1
|
Gerges SH, El-Kadi AOS. Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy. Prostaglandins Other Lipid Mediat 2024; 173:106851. [PMID: 38740361 DOI: 10.1016/j.prostaglandins.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
ElKhatib MAW, Gerges SH, Isse FA, El-Kadi AOS. Cytochrome P450 1B1 is critical in the development of TNF-α, IL-6, and LPS-induced cellular hypertrophy. Can J Physiol Pharmacol 2024; 102:408-421. [PMID: 38701513 DOI: 10.1139/cjpp-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Heart failure (HF) is preceded by cellular hypertrophy (CeH) which alters expression of cytochrome P450 enzymes (CYPs) and arachidonic acid (AA) metabolism. Inflammation is involved in CeH pathophysiology, but mechanisms remain elusive. This study investigates the impacts of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and lipopolysaccharides (LPS) on the development of CeH and the role of CYP1B1. AC16 cells were treated with TNF-α, IL-6, and LPS in the presence and absence of CYP1B1-siRNA or resveratrol. mRNA and protein expression levels of CYP1B1 and hypertrophic markers were determined using PCR and Western blot analysis, respectively. CYP1B1 enzyme activity was determined, and AA metabolites were analyzed using liquid chromatography-tandem mass spectrometry. Our results show that TNF-α, IL-6, and LPS induce expression of hypertrophic markers, induce CYP1B1 expression, and enantioselectively modulate CYP1B1-mediated AA metabolism in favor of mid-chain HETEs. CYP1B1-siRNA or resveratrol ameliorated these effects. In conclusion, our results demonstrate the crucial role of CYP1B1 in TNF-α, IL-6, and LPS-induced CeH.
Collapse
Affiliation(s)
- Mohammed A W ElKhatib
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Hidayat R, El-Ghiaty MA, Shoieb SM, Alqahtani MA, El-Kadi AOS. The Effects of 16-HETE Enantiomers on Hypertrophic Markers in Human Fetal Ventricular Cardiomyocytes, RL-14 Cells. Eur J Drug Metab Pharmacokinet 2023; 48:709-722. [PMID: 37815672 DOI: 10.1007/s13318-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cytochrome P450 (CYP) metabolizes arachidonic acid to produce bioactive metabolites such as EETs and HETEs: mid-chain, subterminal, and terminal HETEs. Recent studies have revealed the role of CYP1B1 and its associated cardiotoxic mid-chain HETE metabolites in developing cardiac hypertrophy and heart failure. Subterminal HETEs have also been involved in various physiological and pathophysiological processes; however, their role in cardiac hypertrophy has not been fully defined. OBJECTIVE The objective of the current study is to determine the possible effect of subterminal HETEs, R and S enantiomers of 16-HETE, on CYP1B1 expression in vitro using human cardiomyocytes RL-14 cells. METHODS In the study, RL14 cell line was treated with vehicle and either of the 16-HETE enantiomers for 24 h. Subsequently, the following markers were assessed: cell viability, cellular size, hypertrophic markers, CYP1B1 gene expression (at mRNA, protein, and activity levels), luciferase activity, and CYP1B1 mRNA and protein half-lives. RESULTS The results of the study showed that 16-HETE enantiomers significantly increased hypertrophic markers and upregulated CYP1B1 mRNA and protein expressions in RL-14 cell line. The upregulation of CYP1B1 by 16-HETE enantiomers occurs via a transcriptional mechanism as evidenced by transcriptional induction and luciferase reporter assay. Furthermore, neither post-transcriptional nor post-translational modification was involved in such modulation since there was no change in CYP1B1 mRNA and protein stabilities upon treatment with 16-HETE enantiomers. CONCLUSION The current study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 gene expression through a transcriptional mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
5
|
Isse FA, Alammari AH, El-Sherbeni AA, El-Kadi AOS. 17-(R/S)-hydroxyeicosatetraenoic acid (HETE) induces cardiac hypertrophy through the CYP1B1 in enantioselective manners. Prostaglandins Other Lipid Mediat 2023; 168:106749. [PMID: 37244564 DOI: 10.1016/j.prostaglandins.2023.106749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Cardiac cellular hypertrophy is the increase in the size of individual cardiac cells. Cytochrome P450 1B1 (CYP1B1) is an extrahepatic inducible enzyme that is associated with toxicity, including cardiotoxicity. We previously reported that 19-hydroxyeicosatetraenoic acid (19-HETE) inhibited CYP1B1 and prevented cardiac hypertrophy in enantioselective manner. Therefore, our aim is to investigate the effect of 17-HETE enantiomers on cardiac hypertrophy and CYP1B1. Human adult cardiomyocyte (AC16) cells were treated with 17-HETE enantiomers (20 µM); cellular hypertrophy was evaluated by cell surface area and cardiac hypertrophy markers. In addition, CYP1B1 gene, protein and activity were assessed. Human recombinant CYP1B1 and heart microsomes of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats were incubated with 17-HETE enantiomers (10-80 nM). Our results demonstrated that 17-HETE induced cellular hypertrophy, which is manifested by increase in cell surface area and cardiac hypertrophy markers. 17-HETE enantiomers allosterically activated CYP1B1 and selectively upregulated CYP1B1 gene and protein expression in AC16 cells at uM range. In addition, CYP1B1 was allosterically activated by 17-HETE enantiomers at nM range in recombinant CYP1B1 and heart microsomes. In conclusion, 17-HETE acts as an autocrine mediator, leading to the cardiac hypertrophy through induction of CYP1B1 activity in the heart.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
7
|
Shoieb SM, Alammari AH, Levasseur J, Silver H, Dyck JRB, El-Kadi AOS. Ameliorative Role of Fluconazole Against Abdominal Aortic Constriction-Induced Cardiac Hypertrophy in Rats. J Cardiovasc Pharmacol 2022; 79:833-845. [PMID: 35266922 DOI: 10.1097/fjc.0000000000001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/26/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cytochrome P450 1B1 (CYP1B1) is known to be involved in the pathogenesis of several cardiovascular diseases, including cardiac hypertrophy and heart failure, through the formation of cardiotoxic metabolites named as mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have demonstrated that fluconazole decreases the level of mid-chain HETEs in human liver microsomes, inhibits human recombinant CYP1B1 activity, and protects against angiotensin II-induced cellular hypertrophy in H9c2 cells. Therefore, the overall purpose of this study was to elucidate the potential cardioprotective effect of fluconazole against cardiac hypertrophy induced by abdominal aortic constriction (AAC) in rats. Male Sprague-Dawley rats were randomly assigned into 4 groups such as sham control rats, fluconazole-treated (20 mg/kg daily for 4 weeks, intraperitoneal) sham rats, AAC rats, and fluconazole-treated (20 mg/kg) AAC rats. Baseline and 5 weeks post-AAC echocardiography were performed. Gene and protein expressions were measured using real-time PCR and Western blot analysis, respectively. The level of mid-chain HETEs was determined using liquid chromatography-mass spectrometry. Echocardiography results showed that fluconazole significantly prevented AAC-induced left ventricular hypertrophy because it ameliorated the AAC-mediated increase in left ventricular mass and wall measurements. In addition, fluconazole significantly prevented the AAC-mediated increase of hypertrophic markers. The antihypertrophic effect of fluconazole was associated with a significant inhibition of CYP1B1, CYP2C23, and 12-LOX and a reduction in the formation rate of mid-chain HETEs. This study demonstrates that fluconazole protects against left ventricular hypertrophy, and it highlights the potential repurposing of fluconazole as a mid-chain HETEs forming enzymes' inhibitor for the protection against cardiac hypertrophy.
Collapse
Affiliation(s)
- Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| | - Jody Levasseur
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Heidi Silver
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada ; and
| |
Collapse
|
8
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
9
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
10
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
11
|
Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. EMERGENT MATERIALS 2020; 4:265-277. [PMID: 33225219 PMCID: PMC7670111 DOI: 10.1007/s42247-020-00136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.
Collapse
Affiliation(s)
- Sherif M. Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Mahmoud A. El-Ghiaty
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
12
|
Resveratrol attenuates angiotensin II-induced cellular hypertrophy through the inhibition of CYP1B1 and the cardiotoxic mid-chain HETE metabolites. Mol Cell Biochem 2020; 471:165-176. [PMID: 32533462 PMCID: PMC7291180 DOI: 10.1007/s11010-020-03777-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Several reports demonstrated the direct contribution of cytochrome P450 1B1 (CYP1B1) enzyme and its associated cardiotoxic mid-chain, hydroxyeicosatetraenoic acid (HETEs) metabolites in the development of cardiac hypertrophy. Resveratrol is commercially available polyphenol that exerts beneficial effects in wide array of cardiovascular diseases including cardiac hypertrophy, myocardial infarction and heart failure. Nevertheless, the underlying mechanisms responsible for these effects are not fully elucidated. Since resveratrol is a well-known CYP1B1 inhibitor, the purpose of this study is to test whether resveratrol attenuates angiotensin II (Ang II)-induced cellular hypertrophy through inhibition of CYP1B1/mid-chain HETEs mechanism. RL-14 and H9c2 cells were treated with vehicle or 10 μM Ang II in the absence and presence of 2, 10 or 50 μM resveratrol for 24 h. Thereafter, the level of mid-chain HETEs was determined using liquid chromatography–mass spectrometry (LC/MS). Hypertrophic markers and CYP1B1 gene expression and protein levels were measured using real-time PCR and Western blot analysis, respectively. Our results demonstrated that resveratrol, at concentrations of 10 and 50 μM, was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by substantial inhibition of hypertrophic markers, β-myosin heavy chain (MHC)/α-MHC and atrial natriuretic peptide. Ang II significantly induced the protein expression of CYP1B1 and increased the metabolite formation rate of its associated mid-chain HETEs. Interestingly, the protective effect of resveratrol was associated with a significant decrease of CYP1B1 protein expression and mid-chain HETEs. Our results provided the first evidence that resveratrol protects against Ang II-induced cellular hypertrophy, at least in part, through CYP1B1/mid-chain HETEs-dependent mechanism.
Collapse
|
13
|
Fluconazole Represses Cytochrome P450 1B1 and Its Associated Arachidonic Acid Metabolites in the Heart and Protects Against Angiotensin II-Induced Cardiac Hypertrophy. J Pharm Sci 2020; 109:2321-2335. [PMID: 32240690 DOI: 10.1016/j.xphs.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been reported to have a major role in metabolizing arachidonic acid (AA) into cardiotoxic metabolites, mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have shown that fluconazole decreases the level of mid-chain HETEs in human liver microsomes. Therefore, the objectives of this study were to investigate the effect of fluconazole on CYP1B1 mediated mid-chain HETEs and to explore its potential protective effect against angiotensin II- (Ang II)-induced cellular hypertrophy. To do this, Sprague Dawley rats were injected intraperitoneally with a single dose of fluconazole (20 mg/kg) for 24 h. Also, H9c2 and RL-14 cells were treated with 10 μM Ang II in the presence and absence of 50 μM fluconazole for 24 h. Our results demonstrated that treatment of rats with fluconazole significantly decreased the expression of CYP1B1 enzyme and the level of mid-chain HETEs in the heart. Furthermore, fluconazole was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by a significant down-regulation of hypertrophic markers; β-myosin heavy chain (MHC)/α-MHC and brain natriuretic peptide (BNP) as well as cell surface area. In conclusion, our findings indicate that fluconazole protects against Ang II-induced cellular hypertrophy by repressing CYP1B1 and its associated mid-chain HETEs.
Collapse
|
14
|
Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L. Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 2019; 21:393-404. [PMID: 31746392 DOI: 10.3892/mmr.2019.10810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
15
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|
16
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Zhang M, Xu Y, Qiu Z, Jiang L. Sulforaphane Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Migration via Suppression of NOX4/ROS/Nrf2 Signaling. Int J Biol Sci 2019; 15:148-157. [PMID: 30662355 PMCID: PMC6329926 DOI: 10.7150/ijbs.28874] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (Ang II) is involved in the pathogenic progress of cardiovascular diseases via the promotion of abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Sulforaphane (SFN) exerts potent anti-inflammatory effects both in vitro and in vivo. In the present study, we aimed to investigate the effects of SFN on Ang II-induced abnormal migration of HVSMCs as well as the underlying mechanisms of those effects. The results showed that Ang II-induced HVSMC proliferation and migration were inhibited by treatment with SFN. SFN also exhibited anti-inflammatory activity, as indicated by its reduction of monocyte adhesion to HVSMCs via the reduction of ICAM1 and VCAM1 levels. Moreover, SFN reduced the Ang II-induced upregulation of HVSMC migration; this effect was inhibited by pretreatment with inhibitors of NADPH oxidase and ROS or transfection with siNOX4. In addition, SFN reversed the Ang II-induced upregulation of HVSMC migration via elevation of Nrf2 activation and expression. Taken together, the results indicate that SFN reverses Ang II-induced HVSMC migration through suppression of the NOX4/ROS/Nrf2 pathway. Thus, SFN is a potential agent to reverse the pathological changes involved in various cardiovascular diseases.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingjie Xu
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhaohui Qiu
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Li Jiang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
18
|
Lycopene-supplemented diet ameliorates cardiovascular remodeling and oxidative stress in rats with hypertension induced by Angiotensin II. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Shoieb SM, El-Kadi AOS. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy. Drug Metab Dispos 2018; 46:1157-1168. [DOI: 10.1124/dmd.118.082073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
|