1
|
Zhou X, Xia X. Ginsenoside Rg3 improves microcystin-induced cardiotoxicity through the miR-128-3p/MDM4 axis. Drug Chem Toxicol 2024; 47:682-692. [PMID: 37990515 DOI: 10.1080/01480545.2023.2251716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 11/23/2023]
Abstract
Microcystin (MC) is the byproduct of cyanobacteria metabolism that is associated with oxidative stress and heart damage. This study aimed to investigate the effect of ginsenoside Rg3 on MC-induced cardiotoxicity. A mouse model of myocardial infarction was constructed by oral MC administration. H9C2 cells were used for in vitro analysis. Cellular oxidative stress, apoptosis, and the relationship between miR-128-3p and double minute 4 protein (MDM4) were analyzed. MiR-128-3p expression was upregulated in vitro and in vivo after MC treatment, which was downregulated after Rg3 treatment. Left ventricular ejection fraction (LVEF) and left ventricular systolic pressure (LVSP) were increased and left ventricular end-diastolic pressure (LVEDP) was decreased after Rg3 treatment. Moreover, Rg3 alleviated MC-induced pathological changes and apoptosis in myocardial tissues. Meanwhile, Rg3 treatment decreased the lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels and inhabited cell apoptosis and oxidative stress in MC-treated myocardial cells. MiR-128-3p overexpression attenuated the protective effect of Rg3 on MC-induced cardiotoxicity. MiR-128-3p negatively regulated MDM4 expression. This study revealed that Rg3 alleviated MC-induced cardiotoxicity through the miR-128-3p/MDM4 axis, which emphasized the potential of Rg3 as a therapeutic agent for MC-induced cardiotoxicity, and miR-128-3p as a target for the Rg3 therapy.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Cardiovascular Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoyan Xia
- Dean's Office, Changsha Health Vocational College, Changsha, Hunan, China
| |
Collapse
|
2
|
Zeng RY, Jin HY, Peng YB, Wang WJ, Cao YP, Peng HZ, Qiu ZC, Lai SQ, Wan L. miR-200a-3p inhibits the PDGF-BB-induced proliferation of VSMCs by affecting their phenotype-associated proteins. J Biochem Mol Toxicol 2024; 38:e23675. [PMID: 38488158 DOI: 10.1002/jbt.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.
Collapse
Affiliation(s)
- Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong-Yi Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong-Bo Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan-Ping Cao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
4
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
5
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Zhang T, Ge J. Mechanism of CREB1 in cardiac function of rats with heart failure via regulating the microRNA-376a-3p/TRAF6 axis. Mamm Genome 2022; 33:490-501. [PMID: 35217880 DOI: 10.1007/s00335-022-09947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Heart failure (HF) is a complicated disease resulting from impaired heart function. CREB1 is a candidate target in heart-concerning diseases. This paper attempts to explore the role of CREB1 in HF. Initially, the HF rat model was established by constricted abdominal aortic surgery and the cardiac function of HF rats was assessed by ultrasonic cardiogram. Levels of CK-MB and LDH and activity of Caspase-3 and Caspase-9 in HF rats were determined. Subsequently, myocardium pathological injury and myocardium apoptosis were detected. Additionally, the interactions between CREB1 and miR-376a-3p and between miR-376a-3p and TRAF6 were verified. The roles of CREB1, miR-376a-3p, and TRAF6 in HF were evaluated. In HF rats, CREB1 and miR-376a-3p were both downregulated while TRAF6 was upregulated. Besides, HF rats had decreased values of EF and FS, elevated levels of CK-MB and LDH, inflammatory infiltration, promoted cardiomyocyte apoptosis, and elevated activity of Caspase-3 and Caspase-9, which were all reversed by CREB1. Additionally, CREB1 activated miR-376a-3p expression, and miR-376a-3p targeted TRAF6 transcription. Both miR-376a-3p knockdown and TRAF6 overexpression annulled the protective role of CREB1 overexpression in cardiac function of HF rats. CREB1 activated miR-376a-3p expression to suppress TRAF6, thereby promoting the cardiac function of HF rats.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Cardiac Surgery, The Affiliated First Hospital of USTC, No. 1 Swan Lake Road, Shushan District, Hefei, 230000, Anhui, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The Affiliated First Hospital of USTC, No. 1 Swan Lake Road, Shushan District, Hefei, 230000, Anhui, China.
| |
Collapse
|
7
|
Guo S, Yang Y, Qian W, Yao Y, Zhou G, Shen L, Zhou J. MicroRNA-384-5p protects against cardiac hypertrophy via the ALPK3 signaling pathway. J Biochem Mol Toxicol 2022; 36:e23093. [PMID: 35510648 DOI: 10.1002/jbt.23093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Heart failure is a condition caused by a variety of pathophysiological factors. One important pathological change of chronic heart failure is myocardial hypertrophy. In recent years, several studies have found that dysregulated microRNAs are involved in regulating the pathological process of heart failure. In this study, cardiac hypertrophy models were constructed using isoproterenol (ISO)-/angiotensin-II (Ang-II) to explore the role of miR-384-5p in cardiac hypertrophy and its molecular mechanism in vivo and in vitro. Echocardiography, invasive pressure-volume analysis and hematoxylin-eosin staining were used to explore cardiac structure and function. ALPK3 mRNA and protein expression were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot analysis and miR-384-5p expression were assessed via RT-qPCR. Our findings determined that miR-384-5p was notably decreased in cardiac hypertrophic tissues and cells, and overexpression of miR-384-5p could ameliorate pressure overload. Furthermore, ALPK3 was determined to downregulate the ALPK3 expression to aggravate cardiomyocyte hypertrophy. Our findings provided a potential therapeutic target for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Suxia Guo
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Yanhua Yang
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Weichun Qian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhao Yao
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Guoxiang Zhou
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Lihan Shen
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Jianping Zhou
- The Department of Thoracic, Dongguan People's Hospital, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Yu LM, Dong X, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Luo LY, Wang ZS, Wang HS. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism. Free Radic Biol Med 2022; 178:202-214. [PMID: 34864165 DOI: 10.1016/j.freeradbiomed.2021.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin-Yu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
9
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Li HL, Li T, Li L. miR-200a-3p Attenuates Coronary Microembolization-Induced Myocardial Injury in Rats by Inhibiting TXNIP/NLRP3-Mediated Cardiomyocyte Pyroptosis. Front Cardiovasc Med 2021; 8:693257. [PMID: 34422922 PMCID: PMC8374895 DOI: 10.3389/fcvm.2021.693257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Coronary microembolization (CME) commonly develops as a complication after percutaneous coronary intervention (PCI), and associated inflammation is a leading driver of myocardial damage. Cardiomyocyte loss in the context of ischemic myocardial disease has been linked to inflammatory pyroptotic cell death. Additionally, miR-200a-3p dysregulation has been linked to myocardial ischemia-reperfusion and many other pathological conditions. However, how miR-200a-3p impacts cardiomyocyte pyroptosis in the context of CME remains to be assessed. Herein, a rat model of CME was established via the injection of microembolic spheres into the left ventricle. When myocardial tissue samples from these rats were analyzed, miR-200a-3p levels were markedly decreased, whereas thioredoxin-interacting protein (TXNIP) levels were increased. The ability of miR-200a-3p to directly target TXNIP and to control its expression was confirmed via dual-luciferase reporter assay. Adeno-associated virus serotype 9-pre-miR-200a-3p (AAV-miR-200a-3p) construct transfection was then employed as a means of upregulating this miRNA in CME model rats. Subsequent assays, including echocardiography, enzyme-linked immunosorbent assays (ELISAs), hematoxylin-eosin (H&E) staining, hematoxylin-basic fuchsin-picric acid (HBFP) staining, TdT-mediated dUTP nick-end labeling (TUNEL) staining, immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting revealed that miR-200a-3p overexpression inhibited cardiomyocyte pyroptosis and alleviated CME-induced myocardial injury by inhibiting the TXNIP/NOD-like receptor family pyrin domain-containing 3 (NLRP3) pathway. The ability of miR-200a-3p to protect against CME-induced myocardial injury thus highlights a novel approach to preventing or treating such myocardial damage in clinical settings.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Chen Y, Song D, Gao J, Zhang X, Chen X. Circ-Zfp644 acts as a pro-hypertrophic mediator in an Ang-II induced in vitro myocardial hypertrophy model. Cell Biol Int 2021; 45:1260-1268. [PMID: 33559936 DOI: 10.1002/cbin.11569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
Cardiac hypertrophy (CH) is a common risk factor for heart failure and even sudden cardiac death. Molecules have emerged as vital regulators in cardiac disorders. LIM domain kinase 1 (Limk1) is reported as a pro-fibrotic mediator in patients with permanent atrial fibrillation and it has also been suggested to aggravate cardiac dysfunction in rats with chronic heart failure. The present study observed that Limk1 was significantly upregulated in the in vitro model of CH induced by angiotensin II (Ang-II). Interestingly, silencing Limk1 led to inhibition of the hypertrophic phenotypes in Ang-II-treated cardiomyocytes. Next, through a series of mechanistic assays including RIP assay, RNA pull-down assay, and luciferase reporter assay, miR-93-5p was verified to target Limk1. Furthermore, circ-Zfp644 was validated as the sponge of miR-93-5p. Circ-Zfp644 functioned as a ceRNA to upregulate Limk1 expression via sequestering miR-93-5p in Ang-II-treated cardiomyocytes. Finally, a range of rescue assays revealed that circ-Zfp644 stimulated hypertrophic effects in Ang-II-treated cardiomyocytes via upregulating Limk1 while miR-93-5p exerted the opposite effects via its inhibition on Limk1. On the whole, the present study revealed that circ-Zfp644 aggravated CH through modulating the miR-93-5p/Limk1 axis. The findings observed on the in vitro model of CH provided new potential for developing CH treatment.
Collapse
Affiliation(s)
- Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Daifu Song
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Gao
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuehuang Zhang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ximing Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Fang B, Wen S, Li Y, Bai F, Wei Y, Xiong Y, Huang Q, Lin X. Prediction and verification of target of helenalin against hepatic stellate cell activation based on miR-200a-mediated PI3K/Akt and NF-κB pathways. Int Immunopharmacol 2021; 92:107208. [PMID: 33444919 DOI: 10.1016/j.intimp.2020.107208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/18/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023]
Abstract
Hepatic stellate cell (HSC) activation is a crucial event in the progress of liver fibrosis. In this study, the target of helenalin was firstly predicted by bioinformatics analysis, and then the prediction was verified by various experiments. HSC-T6 cells were activated by interleukin-1 beta (IL-1β) and then treated with helenalin. Moreover, HSC-T6 cells were transfected with miR-200a mimic or inhibitor, and the effect of helenalin on the miR-200a-mediated PI3K/Akt and NF-κB signaling pathways was investigated. The bioinformatics analysis indicated that miR-200a might regulate the PI3K/Akt pathway, NF-κB activation, Bcl-2 family and Caspases, ultimately affecting cell survival and apoptosis. Interestingly, the molecular docking demonstrated that the target of helenalin might be miR-200a-mediated the PI3K/Akt and NF-κB pathways. Moreover, the experiments showed that helenalin administration led to the inactivation of HSC-T6 cells, as evidenced by the inhibition of cell proliferation, α-SMA expression and collagen production. The mechanism studies showed that helenalin reduced collagen accumulation by restoring the balance of MMPs/TIMPs. Moreover, helenalin markedly suppressed HSC activation by inhibiting the PI3K/Akt pathway and alleviated inflammatory response by blocking the NF-κB signal transduction. Further study indicated that helenalin up-regulated miR-200a expression, thus leading to the inhibition of the PI3K/Akt and NF-κB signaling pathways. In conclusion, helenalin inhibits HSC activation via inhibiting the miR-200a-mediated PI3K/Akt and NF-κB pathways, and it may be developed as a potential medicine for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bin Fang
- Guangxi Medical University, Nanning 530021, China
| | - Shujuan Wen
- Guangxi Medical University, Nanning 530021, China
| | - Yan Li
- Guangxi Medical University, Nanning 530021, China
| | - Facheng Bai
- Guangxi Medical University, Nanning 530021, China
| | - Yuanyuan Wei
- Guangxi Medical University, Nanning 530021, China
| | - Yuhua Xiong
- Guangxi Medical University, Nanning 530021, China
| | - Quanfang Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China.
| | - Xing Lin
- Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
12
|
Peterlin A, Počivavšek K, Petrovič D, Peterlin B. The Role of microRNAs in Heart Failure: A Systematic Review. Front Cardiovasc Med 2020; 7:161. [PMID: 33195446 PMCID: PMC7593250 DOI: 10.3389/fcvm.2020.00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs are highly investigated for their role in the pathogenesis of cardiovascular diseases. Nevertheless, evidence for clinical implementation is still lacking. In our systematic review, we evaluated the potential of microRNAs as pathophysiological and diagnostic biomarkers of heart failure. We identified 72 differentially expressed microRNA molecules among groups of heart failure patients and control groups by searching the PubMed database. We did not identify a substantial overlap of differentially expressed microRNAs among different studies; only five microRNAs (miR-1228, miR-122, miR-423-5p, miR-142-3p, and exosomal miR-92b-5p) were differentially expressed in more than one included study. Gene set enrichment analysis, based on the gene targets of microRNAs presented in the included studies, showed that gene targets of differentially expressed microRNAs were enriched in the MAPK, TGFβ, PI3K-Akt, and IL-2 signaling pathways, as well as apoptosis pathway, p53 activity regulation, and angiogenesis pathway. Results of our systematic review show that there is currently insufficient support for the use of any of the presented microRNAs as pathophysiological or prognostic biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Ana Peterlin
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Karolina Počivavšek
- Department of Cardiovascular Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Danijel Petrovič
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Sun J, Wang Y, Sun L. INNO-406 inhibits the growth of chronic myeloid leukemia and promotes its apoptosis via targeting PTEN. Hum Cell 2020; 33:1112-1119. [PMID: 32862368 DOI: 10.1007/s13577-020-00413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm. INNO-406 is a novel tyrosine kinase inhibitor (TKI) that possess specific Lyn kinase inhibitory activity with no or limited activity against other sarcoma (Src) family member kinases. The present study aimed to confirm the anti-tumor effect of INNO-406 on CML cells, and elucidate the underlying molecular mechanism. CML cells were treated by INNO-406 at the concentration of 5, 25, 50, 100 μM at the indicated time. Cell proliferation was measured by MTT. Cell apoptosis were detected by Western blot and flow cytometry, respectively. As suggested by the findings, INNO-406 significantly inhibited the proliferation and induced apoptosis of CML cells. In addition, INNO-406 promoted the expression level of PTEN. Rescue experiment revealed that PTEN knockdown reversed the effect of INNO-406 which indicated the correlation between INNO-406 and PTEN. Further study determined that PTEN inhibited the phosphorylation of AKT and 4EBP1 and subsequently altered the expression of apoptotic proteins including bax, cytoplasmic cytochrome c (cyto-c), cleaved caspase3 and bcl-2. In vivo study further confirmed that INNO-406 inhibited the growth of CML cells by targeting PTEN. Based on the above findings, this work extended our understanding of INNO-406 in the therapy of CML and its molecular mechanism.
Collapse
MESH Headings
- Antineoplastic Agents
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Jiandong Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Huangdao District, 1677 Wutaishan Road, Qingdao, 266555, Shandong, China
| | - Yilin Wang
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Huangdao District, 1677 Wutaishan Road, Qingdao, 266555, Shandong, China
| | - Lirong Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Huangdao District, 1677 Wutaishan Road, Qingdao, 266555, Shandong, China.
| |
Collapse
|
14
|
Long Y, Wang L, Li Z. SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17. J Cell Mol Med 2020; 24:7115-7126. [PMID: 32436661 PMCID: PMC7339172 DOI: 10.1111/jcmm.15073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac hypertrophy (CH) is a common cardiac disease and is closely associated with heart failure. Protocadherin 17 (PCDH17) was reported to aggravate myocardial infarction. Present study was designed to illustrate the impact of PCDH17 and the mechanism of PCDH17 expression regulation in CH. CH model in vivo and in vitro was established by transverse aortic constriction (TAC) and Ang‐II treatment. Hypertrophy was evaluated in PMC and H9c2 cells by examining cell surface area and hypertrophic markers. Results demonstrated that PCDH17 was up‐regulated in CH in vivo and in vitro. PCDH17 knock‐down alleviated hypertrophic response in Ang‐II‐induced cardiomyocytes. By means of ENCORI database and a series of mechanism assays, miR‐322‐5p and miR‐384‐5p were identified to interact with and inhibit PCDH17. Next, lncRNA SNHG14 (small nucleolar RNA host gene 14) was validated to sponge both miR‐322‐5p and miR‐384‐5p to elevate PCDH17 level. The subsequent rescue assays revealed that miR‐322‐5p and miR‐384‐5p restored SNHG14 depletion‐mediated suppression on hypertrophy in Ang‐II‐induced cardiomyocytes. Besides, Sp1 transcription factor (SP1) was verified as the transcription factor activating both SNHG14 and PCDH17. Both SNHG14 and PCDH17 reversed SP1 knock‐down‐mediated repression on hypertrophy in Ang‐II‐induced cardiomyocytes. Together, present study first uncovered ceRNA network of SNHG14/miR‐322‐5p/miR‐384‐5p/PCDH17 in Ang‐II‐induced cardiomyocytes.
Collapse
Affiliation(s)
- Yadong Long
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Cardiovascular Surgery II, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|