1
|
Chang PC, Lee HL, Wo HT, Liu HT, Wen MS, Chou CC. Vericiguat suppresses ventricular tachyarrhythmias inducibility in a rabbit myocardial infarction model. PLoS One 2024; 19:e0301970. [PMID: 38626004 PMCID: PMC11020759 DOI: 10.1371/journal.pone.0301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The VICTORIA trial demonstrated a significant decrease in cardiovascular events through vericiguat therapy. This study aimed to assess the potential mechanisms responsible for the reduction of cardiovascular events with vericiguat therapy in a rabbit model of myocardial infarction (MI). METHODS A chronic MI rabbit model was created through coronary artery ligation. Following 4 weeks, the hearts were harvested and Langendorff perfused. Subsequently, electrophysiological examinations and dual voltage-calcium optical mapping studies were conducted at baseline and after administration of vericiguat at a dose of 5 μmol/L. RESULTS Acute vericiguat therapy demonstrated a significant reduction in premature ventricular beat burden and effectively suppressed ventricular arrhythmic inducibility. The electrophysiological influences of vericiguat therapy included an increased ventricular effective refractory period, prolonged action potential duration, and accelerated intracellular calcium (Cai) homeostasis, leading to the suppression of action potential and Cai alternans. The pacing-induced ventricular arrhythmias exhibited a reentrant pattern, attributed to fixed or functional conduction block in the peri-infarct zone. Vericiguat therapy effectively mitigated the formation of cardiac alternans as well as the development of reentrant impulses, providing additional anti-arrhythmic benefits. CONCLUSIONS In the MI rabbit model, vericiguat therapy demonstrates anti-ventricular arrhythmia effects. The vericiguat therapy reduces ventricular ectopic beats, inhibiting the initiation of ventricular arrhythmias. Furthermore, the therapy successfully suppresses cardiac alternans, preventing conduction block and, consequently, the formation of reentry circuits.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ling Lee
- Medical School, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hung-Ta Wo
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Tien Liu
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chuan Chou
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Medical School, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Li SH, Ma GL, Zhang SL, Yang YY, Liu HF, Luo A, Wen J, Cao ZZ, Jia YZ. Naringin exerts antiarrhythmic effects by inhibiting channel currents in mouse cardiomyocytes. J Electrocardiol 2023; 80:69-80. [PMID: 37262953 DOI: 10.1016/j.jelectrocard.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Naringin, a flavonoid extracted from citrus plants, has a variety of biological effects. Studies have shown that increasing the consumption of flavonoid-rich foods can reduce the incidence of cardiac arrhythmia. Naringin has been reported to have beneficial cardiovascular effects and thus can be used to prevent cardiovascular diseases, but the electrophysiological mechanism through which it prevents arrhythmias has not been elucidated. This study was conducted to investigate the effect of naringin on the transmembrane ion channel currents in mouse ventricular myocytes and the antiarrhythmic effect of this compound on Langendorff-perfused mouse hearts. METHODS Action potentials (APs) and ionic currents were recorded in isolated ventricular myocytes using the whole-cell patch-clamp technique. Anemone toxin II (ATX II) and CaCl2 were used to induce early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs), respectively. Electrocardiogram (ECG) recordings were conducted in Langendorff-perfused mouse hearts with a BL-420F biological signal acquisition and analysis system. RESULTS At the cellular level, naringin shortened the action potential duration (APD) of ventricular myocytes and decreased the maximum depolarization velocity (Vmax) of APs.Naringin inhibited the L-type calcium current (ICa.L) and ATX II enhanced the late sodium current (INa.L) in a concentration-dependent manner with IC50 values of 508.5 μmol/L (n = 9) and 311.6 μmol/L (n = 10), respectively. In addition, naringin also inhibited the peak sodium current (INa·P) and delayed the rectifier potassium current (IK) and the transient outward potassium current (Ito). Moreover, naringin reduced ATX II-induced APD prolongation and EADs and had a significant inhibitory effect on CaCl2-induced DADs as well. At the organ level, naringin reduced the incidence of ventricular tachycardia (VT) and ventricular fibrillation (VF) induced by ATX II and shortened the duration of both in isolated hearts. CONCLUSION Naringin can inhibit the occurrence of EADs and DADs at the cellular level; furthermore, it can inhibit INa.L, ICa.L, INa·P, IK, and Ito in ventricular myocytes. Naringin also inhibits arrhythmias induced by ATX II in hearts. By investigating naringin with this electrophysiological method for the first time, we determined that this flavonoid may be a multichannel blocker with antiarrhythmic effects.
Collapse
Affiliation(s)
- Shi-Han Li
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guo-Lan Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuang-Lin Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan-Yan Yang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Han-Feng Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Antao Luo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jie Wen
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhen-Zhen Cao
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yu-Zhong Jia
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
3
|
Increased in vivo perpetuation of whole-heart ventricular arrhythmia in heterozygous Na +/Ca 2+ exchanger knockout mice. IJC HEART & VASCULATURE 2022; 44:101168. [PMID: 36620202 PMCID: PMC9816773 DOI: 10.1016/j.ijcha.2022.101168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Aims Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.
Collapse
Key Words
- AV, Atrioventricular
- AVNRP, AV-nodal refractory period
- Antiarrhythmic strategies
- Arrhythmia mechanisms
- CL, Cycle length
- CorrSNRP, Corrected sinus node recovery period
- DAD, Delayed afterdepolarization
- EAD, Early afterdepolarization
- EPS, Electrophysiological study
- ICa, voltage-dependent l-type Ca2+-current
- IQR, Interquartile range
- KO, Heterozygous Na+/Ca2+ exchanger knockout mouse model
- NCX, Na+/Ca2+ exchanger
- Na+/Ca2+ exchanger
- PCR, Polymerase chain reaction
- PVC, Premature ventricular complex
- PVS, Programmed ventricular stimulation
- SEM, Standard error of the mean
- VRP, Ventricular refractory period
- VT, Ventricular tachycardia
- Ventricular arrhythmia
- WBP, Wenckebach periodicity
- WT, Wild-type
Collapse
|
4
|
Nagy N, Tóth N, Nánási PP. Antiarrhythmic and Inotropic Effects of Selective Na +/Ca 2+ Exchanger Inhibition: What Can We Learn from the Pharmacological Studies? Int J Mol Sci 2022; 23:ijms232314651. [PMID: 36498977 PMCID: PMC9736231 DOI: 10.3390/ijms232314651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Life-long stable heart function requires a critical balance of intracellular Ca2+. Several ion channels and pumps cooperate in a complex machinery that controls the influx, release, and efflux of Ca2+. Probably one of the most interesting and most complex players of this crosstalk is the Na+/Ca2+ exchanger, which represents the main Ca2+ efflux mechanism; however, under some circumstances, it can also bring Ca2+ into the cell. Therefore, the inhibition of the Na+/Ca2+ exchanger has emerged as one of the most promising possible pharmacological targets to increase Ca2+ levels, to decrease arrhythmogenic depolarizations, and to reduce excessive Ca2+ influx. In line with this, as a response to increasing demand, several more or less selective Na+/Ca2+ exchanger inhibitor compounds have been developed. In the past 20 years, several results have been published regarding the effect of Na+/Ca2+ exchanger inhibition under various circumstances, e.g., species, inhibitor compounds, and experimental conditions; however, the results are often controversial. Does selective Na+/Ca2+ exchanger inhibition have any future in clinical pharmacological practice? In this review, the experimental results of Na+/Ca2+ exchanger inhibition are summarized focusing on the data obtained by novel highly selective inhibitors.
Collapse
Affiliation(s)
- Norbert Nagy
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, 6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-682; Fax: +36-62-545-680
| | - Noémi Tóth
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, 6720 Szeged, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Ran Q, Zhang C, Wan W, Ye T, Zou Y, Liu Z, Yu Y, Zhang J, Shen B, Yang B. Pinocembrin ameliorates atrial fibrillation susceptibility in rats with anxiety disorder induced by empty bottle stimulation. Front Pharmacol 2022; 13:1004888. [PMID: 36339600 PMCID: PMC9631028 DOI: 10.3389/fphar.2022.1004888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Anxiety disorder (AD) is the most common mental disorder, which is closely related to atrial fibrillation (AF) and is considered to be a trigger of AF. Pinocembrin has been demonstrated to perform a variety of neurological and cardiac protective effects through its anti-inflammatory and antioxidant activities. The current research aims to explore the antiarrhythmic effect of pinocembrin in anxiety disorder rats and its underlying mechanisms. Methods: 60 male Sprague-Dawley rats were distributed into four groups: CTL group: control rats + saline; CTP group: control rats + pinocembrin; Anxiety disorder group: anxiety disorder rats + saline; ADP group: anxiety disorder rats + pinocembrin. Empty bottle stimulation was conducted to induce anxiety disorder in rats for 3 weeks, and pinocembrin was injected through the tail vein for the last 2 weeks. Behavioral measurements, in vitro electrophysiological studies, biochemical assays, ELISA, Western blot and histological studies were performed to assess the efficacy of pinocembrin. In addition, HL-1 atrial cells were cultured in vitro to further verify the potential mechanism of pinocembrin. Results: After 3 weeks of empty bottle stimulation, pinocembrin significantly improved the exploration behaviors in anxiety disorder rats. Pinocembrin alleviated electrophysiological remodeling in anxiety disorder rats, including shortening the action potential duration (APD), prolonging the effective refractory period (ERP), increasing the expression of Kv1.5, Kv4.2 and Kv4.3, decreasing the expression of Cav1.2, and ultimately reducing the AF susceptibility. These effects may be attributed to the amelioration of autonomic remodeling and structural remodeling by pinocembrin, as well as the inhibition of oxidative stress with upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathway. Conclusion: Pinocembrin can reduce AF susceptibility in anxiety disorder rats induced by empty bottle stimulation, with the inhibition of autonomic remodeling, structural remodeling, and oxidative stress. Therefore, pinocembrin is a promising treatment for AF in patients with anxiety disorder.
Collapse
Affiliation(s)
- Qian Ran
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| |
Collapse
|
6
|
Xue G, Yang X, Zhan G, Wang X, Gao J, Zhao Y, Wang X, Li J, Pan Z, Xia Y. Sodium–Glucose cotransporter 2 inhibitor empagliflozin decreases ventricular arrhythmia susceptibility by alleviating electrophysiological remodeling post-myocardial-infarction in mice. Front Pharmacol 2022; 13:988408. [PMID: 36313361 PMCID: PMC9616207 DOI: 10.3389/fphar.2022.988408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Recent clinical trials indicate that sodium–glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in myocardial infarction (MI) patients, but the underlying mechanisms remain unknown. As arrhythmia often occurs during myocardial infarction, it is the main cause of death. Objective: The purpose of this study was to investigate the influence of empagliflozin (EMPA), an SGLT2 inhibitor, on cardiac electrophysiological remodeling and arrhythmia susceptibility of myocardial infarction mice. Methods: ECG was obtained from mice 1 week after MI to determine the QT interval. In an electrophysiological study and optical mapping was performed to evaluate the function of EMPA and underlying mechanisms of post-myocardial-infarction in mice. Results: EMPA treatment significantly reduced the QT interval of MI mice (MI + EMPA 50.24 ms vs. MI 64.68 ms). The membrane potential and intracellular Ca [Cai] were mapped from 13 MI hearts and five normal hearts using an optical mapping technique. A dynamic pacing protocol was used to determine action potential duration and [Cai] at baseline and after EMPA (10 umol/L) infusion. EMPA perfusion did not change the APD80 and CaT80 in normal ventricles while shortening them in an infarct zone, bordering zone, and remote zone of MI hearts at 200 ms, 150 ms, 120 ms, and 100 ms pacing cycle length. The conduction velocity of infarcted ventricles was 0.278 m/s and 0.533 m/s in normal ventricles at baseline (p < 0.05). After EMPA administration, the conduction velocity of infarcted ventricles increased to 0.363 m/s, whereas no significant changes were observed in normal ventricles. The action potential rise time, CaT rise time, and CaT tau time were improved after EMPA perfusion in infarcted ventricles, whereas no significant changes were observed in normal ventricles. EMPA decreases early afterdepolarizations premature ventricular beats, and ventricular fibrillation (VF) in infarcted ventricles. The number of phase singularities (baseline versus EMPA, 6.26 versus 3.25), dominant frequency (20.52 versus 10.675 Hz), and ventricular fibrillation duration (1.072 versus 0.361 s) during ventricular fibrillation in infarcted ventricles were all significantly decreased by EMPA. Conclusion: Treatment with EMPA improved post-MI electrophysiological remodeling and decreased substrate for VF of MI mice. The inhibitors of SGLT2 may be a new class of agents for the prevention of ventricle arrhythmia after chronic MI.
Collapse
Affiliation(s)
- Genlong Xue
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ge Zhan
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Ultrasound, The Affiliated Hospital of Innermongolia Medical University, Huhhot, China
| | - Jinghan Gao
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Zhao
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinying Wang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenwei Pan
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Yunlong Xia, ; Zhenwei Pan,
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Yunlong Xia, ; Zhenwei Pan,
| |
Collapse
|
7
|
Lee HL, Chang PC, Wo HT, Liu HT, Wen MS, Chou CC. Beneficial Electrophysiological Effects of Rotigaptide Are Unable to Suppress Therapeutic Hypothermia-Provoked Ventricular Fibrillation in Failing Rabbit Hearts With Acute Ischemia-Reperfusion Injury. Front Physiol 2021; 12:726389. [PMID: 34588996 PMCID: PMC8473906 DOI: 10.3389/fphys.2021.726389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022] Open
Abstract
Aims: Whether therapeutic hypothermia (TH) is proarrhythmic in preexisting failing hearts with acute ischemia–reperfusion (IR) injury is unknown. Additionally, the effectiveness of rotigaptide on improving conduction slowing in hearts with IR injury is ambiguous. We investigated the electrophysiological effects of TH and rotigaptide in failing rabbit hearts with acute IR injury and determined the underlying molecular mechanisms. Methods and Results: Heart failure was induced by right ventricular pacing (320 beats/min, 4 weeks). Rabbits with pacing-induced heart failure were randomly divided into TH (n = 14) and non-TH (n = 7) groups. The IR rabbit model was created by ligating the coronary artery for 60 min, followed by reperfusion for 15 min in vivo. Then, the hearts were excised quickly and Langendorff-perfused for simultaneous voltage and intracellular Ca2+ (Cai) optical mapping. Electrophysiological studies were conducted, and vulnerability to ventricular fibrillation (VF) was evaluated using pacing protocols. TH (33°C) was instituted after baseline studies, and electrophysiological studies were repeated. Rotigaptide (300 nM) was infused for 20 min, and electrophysiological studies were repeated under TH. Cardiac tissues were sampled for Western blotting. TH increased the dispersion and beat-to-beat variability of action potential duration (APD), aggravated conduction slowing, and prolonged Cai decay to facilitate spatially discordant alternans (SDA) and VF induction. Rotigaptide reduced the dispersion and beat-to-beat variability of APD and improved slowed conduction to defer the onset of arrhythmogenic SDA by dynamic pacing and elevate the pacing threshold of VF during TH. However, the effect of rotigaptide on TH-enhanced VF inducibility was statistically insignificant. TH attenuated IR-induced dysregulation of protein expression, but its functional role remained uncertain. Conclusion: Therapeutic hypothermia is proarrhythmic in failing hearts with acute IR injury. Rotigaptide improves TH-induced APD dispersion and beat-to-beat variability and conduction disturbance to defer the onset of arrhythmogenic SDA and elevate the VF threshold by dynamic pacing, but these beneficial electrophysiological effects are unable to suppress TH-enhanced VF inducibility significantly.
Collapse
Affiliation(s)
- Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei City, Taiwan
| | - Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hao-Tien Liu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Chang Gung University College of Medicine, Taoyuan City, Taiwan
| |
Collapse
|
8
|
Tse G, Li KHC, Cheung CKY, Letsas KP, Bhardwaj A, Sawant AC, Liu T, Yan GX, Zhang H, Jeevaratnam K, Sayed N, Cheng SH, Wong WT. Arrhythmogenic Mechanisms in Hypokalaemia: Insights From Pre-clinical Models. Front Cardiovasc Med 2021; 8:620539. [PMID: 33614751 PMCID: PMC7887296 DOI: 10.3389/fcvm.2021.620539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium is the predominant intracellular cation, with its extracellular concentrations maintained between 3. 5 and 5 mM. Among the different potassium disorders, hypokalaemia is a common clinical condition that increases the risk of life-threatening ventricular arrhythmias. This review aims to consolidate pre-clinical findings on the electrophysiological mechanisms underlying hypokalaemia-induced arrhythmogenicity. Both triggers and substrates are required for the induction and maintenance of ventricular arrhythmias. Triggered activity can arise from either early afterdepolarizations (EADs) or delayed afterdepolarizations (DADs). Action potential duration (APD) prolongation can predispose to EADs, whereas intracellular Ca2+ overload can cause both EADs and DADs. Substrates on the other hand can either be static or dynamic. Static substrates include action potential triangulation, non-uniform APD prolongation, abnormal transmural repolarization gradients, reduced conduction velocity (CV), shortened effective refractory period (ERP), reduced excitation wavelength (CV × ERP) and increased critical intervals for re-excitation (APD-ERP). In contrast, dynamic substrates comprise increased amplitude of APD alternans, steeper APD restitution gradients, transient reversal of transmural repolarization gradients and impaired depolarization-repolarization coupling. The following review article will summarize the molecular mechanisms that generate these electrophysiological abnormalities and subsequent arrhythmogenesis.
Collapse
Affiliation(s)
- Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ka Hou Christien Li
- Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Konstantinos P Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Aishwarya Bhardwaj
- Division of Cardiology, Department of Internal Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abhishek C Sawant
- Division of Cardiology, Department of Internal Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, PA, United States
| | - Henggui Zhang
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong, China.,State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China.,Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Chang PC, Wo HT, Lee HL, Lin SF, Chu Y, Wen MS, Chou CC. Sacubitril/Valsartan Therapy Ameliorates Ventricular Tachyarrhythmia Inducibility in a Rabbit Myocardial Infarction Model. J Card Fail 2020; 26:527-537. [PMID: 32209390 DOI: 10.1016/j.cardfail.2020.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coronary artery disease is the most common cause of heart failure (HF) in developed countries. The aim of this study was to elucidate the mechanisms of reduction of arrhythmias after sacubitril/valsartan (LCZ696) therapy in a myocardial infarction (MI)-HF rabbit model. METHODS AND RESULTS Chronic MI in rabbits with HF were divided into 3 groups: placebo control, valsartan 30 mg/day and LCZ696 60 mg/day. After 4 weeks of therapy, an electrophysiologic study and a dual voltage-calcium optical mapping study were performed. The LCZ696 group had significantly better left ventricular ejection fraction and lower ventricular tachyarrhythmia inducibility than the valsartan and placebo groups. The most common ventricular tachyarrhythmia pattern was 1 or 2 ectopic beats originating from the peri-infarct areas, followed by re-entrant beats surrounding phase singularity points. Compared to the valsartan and placebo groups, the LCZ696 group had significantly shorter action-potential duration, shorter intracellular calcium tau constant, faster conduction velocity, and shorter pacing cycle length to induce arrhythmogenic alternans. LCZ696 therapy reduced the phosphorylated calmodulin-dependent protein kinase II (CaMKII-p) expression. CONCLUSIONS In a rabbit model with chronic MI and HF, LCZ696 therapy ameliorated postinfarct heart function impairment and electrophysiologic remodeling and altered CaMKII-p expression, leading to reduced ventricular tachyarrhythmia inducibility.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou
| | - Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Chiao Tung University, Hsin Chu, Taiwan
| | - Yen Chu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan.
| |
Collapse
|
10
|
Single Bolus Rosuvastatin Accelerates Calcium Uptake and Attenuates Conduction Inhomogeneity in Failing Rabbit Hearts With Regional Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol 2019; 75:64-74. [PMID: 31842025 DOI: 10.1097/fjc.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute statin therapy reduces myocardial ischemia/reperfusion (IR) injury-induced ventricular fibrillation (VF), but the underlying electrophysiological mechanisms remain unclear. This study sought to investigate the antiarrhythmic effects of a single bolus rosuvastatin injection in failing rabbit hearts with IR injury and to unveil the underlying molecular mechanisms. Rabbits were divided into rosuvastatin, rosuvastatin + L-NAME, control, and L-NAME groups. Intravenous bolus rosuvastatin (0.5 mg/kg) and/or L-NAME (10 mg/kg) injections were administered 1 hour and 15 minutes before surgery, respectively. Heart failure was induced using rapid ventricular pacing. Under general anesthesia with isoflurane, an IR model was created by coronary artery ligation for 30 minutes, followed by reperfusion for 15 minutes. Plasma NO end product levels were measured during IR. Then, hearts were excised and Langendorff-perfused for optical mapping studies. Cardiac tissues were sampled for Western blot analysis. Rosuvastatin increased plasma NO levels during IR, which was abrogated by L-NAME. Spontaneous VF during IR was suppressed by rosuvastatin (P < 0.001). Intracellular calcium (Cai) decay and conduction velocity were significantly slower in the IR zone. Rosuvastatin accelerated Cai decay, ameliorated conduction inhomogeneity, and reduced the inducibility of spatially discordant alternans and VF significantly. Western blots revealed significantly higher expression of enhancing endothelial NO-synthase and phosphorylated enhancing endothelial NO-synthase proteins in the Rosuvastatin group. Furthermore, SERCA2a, phosphorylated connexin43, and phosphorylated phospholamban were downregulated in the IR zone, which was attenuated or reversed by rosuvastatin. Acute rosuvastatin therapy before ischemia reduced IR-induced VF by improving SERCA2a function and ameliorating conduction disturbance in the IR zone.
Collapse
|
11
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|