1
|
Arabia G, Bellicini MG, Cersosimo A, Memo M, Mazzarotto F, Inciardi RM, Cerini M, Chen LY, Aboelhassan M, Benzoni P, Mitacchione G, Bontempi L, Curnis A. Ion channel dysfunction and fibrosis in atrial fibrillation: Two sides of the same coin. Pacing Clin Electrophysiol 2024; 47:417-428. [PMID: 38375940 DOI: 10.1111/pace.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common heart rhythm disorder that is associated with an increased risk of stroke and heart failure (HF). Initially, an association between AF and ion channel dysfunction was identified, classifying the pathology as a predominantly electrical disease. More recently it has been recognized that fibrosis and structural atrial remodeling play a driving role in the development of this arrhythmia also in these cases. PURPOSE Understanding the role of fibrosis in genetic determined AF could be important to better comprise the pathophysiology of this arrhythmia and to refine its management also in nongenetic forms. In this review we analyze genetic and epigenetic mechanisms responsible for AF and their link with atrial fibrosis, then we will consider analogies with the pathophysiological mechanism in nongenetic AF, and discuss consequent therapeutic options.
Collapse
Affiliation(s)
- Gianmarco Arabia
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Angelica Cersosimo
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London (F.M., J. Ware), London, UK
| | | | - Manuel Cerini
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Lin Yee Chen
- University of Minnesota (L.Y.C.), Minneapolis, USA
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Luca Bontempi
- Unit of Cardiology, Cardiac Electrophysiology and, Electrostimulation Laboratory, "Bolognini" Hospital of Seriate - ASST Bergamo Est, Bergamo, Italy
| | - Antonio Curnis
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Kamil AA, Lim KK, Koleva-Kolarova R, Chowienczyk P, Wolfe CDA, Fox-Rushby J. Genetic-Guided Pharmacotherapy for Atrial Fibrillation: A Systematic and Critical Review of Economic Evaluations. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:461-472. [PMID: 35227459 DOI: 10.1016/j.jval.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES This study aimed to examine the extent and quality of evidence from economic evaluations (EEs) of genetic-guided pharmacotherapy (PGx) for atrial fibrillation (AF) and to identify variables influential in changing base-case conclusions. METHODS From systematic searches, we included EEs of existing PGx testing to guide pharmacotherapy for AF, without restrictions on population characteristics or language. Articles excluded were genetic tests used to guide device-based therapy or focused on animals. RESULTS We found 18 EEs (46 comparisons), all model-based cost-utility analysis with or without cost-effectiveness analysis mostly from health system's perspectives, of PGx testing to determine coumadin/direct-acting anticoagulant (DOAC) dosing (14 of 18), to stratify patients into coumadin/DOACs (3 of 18), or to increase patients' adherence to coumadin (1 of 18) versus non-PGx. Most PGx to determine coumadin dosing found PGx more costly and more effective than standard or clinical coumadin dosing (19 of 24 comparisons) but less costly and less effective than standard DOAC dosing (14 of 14 comparisons). The remaining comparisons were too few to observe any trend. Of 61 variables influential in changing base-case conclusions, effectiveness of PGx testing was the most common (37%), accounted for in the models using time-based or medication-based approaches or relative risk. The cost of PGx testing has decreased and plateaued over time. CONCLUSIONS EEs to date only partially inform decisions on selecting optimal PGx testing for AF, because most evidence focuses on PGx testing to determine coumadin dosing, but less on other purposes. Future EE may refer to the list of influential variables and the approaches used to account for the effect of PGx testing to inform data collection and study design.
Collapse
Affiliation(s)
- Ahmad Amir Kamil
- School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, England, UK
| | - Ka Keat Lim
- School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, England, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, England, UK
| | - Rositsa Koleva-Kolarova
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, England, UK
| | - Philip Chowienczyk
- National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, England, UK; Cardiovascular Division, Department of Clinical Pharmacology, King's College London and St Thomas' Hospital Medical School, London, UK
| | - Charles D A Wolfe
- School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, England, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, England, UK; National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care, South London, England, UK
| | - Julia Fox-Rushby
- School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, England, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, England, UK.
| |
Collapse
|
3
|
Zigova M, Petrejèíková E, Blašèáková M, Kmec J, Bernasovská J, Boroòová I, Kmec M. Genetic targets in the management of atrial fibrillation in patients with cardiomyopathy. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.4103/jpcs.jpcs_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Wong CK, Tse HF. New methodological approaches to atrial fibrillation drug discovery. Expert Opin Drug Discov 2020; 16:319-329. [PMID: 33016154 DOI: 10.1080/17460441.2021.1826432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice and rhythm control using pharmacological agents is required in selected patients. Nonetheless, current medication is only modestly efficacious and associated with significant cardiovascular and systemic side effects. More efficacious and safe drugs are required to restore and maintain sinus rhythm in patients with AF. AREAS COVERED In this review, several potential drug targets are discussed including trans-membrane ion channels, intracellular calcium signaling, gap junction signaling, atrial inflammation and fibrosis, and the autonomic nervous system. New tools and methodologies for AF drug development are also reviewed including gene therapy, genome-guided therapy, stem cell technologies, tissue engineering, and optogenetics. EXPERT OPINION In recent decades, there has been an increased understanding of the underlying pathogenesis of AF. As a result, there is a gradual paradigm shift from focusing only on trans-membrane ion channel inhibition to developing therapeutic agents that target other underlying arrhythmogenic mechanisms. Gene therapy and genome-guided therapy are emerging as novel treatments for AF with some success in proof-of-concept studies. Recent advances in stem cell technology, tissue engineering, and optogenetics may allow more effective in-vitro drug screening than conventional methodologies.
Collapse
Affiliation(s)
- Chun-Ka Wong
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
5
|
Diagnosis and management of canine atrial fibrillation. Vet J 2020; 265:105549. [PMID: 33129554 DOI: 10.1016/j.tvjl.2020.105549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Abstract
Atrial fibrillation (AF) is the most common non-physiological arrhythmia in dogs and humans. Its high prevalence in both species and the impact it has on survival time and quality of life of affected patients, makes it a very relevant topic for medical research. In dogs, the diagnosis of AF is usually fairly straightforward, but optimal management can be complicated. Rate control is the most commonly used strategy; rhythm control can also be considered in very specific cases. Concurrent congestive heart failure is frequently identified, which represents an extra challenge for the clinicians. This article reviews the current recommendations for the diagnosis and management considerations of AF in dogs. Future perspectives, focusing on new drugs that may prevent development of AF based on recent discoveries, will also be discussed.
Collapse
|
6
|
Shi S, Jia Q, Shi J, Shi S, Yuan G, Hu Y. The efficacy and safety of amiodarone combined with beta-blockers in the maintenance of sinus rhythm for atrial fibrillation: A protocol for systematic review and network meta-analysis. Medicine (Baltimore) 2020; 99:e22368. [PMID: 32957413 PMCID: PMC7505403 DOI: 10.1097/md.0000000000022368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The high recurrence rate of atrial fibrillation (AF) after recovering sinus rhythm has always been a clinical problem. Despite the established and widespread use of antiarrhythmic drugs, which one is better for maintaining sinus rhythm is still controversial. This study aims to summarize the randomized controlled trials (RCTs) of amiodarone combined with beta blockers to maintain sinus rhythm in AF, and to determine an effective and safe intervention for the prevention of AF recurrence through network meta-analysis (NMA). METHODS AND ANALYSIS A comprehensive search of the RCTs comparing amiodarone with different beta-blockers to maintain sinus rhythm of AF patients will be conducted from the inception to December 2019 in the Cochrane Library, PubMed, Web of Science, EMBASE, Chinese Biomedical Literature Database (SinoMed), Chinese National Knowledge Infrastructure (CNKI), and WanFang database. The primary outcomes will be the recurrence of AF and frequency of embolization complications. The secondary outcomes will be the symptom improvements and adverse events. Risk of bias assessment of the included RCTs will be conducted according to the Cochrane collaboration's risk of bias tool. Pairwise meta-analyses and Bayesian network meta-analyses will be performed for all related outcome measures. GRADE will be used to evaluate the quality of evidence. RESULTS The results of this NMA will be published in a peer-reviewed journal. CONCLUSION This NMA may provide more recommendations for patients and researchers, such as which treatment is better for a particular case of AF, and what may be the hotspots for the future studies. PROSPERO REGISTRATION NUMBER The protocol for this NMA has been registered on PROSPERO under the number CRD42020164438.
Collapse
Affiliation(s)
- Shuqing Shi
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Cardiovascular Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Cheniti G, Vlachos K, Pambrun T, Hooks D, Frontera A, Takigawa M, Bourier F, Kitamura T, Lam A, Martin C, Dumas-Pommier C, Puyo S, Pillois X, Duchateau J, Klotz N, Denis A, Derval N, Jais P, Cochet H, Hocini M, Haissaguerre M, Sacher F. Atrial Fibrillation Mechanisms and Implications for Catheter Ablation. Front Physiol 2018; 9:1458. [PMID: 30459630 PMCID: PMC6232922 DOI: 10.3389/fphys.2018.01458] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
AF is a heterogeneous rhythm disorder that is related to a wide spectrum of etiologies and has broad clinical presentations. Mechanisms underlying AF are complex and remain incompletely understood despite extensive research. They associate interactions between triggers, substrate and modulators including ionic and anatomic remodeling, genetic predisposition and neuro-humoral contributors. The pulmonary veins play a key role in the pathogenesis of AF and their isolation is associated to high rates of AF freedom in patients with paroxysmal AF. However, ablation of persistent AF remains less effective, mainly limited by the difficulty to identify the sources sustaining AF. Many theories were advanced to explain the perpetuation of this form of AF, ranging from a single localized focal and reentrant source to diffuse bi-atrial multiple wavelets. Translating these mechanisms to the clinical practice remains challenging and limited by the spatio-temporal resolution of the mapping techniques. AF is driven by focal or reentrant activities that are initially clustered in a relatively limited atrial surface then disseminate everywhere in both atria. Evidence for structural remodeling, mainly represented by atrial fibrosis suggests that reentrant activities using anatomical substrate are the key mechanism sustaining AF. These reentries can be endocardial, epicardial, and intramural which makes them less accessible for mapping and for ablation. Subsequently, early interventions before irreversible remodeling are of major importance. Circumferential pulmonary vein isolation remains the cornerstone of the treatment of AF, regardless of the AF form and of the AF duration. No ablation strategy consistently demonstrated superiority to pulmonary vein isolation in preventing long term recurrences of atrial arrhythmias. Further research that allows accurate identification of the mechanisms underlying AF and efficient ablation should improve the results of PsAF ablation.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Cardiology Department, Hopital Sahloul, Universite de Sousse, Sousse, Tunisia
| | - Konstantinos Vlachos
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Thomas Pambrun
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Darren Hooks
- Cardiology Department, Wellington Hospital, Wellington, New Zealand
| | - Antonio Frontera
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Masateru Takigawa
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Felix Bourier
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Takeshi Kitamura
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Anna Lam
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Claire Martin
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | | | - Stephane Puyo
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Xavier Pillois
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France
| | - Josselin Duchateau
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Klotz
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Arnaud Denis
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Derval
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Pierre Jais
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Hubert Cochet
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Department of Cardiovascular Imaging, Hopital Haut Leveque, Bordeaux, France
| | - Meleze Hocini
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Michel Haissaguerre
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Frederic Sacher
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| |
Collapse
|
8
|
Affiliation(s)
- Jordi Heijman
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Jean-Baptiste Guichard
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Dobromir Dobrev
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Stanley Nattel
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| |
Collapse
|
9
|
Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 2017; 26:897-907. [PMID: 28691539 PMCID: PMC6324729 DOI: 10.1080/13543784.2017.1353601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although there have been important technological advances for the treatment of cardiac arrhythmias (e.g., catheter ablation technology), antiarrhythmic drugs (AADs) remain the cornerstone therapy for the majority of patients with arrhythmias. Most of the currently available AADs were coincidental findings and did not result from a systematic development process based on known arrhythmogenic mechanisms and specific targets. During the last 20 years, our understanding of cardiac electrophysiology and fundamental arrhythmia mechanisms has increased significantly, resulting in the identification of new potential targets for mechanism-based antiarrhythmic therapy. Areas covered: Here, we review the state-of-the-art in arrhythmogenic mechanisms and AAD therapy. Thereafter, we focus on a number of antiarrhythmic targets that have received significant attention recently: atrial-specific K+-channels, the late Na+-current, the cardiac ryanodine-receptor channel type-2, and the small-conductance Ca2+-activated K+-channel. We highlight for each of these targets available antiarrhythmic agents and the evidence for their antiarrhythmic effect in animal models and early clinical development. Expert opinion: Targeting AADs to specific subgroups of well-phenotyped patients is likely necessary to detect improved outcomes that may be obscured in the population at large. In addition, specific combinations of selective AADs may have synergistic effects and may enable a mechanism-based tailored antiarrhythmic therapy.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Han X, Li J. Catheter Ablation of Atrial Fibrillation: Where Are We? CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2017. [DOI: 10.15212/cvia.2016.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Heijman J, Dobrev D. Challenges to the translation of basic science findings to atrial fibrillation therapies. Future Cardiol 2016; 12:251-4. [PMID: 27091233 DOI: 10.2217/fca-2016-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jordi Heijman
- Faculty of Health, Medicine & Life Sciences, Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart & Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Heijman J, Algalarrondo V, Voigt N, Melka J, Wehrens XHT, Dobrev D, Nattel S. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc Res 2015; 109:467-79. [PMID: 26705366 DOI: 10.1093/cvr/cvv275] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Vincent Algalarrondo
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Jonathan Melka
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| |
Collapse
|