1
|
Investigation of the relationship between serum adropin levels, oxidative stress biomarkers, and blood pressure in DOCA-salt hypertensive rats. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background/Aim: Adropin is involved in the pathophysiology and development of cardiovascular diseases, such as hypertension. The aim of this study was to investigate the effects of adropin in serum, potential use as a biochemical biomarker of oxidative stress, and effects on blood pressure in deoxycorticosterone acetate (DOCA) salt hypertensive rats.
Methods: Eighteen male Sprague-Dawley rats were divided into two groups: (1) Control (C) and (2) Hypertensive (H). Systolic and diastolic blood pressures (SBP and DBP, respectively), and mean blood pressure (MBP) were measured using the tail-cuff method. At the end of the study, serum endothelin-1 (ET-1), adropin, nitric oxide (NO), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed.
Results: Significant increases in SBP, DBP, MBP, cardiac hypertrophy index (CHI), and left ventricular hypertrophy index (LVCI) in the H group compared with the C group were found. Serum levels of ET-1, TOS, and OSI were significantly higher in the H group and serum levels of NO, adropin, and TAS were lower than in the C group. A negative correlation between serum adropin levels and the variables SBP, DBP, MBP, TOS, OSI, CHI, and LVHI was found. Adropin levels were positively correlated positively with serum NO levels in both groups.
Conclusion: Serum adropin levels decreased in hypertensive DOCA-salt rats. Lower serum adropin levels were found to be significantly associated with hypertension and may play a role in this disease. However, further comprehensive and diverse studies are needed.
Collapse
|
2
|
Khodir SA, Sweed E, Gadallah M, Shabaan A. Astaxanthin attenuates cardiovascular dysfunction associated with deoxycorticosterone acetate-salt-induced hypertension in rats. Clin Exp Hypertens 2022; 44:382-395. [PMID: 35322744 DOI: 10.1080/10641963.2022.2055764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypertension is a major global health problem. It is a major risk factor of cardiovascular disease. One of the most used experimental models in studying antihypertensive action is the deoxycorticosterone acetate (DOCA)-salt hypertensive rat. This study aimed to investigate the cardiovascular protective effect of astaxanthin (ASX) in DOCA-salt-induced hypertension and its possible underlying mechanisms. METHODS A total of 48 adult male Wistar albino rats were divided into three groups: control, DOCA, and DOCA + ASX. Blood pressure, serum cardiac enzyme levels, some oxidative stress and inflammatory biomarker levels, and lipid profile levels were measured. The weight of the left ventricle to tibial length ratio was calculated. Apoptosis detection and total genomic DNA extraction in aortic and cardiac tissues were investigated. The apoptotic marker BAX was also immunohistochemically assessed in the heart and aorta. RESULTS Compared to the control group, the DOCA group was associated with a significant increase in blood pressure, serum cardiac enzyme levels, oxidative stress and inflammatory biomarker levels, lipid profile except serum high-density lipoprotein (HDL), weight of the left ventricle to tibial length, and total released DNA fragmentation level of the left ventricle and aorta and a significant decrease in reduced glutathione (GSH) and HDL. Compared to the DOCA group, the DOCA + ASX group significantly improved the DOCA-induced changes. CONCLUSION ASX has beneficial protective effects on DOCA-salt-induced hypertension via DNA fragmentation protection, apoptosis inhibition, antioxidant, anti-inflammatory, and its effects on lipid levels.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Clinical pharmacology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Marwa Gadallah
- Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Anwaar Shabaan
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Cai X, Shen Y, Yang Y, Wang W, Qian L, Cai J, Chi R, Yu S, Li K, Wei Z, Chen T, Fei Y, Han Y, Chen X, Liu M, Liu Y, Wang D, Jiang M, Li YG. Renal Denervation by Noninvasive Stereotactic Radiotherapy Induces Persistent Reduction of Sympathetic Activity in a Hypertensive Swine Model. J Am Heart Assoc 2021; 10:e020068. [PMID: 34369204 PMCID: PMC8475062 DOI: 10.1161/jaha.120.020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background We have previously reported the feasibility of noninvasive stereotactic body radiotherapy (SBRT) as a novel approach for renal denervation. Methods and Results Herein, from a translational point of view, we assessed the antihypertensive effect and chronological evolution of SBRT‐induced renal nerve injury within 6 months in a hypertensive swine model. Hypertension was induced in swine by subcutaneous implantation of deoxycorticosterone acetate pellets in combination with a high‐salt diet. A single dose of 25 Gy with SBRT was delivered for renal denervation in 9 swine within 3.4±1.0 minutes. Blood pressure levels at baseline and 1 and 6 months post‐SBRT were comparable to control (n=5), whereas renal norepinephrine was significantly lower at 6 months (P<0.05). Abdominal computed tomography, performed before euthanasia and renal function assessment, remained normal. Standard semiquantitative histological assessment showed that compared with control (1.4±0.4), renal nerve injury was greater at 1 month post‐SBRT (2.3±0.3) and peaked at 6 months post‐SBRT (3.2±0.8) (P<0.05), along with a higher proportion of active caspase‐3–positive nerves (P<0.05). Moreover, SBRT resulted in continuous dysfunction of renal sympathetic nerves and low level of nerve regeneration in 6 months by immunohistochemistry analysis. Conclusions SBRT delivering 25 Gy for renal denervation was safe and related to sustained reduction of sympathetic activity by aggravating nerve damage and inhibiting nerve regeneration up to 6 months; however, its translation to clinical trial should be cautious because of the negative blood pressure response in the deoxycorticosterone acetate–salt hypertensive swine model.
Collapse
Affiliation(s)
- Xingxing Cai
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yichen Shen
- Department of Oncology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yuli Yang
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Wei Wang
- Department of Oncology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Li Qian
- Department of Pathology Affiliated Hospital of Nantong University China
| | - Jing Cai
- Department of Radiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Runmin Chi
- Department of Radiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Shunxuan Yu
- Department of Oncology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Keke Li
- Department of Oncology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Zhixing Wei
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Taizhong Chen
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yudong Fei
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yaqin Han
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Xiu Chen
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Ming Liu
- Department of Radiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yifei Liu
- Department of Pathology Affiliated Hospital of Nantong University China
| | - Dengbin Wang
- Department of Radiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Mawei Jiang
- Department of Oncology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| | - Yi-Gang Li
- Department of Cardiology Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine China
| |
Collapse
|
4
|
Jaisser F, Tan X, Chi S, Liu J, Wang P, Bush M, Benn V, Yang YF, Zhang J. The Non-Steroidal Mineralocorticoid Receptor Antagonist KBP-5074 Limits Albuminuria and has Improved Therapeutic Index Compared With Eplerenone in a Rat Model With Mineralocorticoid-Induced Renal Injury. Front Pharmacol 2021; 12:604928. [PMID: 34248613 PMCID: PMC8264204 DOI: 10.3389/fphar.2021.604928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The therapeutic indices (TIs) and efficacy of the non-steroidal mineralocorticoid receptor antagonist (MRA) KBP-5074 and steroidal MRA eplerenone were evaluated in a uninephrectomized Sprague Dawley rat model of aldosterone-mediated renal disease. In two parallel studies, rats were placed on a high-salt diet and received aldosterone by osmotic mini-pump infusion over the course of 27 days. The urinary albumin-to-creatinine ratio (UACR) was evaluated after 7, 14, and 26 days of treatment. Serum K+ was evaluated after 14 and 27 days of treatment. Urinary Na+, urinary K+, and urinary Na+/K+ ratio were evaluated after 7, 14, and 26 days of treatment. The TI was calculated for each drug as the ratio of the concentration of drug producing 50% of maximum effect (EC50) for increasing serum K+ to the EC50 for lowering UACR. The TIs were 24.5 for KBP-5074 and 0.620 for eplerenone, resulting in a 39-fold improved TI for KBP-5074 compared with eplerenone. Aldosterone treatment increased UACR, decreased serum K+, and decreased urinary Na+ relative to sham-operated controls that did not receive aldosterone infusion in both studies, validating the aldosterone/salt renal injury model. KBP-5074 prevented the increase in UACR at 0.5, 1.5, and 5 mg/kg BID while eplerenone did so only at the two highest doses of 50 and 450 mg/kg BID. Both KBP-5074 and eplerenone blunted the reduction in serum K+ seen in the aldosterone treatment group, with significant increases in serum K+ at the high doses only (5 mg/kg and 450 mg/kg BID, respectively). Additionally, the urinary Na+ and Na+/K+ ratio significantly increased at the middle and high doses of KBP-5074, but only at the highest dose of eplerenone. These results showed increased TI and efficacy for KBP-5074 compared with eplerenone over a wider therapeutic window.
Collapse
Affiliation(s)
- Frédéric Jaisser
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | - Ping Wang
- KBP BioSciences Co., Ltd., Shandong, China
| | - Mark Bush
- Nuventra Inc., Durham, NC, United States
| | - Vincent Benn
- KBP BioSciences USA Inc., Princeton, NJ, United States
| | - Y Fred Yang
- KBP BioSciences USA Inc., Princeton, NJ, United States
| | - Jay Zhang
- KBP BioSciences USA Inc., Princeton, NJ, United States
| |
Collapse
|
5
|
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol 2021; 179:882-899. [PMID: 33973236 DOI: 10.1111/bph.15450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiac fibrosis (scarring), characterised by an increased deposition of extracellular matrix (ECM) proteins, is a hallmark of most types of cardiovascular disease and plays an essential role in heart failure progression. Inhibition of cardiac fibrosis could improve outcomes in patients with cardiovascular diseases and particularly heart failure. However, pharmacological treatment of the ECM build-up is still lacking. In this context, preclinical models of heart disease are important tools for understanding the complex pathogenesis involved in the development of cardiac fibrosis which in turn could identify new therapeutic targets and the facilitation of antifibrotic drug discovery. Many preclinical models have been used to study cardiac fibrosis and each model provides mechanistic insights into the many factors that contribute to cardiac fibrosis. This review discusses the most frequently used rodent models of cardiac fibrosis and also provides context for the use of particular models of heart failure.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Pestana-Oliveira N, Nahey DB, Hartson R, Weber B, Johnson TJ, Collister JP. DOCA-salt hypertension and the role of the OVLT-sympathetic-gut microbiome axis. Clin Exp Pharmacol Physiol 2021; 48:490-497. [PMID: 33462863 PMCID: PMC11078564 DOI: 10.1111/1440-1681.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/02/2020] [Accepted: 12/19/2020] [Indexed: 11/29/2022]
Abstract
Hypertension is a multifaceted condition influenced by genetic and environmental factors and estimated to cause 9.4 million deaths globally every year. Recently, there has been growing interest in understanding the gut microbe-host interaction in the maintenance of health or disease states, but relatively few studies have shown an association between the gut microbiome and specific types of hypertension. The deoxycorticosterone acetate (DOCA)-salt model of hypertension in rats is known to have a neurogenic component linked to increased sympathetic nervous system activity. As such, our lab has recently shown the hypertensive response in DOCA treated rats requires an intact organum vasculosum of the lamina terminalis (OVLT), a central hypothalamic circumventricular organ. Currently, we hypothesize the OVLT mediates changes in the gut microbiome associated with concomitant hypertension. Herein, we report that the hypertensive effects of DOCA-salt treatment were significantly attenuated throughout the 24-hour day/night cycle in OLVT lesioned rats on days 1, 3, and 9-21 of DOCA treatment compared with sham rats. Increased blood pressure (BP) in DOCA-salt treated rats was accompanied by specific changes in regional gut microbial populations yet was mitigated and offset by lesion of the OVLT. Furthermore, bacterial populations in OVLT-lesioned rats with attenuated hypertension more closely resembled those in normal control rats. We conclude that DOCA-salt hypertension is associated with specific microbiome changes in the gut, and the attenuated hypertensive effects of DOCA-salt in OVLT-lesioned rats is mediated in part through counteracting changes in these bacterial populations.
Collapse
Affiliation(s)
- Nayara Pestana-Oliveira
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - David B Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Rochelle Hartson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Bonnie Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
7
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|