vago FS, Sieng M, Van Camp M, Chakravarthy S, Blaine A, Corpstein C, Jiang W, Lyon AM. Direct observation of conformational dynamics of the PH domain in phospholipases Cϵ and β may contribute to subfamily-specific roles in regulation. J Biol Chem 2018; 293:17477-17490. [PMID: 30242131 PMCID: PMC6231117 DOI: 10.1074/jbc.ra118.003656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCβ exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.
Collapse
Affiliation(s)
| | - Frank S Vago
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907 and
| | | | | | - Srinivas Chakravarthy
- the Biophysics Collaborative Access Team, Illinois Institute of Technology, Sector 18ID, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | | | | | - Wen Jiang
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907 and
| | - Angeline M Lyon
- From the Departments of Chemistry and
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907 and
| |
Collapse
|
10
|
Bian J, Zhang S, Yi M, Yue M, Liu H. The mechanisms behind decreased internalization of angiotensin II type 1 receptor. Vascul Pharmacol 2018; 103-105:1-7. [DOI: 10.1016/j.vph.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
|
11
|
Liu X, Zhang Y, Hong L, Han CJ, Zhang B, Zhou S, Wu CZ, Liu LP, Cui X. Gallic acid increases atrial natriuretic peptide secretion and mechanical dynamics through activation of PKC. Life Sci 2017; 181:45-52. [PMID: 28535942 DOI: 10.1016/j.lfs.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
AIMS Gallic acid (GA) protects against myocardial ischemia-reperfusion (I/R) injury, prevents cardiac hypertrophy and fibrosis, and has anti-inflammatory activity in the heart. However, its effects in regulating atrial natriuretic peptide (ANP) secretion are unknown. The aim of this study was to determine the function of GA in regulating ANP secretion and atrial dynamics in rat atria. KEY FINDINGS GA (0.01, 0.05, and 0.1μmol/L) significantly increased atrial ANP secretion and induced positive inotropy dose-dependently. GA (0.1μmol/L) also increased plasma level of ANP and hemodynamics in rats. These effects were accompanied by upregulation of atrial protein kinase C subtypes β and ε (PKCβ and PKCε), which was completely blocked by LY333531 and EAVSLKPT, antagonists of protein PKCβ and PKCε, respectively. GA-induced ANP secretion was also attenuated by Gö6983 but not rottlerin, antagonists of PKCα and PKCδ, and the positive inotropy was reversed by Gö6983. U-73122, a phospholipase C (PLC) antagonist, mitigated the effects of GA on ANP secretion and mechanical dynamics and downregulated Phospho-PLCβ at Ser537 (pPLCβ S537), Phospho-PLCβ at Ser1105 (pPLCβ S1105), PKCβ and PKCε levels, whereas KN62, an inhibitor of Ca2+/calmodulin-dependent kinase II, was not modified the GA-induced ANP secretion and suppressed GA-induced mechanical dynamics. SIGNIFICANCE GA promotes ANP secretion and effects positive inotropy with regard to mechanical dynamics through the activation of PLC-PKC signaling in rat atria.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Ying Zhang
- Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Chun-Ji Han
- Food Research Center, Yanbian University, Yanji 133-002, China
| | - Bo Zhang
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Shuai Zhou
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Cheng-Zhe Wu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Li-Ping Liu
- Department of Biology, School of Medicine Sciences, Dalian University, Dalian, China
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133-002, China; Cellular Function Research Center, Yanbian University, Yanji 133-002, China.
| |
Collapse
|
12
|
Masuda Y, Yokose S, Sakagami H. Gene Expression Analysis of Cultured Rat-Endothelial Cells after Nd:YAG Laser Irradiation by Affymetrix GeneChip Array. ACTA ACUST UNITED AC 2017; 31:51-54. [PMID: 28064220 DOI: 10.21873/invivo.11024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
Endothelial cells and dental pulp cells enhance osteo-/odontogenic and angiogenic differentiation. In our previous study, rat pulp cells migrated to Nd:YAG laser-irradiated endothelial cells in an insert cell culture system. The purpose of this study was to examine the possible changes in the gene expression of cultured rat aortic endothelial cells after Nd:YAG laser irradiation using affymetrix GeneChip Array. Total RNA was extracted from the cells at 5 h after laser irradiation. Gene expressions were evaluated by DNA array chip. Up-regulated genes were related to cell migration and cell structure (membrane stretch, actin regulation and junctional complexes), neurotransmission and inflammation. Heat-shock 70 kDa protein (Hsp70) was related to the development of tooth germ. This study offers candidate genes for understanding the relationship between the laser-stimulated endothelial cells and dental pulp cells.
Collapse
Affiliation(s)
- Yoshiko Masuda
- Meikai Pharmaco-Medical Laboratory (MPL), Meikai University School of Dentistry, Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai Pharmaco-Medical Laboratory (MPL), Meikai University School of Dentistry, Saitama, Japan.,Division of Pharmacology, Meikai University School of Dentistry, Saitama, Japan
| |
Collapse
|
13
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2016. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid species bound to nucleoproteins of the genome. In vitro, some of these lipid species exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and DNA-protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
14
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2015. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid molecules bound to nucleoproteins of the genome. In vitro, some of these lipids exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
15
|
|