1
|
Li H, Liu Y, Zhang H, Shi X, Luo Y, Fu G, Zhao C, Guo L, Li X, Shan L. Identification of potential diagnostic biomarkers and therapeutic targets in patients with hypoxia pulmonary hypertension. Int Immunopharmacol 2024; 142:113028. [PMID: 39226824 DOI: 10.1016/j.intimp.2024.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongli Zhang
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
2
|
Li MH, Liu X, Xie YL, Tang XG, Song LF, Zhao FR, Chen YJ, Guo C, Zhang WF, Zhu TT. Sodium butyrate alleviates right ventricular hypertrophy in pulmonary arterial hypertension by inhibiting H19 and affecting the activation of let-7g-5p/IGF1 receptor/ERK. Eur J Pharmacol 2024; 965:176315. [PMID: 38176636 DOI: 10.1016/j.ejphar.2024.176315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and fatal cardio-pulmonary vascular disease. Decompensated right ventricular hypertrophy (RVH) caused by cardiomyocyte hypertrophy often leads to fatal heart failure, the leading cause of mortality among patients. Sodium butyrate (SB), a compound known to reduce cardiac hypertrophy, was examined for its potential effect and the underlying mechanism of SB on PAH-RVH. The in vivo study showed that SB alleviated RVH and cardiac dysfunction, as well as improved life span and survival rate in MCT-PAH rats. The in vivo and in vitro experiments showed that SB could attenuate cardiomyocyte hypertrophy by reversing the expressions of H19, let-7g-5p, insulin-like growth factor 1 receptor (IGF1 receptor), and pERK. H19 inhibition restored the level of let-7g-5p and prevented the overexpression of IGF1 receptor and pERK in hypertrophic cardiomyocytes. In addition, dual luciferase assay revealed that H19 demonstrated significant binding with let-7g-5p, acting as its endogenous RNA. Briefly, SB attenuated PAH-RVH by inhibiting the H19 overexpression, restoring the level of let-7g-5p, and hindering IGF1 receptor/ERK activation.
Collapse
Affiliation(s)
- Ming-Hui Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Xu Liu
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu-Liang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Xiao-Guang Tang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Liao-Fan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Wei-Fang Zhang
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang, China.
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Gu C, Yang Z, Su S, Ma K, Nan X, Li Z, Lu D. 4-Terpineol attenuates pulmonary vascular remodeling via suppressing PI3K/Akt signaling pathway in hypoxia-induced pulmonary hypertension rats. Toxicol Appl Pharmacol 2023; 473:116596. [PMID: 37328117 DOI: 10.1016/j.taap.2023.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) plays a pivotal role in pulmonary arterial remodeling (PAR) of hypoxia-induced pulmonary hypertension (HPH). 4-Terpineol is a constituent of Myristic fragrant volatile oil in Santan Sumtang. Our previous study found that Myristic fragrant volatile oil alleviated PAR in HPH rats. However, the effect and pharmacological mechanism of 4-terpineol in HPH rats remain unexplored. Male Sprague-Dawley rats were exposed to hypobaric hypoxia chamber (simulated altitudes of 4500 m) for 4 weeks to establish an HPH model in this study. During this period, rats were intragastrically administrated with 4-terpineol or sildenafil. After that, hemodynamic indexes and histopathological changes were assessed. Moreover, a hypoxia-induced cellular proliferative model was established by exposing PASMCs to 3% O2. PASMCs were pretreated with 4-terpineol or LY294002 to explore whether 4-terpineol targeted PI3K/Akt signaling pathway. The PI3K/Akt-related proteins expression was also accessed in lung tissues of HPH rats. We found that 4-terpineol attenuated mPAP and PAR in HPH rats. Then, cellular experiments showed 4-terpineol inhibited hypoxia-induced PASMCs proliferation via down-regulating PI3K/Akt expression. Furthermore, 4-terpineol decreased the p-Akt, p-p38, and p-GSK-3β protein expression, as well as reduced the PCNA, CDK4, Bcl-2 and Cyclin D1 protein levels, while increasing levels of cleaved caspase 3, Bax, and p27kip1in lung tissues of HPH rats. Our results suggested that 4-terpineol mitigated PAR in HPH rats by inhibiting the proliferation and inducing apoptosis of PASMCs through suppression of the PI3K/Akt-related signaling pathway.
Collapse
Affiliation(s)
- Cunlin Gu
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China
| | - Zhanting Yang
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai, Xining, Qinghai 810003, China
| | - Ke Ma
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China
| | - Xingmei Nan
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China.
| | - Zhanqiang Li
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China.
| | - Dianxiang Lu
- Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Qinghai, Xining 810001, China; Clinical Medical College & Affiliated Hospital of Chengdu University, Sichuan, Chengdu 610086, China.
| |
Collapse
|
4
|
Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, Armstrong L, Sytar O, Martorell M, Razis AFA, Modu B, Calina D, Habtemariam S, Sharifi-Rad J, Cho WC. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother 2023; 163:114866. [PMID: 37182516 DOI: 10.1016/j.biopha.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, PA 15213, USA
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| | | | - Farukh Sharopov
- V.I. Nikitin Chemistry Institute of the National Academy of Sciences of Tajikistan, Ayni 299/2, 734063 Dushanbe, Tajikistan
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Iyamho, PMB 04 Auchi, Edo State, Nigeria
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
| | - Lorene Armstrong
- State University of Ponta Grossa, Departament of Pharmaceutical Sciences, 84030900 Ponta Grossa, Paraná, Brazil; Federal University of Paraná, Department of Pharmacy, 80210170 Curitiba, Paraná, Brazil
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Slovak Agricultural University in Nitra, 94976 Nitra, Slovakia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile; Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Science, University of Maiduguri, 1069 Maiduguri, Borno State, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
6
|
Li Y, Cai H, Wei J, Zhu L, Yao Y, Xie M, Song L, Zhang C, Huang X, Wang L. Dihydroartemisinin Attenuates Hypoxic Pulmonary Hypertension via the Downregulation of miR-335 Targeting Vangl2. DNA Cell Biol 2022; 41:750-767. [PMID: 35862468 DOI: 10.1089/dna.2021.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dihydroartemisinin (DHA) is a traditional antimalarial drug. DHA plays a crucial role in preventing pulmonary hypertension (PH); however, its regulatory function on microRNAs (miRNAs) in PH remains unclear. This study aimed to investigate whether DHA exerts its protective functions by regulating miR-335 in PH. Hypoxia-induced PH models were induced both in vitro and in vivo. Mice were treated with various concentrations of DHA, and pulmonary arterial smooth muscle cells (PASMCs) were treated with DHA, miR-335 inhibitor, miR-335 mimic, or Van Gogh-like 2 (Vangl2) plasmid. The expression of miR-335 and Vangl2, pulmonary arterial remodeling index; right ventricular hypertrophy index; and proliferation and migration indexes were measured. DHA improved pulmonary vascular remodeling and alleviated PH in vivo. miRNA sequencing and real-time PCR results further show that the increase in hypoxia-induced miR-335 was avoided by DHA administration, and miR-335 increased the hypoxia-induced PASMC proliferation and migration. MiRNA databases and dual-luciferase reporter assay show that miR-335 directly targets Vangl2, and Vangl2 decreased the hypoxia-induced PASMC proliferation and migration. The miR-335 inhibitor failed to inhibit hypoxia-induced proliferation and migration upregulation in Vangl2 knockdown PASMCs, and the effect of DHA can be blocked by miR-335 upregulation. In hypoxic PH, MiR-335 is increased, whereas Vangl2 is decreased. MiR-335 can significantly promote the hypoxia-induced proliferation and migration of PASMCs by targeting the Vangl2 gene. DHA effectively reverses the hypoxia-induced upregulation of miR-335 expression, avoiding the miR-335-mediated downregulation of Vangl2 and thereby promoting the expression of Vangl2 to prevent PH.
Collapse
Affiliation(s)
- Yaozhe Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijian Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinqiu Wei
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Zhu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhu Yao
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengyao Xie
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lanlan Song
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Cai H, Fan S, Cai L, Zhu L, Zhao Z, Li Y, Yao Y, Huang X, Wang L. Dihydroartemisinin Attenuates Hypoxia-Induced Pulmonary Hypertension Through the ELAVL2/miR-503/PI3K/AKT Axis. J Cardiovasc Pharmacol 2022; 80:95-109. [PMID: 35512032 PMCID: PMC9249076 DOI: 10.1097/fjc.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022]
Abstract
ABSTRACT Dihydroartemisinin (DHA) is an active form of artemisinin extracted from the traditional Chinese medicine Artemisia annua , which is used to treat malaria. Previous studies have shown that DHA has a therapeutic effect on pulmonary hypertension (PH), but its specific mechanism has not been fully elucidated. In this study, a hypoxia-induced PH mouse model was established and DHA was administered as a therapeutic intervention. We measured hemodynamics and right ventricular hypertrophy and observed hematoxylin and eosin staining of lung tissue sections, proving the therapeutic effect of DHA on PH. Furthermore, cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assay kit were performed to examine cell proliferation of pulmonary artery smooth muscle cells cultured in hypoxia or in normoxia. Transwell migration chamber assay was performed to examine cell migration of the same cell model. Consistent with the therapeutic effect in vivo, DHA inhibited hypoxia-induced cell proliferation and migration. Through high-throughput sequencing of mouse lung tissue, we screened embryonic lethal abnormal vision-like 2 (ELAVL2) as a key RNA binding protein in PH. Mechanistically, DHA inhibited the proliferation and migration of pulmonary artery smooth muscle cells by promoting the expression of ELAVL2 and regulating the miR-503/PI3K/AKT pathway. The binding relationship between ELAVL2 and pre-miR-503 was verified by RNA binding protein immunoprecipitation assay. In conclusion, we first propose that DHA alleviates PH through the ELAVL2/miR-503/PI3K/AKT pathway, which may provide a basis for new therapeutic strategies of PH.
Collapse
Affiliation(s)
- Haijian Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Shiqian Fan
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
- Yiwu Hospital Affiliated to Wenzhou Medical University (Yiwu Municipal Central Hospital), Yiwu, Zhejiang, China
| | - Luqiong Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Lin Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Zhucheng Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Yaozhe Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Yizhu Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China; and
| |
Collapse
|
8
|
Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2782429. [PMID: 35757500 PMCID: PMC9232380 DOI: 10.1155/2022/2782429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/20/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models. Methods Isolated perfused/ventilated lung and isometric tension measurements in arteries were performed to test pulmonary vasoconstriction and relaxation. Monocrotaline (MCT) and hypoxia+Su5416 (SuHx) were administered to rats to induce severe PH. Evaluation methods of ARS treatment and its derivatives in animal models include echocardiography, hemodynamics measurement, and histological staining. In vitro, the effect of these drugs on proliferation, viability, and hypoxia-inducible factor 1α (HIF1α) was examined in human pulmonary arterial smooth muscle cells (hPASMCs). Results ARS treatment attenuated pulmonary vasoconstriction induced by high K+ solution or alveolar hypoxia, decreased pulmonary artery (PA) basal vascular tension, improved acetylcholine- (ACh-) induced endothelial-dependent relaxation, increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels, and decreased levels of NAD(P)H oxidase subunits (NOX2 and NOX4) expression, NAD(P)H oxidase activity, and reactive oxygen species (ROS) levels of pulmonary arteries (PAs) in MCT-PH rats. NOS inhibitor, L-NAME, abrogated the effects of ARS on PA constriction and relaxation. Furthermore, chronic application of both ARS and its derivative dihydroartemisinin (DHA) attenuated right ventricular systolic pressure (RVSP), Fulton index (right ventricular hypertrophy), and vascular remodeling of PAs in the two rat PH models. In addition, DHA inhibited proliferation and migration of hypoxia-induced PASMCs. Conclusions In conclusion, these results indicate that treatment with ARS or DHA can inhibit PA vasoconstriction, PASMC proliferation and migration, and vascular remodeling, as well as improve PA endothelium-dependent relaxation, and eventually attenuate the development and progression of PH. These effects might be achieved by decreasing NAD(P)H oxidase generated ROS production and increasing eNOS activation to release NO in PAs. ARS and its derivatives might have the potential to be novel drugs for the treatment of PH.
Collapse
|
9
|
Ye B, Peng X, Su D, Liu D, Huang Y, Huang Y, Pang Y. Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin Exp Hypertens 2022; 44:470-479. [PMID: 35507763 DOI: 10.1080/10641963.2022.2071919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) play an important role in the occurrence and development of pulmonary arterial hypertension (PAH). The purpose of this study was to investigate the effects of survivin inhibitor YM155 on the proliferation and apoptosis of PASMCs in rats with PAH induced by high pulmonary blood flow. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into control, model, and YM155 intervention groups. A rat model of PAH induced by high pulmonary blood flow was established, and it was confirmed by assessments of right-ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI). Immunohistochemical staining and western blot analysis were used to detect the expression of survivin, and the proliferation and apoptosis of PASMCs. Lastly, the effects of in vivo treatment of YM155 were tested. RESULTS The increased expression of survivin mRNA and protein were observed in the model group, accompanied by pulmonary arteriolar wall thickening, lumen stenosis, and perivascular inflammatory cell infiltration. Elevated expression of survivin and pulmonary vascular remodeling were significantly mitigated after YM155 treatment. Specifically, the YM155 intervention group had a significantly lower PASMC proliferation rate and a higher PASMC apoptotic rate. CONCLUSION YM155 suppressed PASMC proliferation and promoted PASMC apoptosis by inhibiting survivin expression and thereby reducing pulmonary vascular remodeling in high pulmonary blood flow-induced PAH in vivo.
Collapse
Affiliation(s)
- Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiaofei Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China.,Department of Pediatrics, Hengyang Central Hospital, Hengyang, GX, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| |
Collapse
|
10
|
Xiong Q, Li X, Xia L, Yao Z, Shi X, Dong Z. Dihydroartemisinin attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting oxidative stress. Mol Brain 2022; 15:36. [PMID: 35484595 PMCID: PMC9052669 DOI: 10.1186/s13041-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia is a major cause of neurological disability among infants. Dihydroartemisinin (DHA), derived from artemisinin, well known as an anti-malarial medicine, was proved to be able to inhibit oxidative stress and inflammation. However, whether those functions of DHA play roles in hypoxic-ischemic brain damage (HIBD), an animal model of HIE in patient which also been observed to have oxidative stress and inflammation, is unknown. In this study, we demonstrated that the DHA treatment on newborn rats significantly relieved the neuron loss and motor and cognitive impairment caused by HIBD. One of the underlying mechanisms is that DHA enhanced the anti-oxidant capacity of HIBD rats by up-regulating the total antioxidant capacity (T-AOC), gluathione reductase (GR) and catalase (CAT) while down regulating the pro-oxidative substances including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Thus, our study illustrated that DHA could alleviate the damage of brains and improve the cognitive and motor function of HIBD rats by inhibiting oxidative stress, provided an opportunity to interrogate potential therapeutics for affected HIE patients.
Collapse
Affiliation(s)
- Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengyu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
11
|
Peng L, Chen Y, Li Y, Feng P, Zheng Y, Dong Y, Yang Y, Wang R, Li A, Yan J, Shang F, Tang P, Chen D, Gao Y, Huang W. Chemerin Regulates the Proliferation and Migration of Pulmonary Arterial Smooth Muscle Cells via the ERK1/2 Signaling Pathway. Front Pharmacol 2022; 13:767705. [PMID: 35370637 PMCID: PMC8971604 DOI: 10.3389/fphar.2022.767705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disease with high mortality. Chemerin has been found to be associated with pulmonary hypertension (PH). However, the specific role of chemerin in mediating PH development remains unclear. This study aimed to elucidate the regulatory effects and the underlying mechanism of chemerin on PH and to investigate the expression levels of chemerin protein in plasma in PAH patients. In vivo, two animal models of PH were established in rats by monocrotaline (MCT) injection and hypoxia. We found that the expression levels of chemerin and its receptor, chemokine-like receptor 1 (CMKLR1), were significantly upregulated in the lungs of PH rats. Primary cultured pulmonary arterial smooth muscle cells [(PASMCs) (isolated from pulmonary arteries of normal healthy rats)] were exposed to hypoxia or treated with recombinant human chemerin, we found that CMKLR1 expression was upregulated in PASMCs in response to hypoxia or chemerin stimulation, whereas the exogenous chemerin significantly promoted the migration and proliferation of PASMCs. Notably, the regulatory effects of chemerin on PASMCs were blunted by PD98059 (a selective ERK1/2 inhibitor). Using enzyme linked immunosorbent assay (ELISA), we found that the protein level of chemerin was also markedly increased in plasma from idiopathic pulmonary arterial hypertension (IPAH) patients compared to that from healthy controls. Moreover, the diagnostic value of chemerin expression in IPAH patients was determined through receiver operating characteristic (ROC) curve analysis and the result revealed that area under ROC curve (AUC) for plasma chemerin was 0.949. Taken together, these results suggest that chemerin exacerbates PH progression by promoting the proliferation and migration of PASMCs via the ERK1/2 signaling pathway, and chemerin is associated with pulmonary hypertension.
Collapse
Affiliation(s)
- Linqian Peng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yunwei Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Panpan Feng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yongjie Dong
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yunjing Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ailing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Feifei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ping Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dewei Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves' Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol (Lausanne) 2022; 13:891922. [PMID: 35663306 PMCID: PMC9157422 DOI: 10.3389/fendo.2022.891922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common orbital disease that threatens visual function and appearance. Orbital fibroblasts (OFs) are considered key target and effector cells in GO. In addition, hyaluronan (HA) production, inflammation, and orbital fibrosis are intimately linked to the pathogenesis of GO. In this study, we explored the therapeutic effects of dihydroartemisinin (DHA), an antimalarial drug, on GO-derived, primary OFs. CCK8 and EdU assays were applied to evaluate the antiproliferative effect of DHA on OFs. Wound healing assays were conducted to assess OF migration capacity, while qRT-PCR, western blotting, ELISA, and immunofluorescence were used to determine the expression of fibrosis-related and pro-inflammatory markers in these cells. Moreover, RNA sequencing was conducted to identify differentially expressed genes (DEGs) in DHA-treated OFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed to explore potential mechanisms mediating the antifibrotic effect of DHA on GO-derived OFs. Results showed that DHA dose-dependently inhibited OF proliferation and downregulated, at the mRNA and protein levels, TGF-β1-induced expression of fibrosis markers, including alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Furthermore, DHA inhibited TGF-β1 induced phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3), which suggested that DHA exerted antifibrotic effects via suppression of the ERK and STAT3 signaling pathways. In addition, DHA suppressed the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, CXCL-1, MCP-1, and ICAM-1, and attenuated HA production induced by IL-1β in GO-derived OFs. In conclusion, our study provides first-time evidence that DHA may significantly alleviate pathogenic manifestations of GO by inhibiting proliferation, fibrosis- and inflammation-related gene expression, and HA production in OFs. These data suggest that DHA may be a promising candidate drug for treatment of GO.
Collapse
|
13
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
14
|
Liu X, Wang X, Pan Y, Zhao L, Sun S, Luo A, Bao C, Tang H, Han Y. Artemisinin Improves Acetylcholine-Induced Vasodilatation in Rats with Primary Hypertension. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4489-4502. [PMID: 34764635 PMCID: PMC8576437 DOI: 10.2147/dddt.s330721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022]
Abstract
Purpose Endothelial dysfunction and the subsequent decrease in endothelium-dependent vascular relaxation of small arteries are major features of hypertension. Artemisinin, a well-known antimalarial drug, has been shown to exert protecting roles against endothelial cell injury in cardiac and pulmonary vascular diseases. The current study aimed to investigate the effects of artemisinin on endothelium-dependent vascular relaxation and arterial blood pressure, as well as the potential signalling pathways in spontaneously hypertensive rats (SHRs). Methods In this study, acetylcholine (ACh)-induced dose-dependent relaxation assays were performed to evaluate vascular endothelial function after treatment with artemisinin. Artemisinin was administered to the rats by intravenous injection or to arteries by incubation for the acute exposure experiments, and it was administered to rats by intraperitoneal injection for 28 days for the chronic experiments. Results Both acute and chronic administration of artemisinin decreased the heart rate and improved ACh-induced endothelium-dependent relaxation but negligibly affected the arterial blood pressure in SHRs. Incubation with artemisinin decreased basal vascular tension, NAD(P)H oxidase activity and reactive oxygen species (ROS) levels, but it also increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels in the mesenteric artery, coronary artery, and pulmonary artery of SHRs. Artemisinin chronic administration to SHRs increased the protein expression of eNOS and decreased the protein expression of the NAD(P)H oxidase subunits NOX-2 and NOX-4 in the mesenteric artery. Conclusion These results indicate that treatment with artemisinin has beneficial effects on reducing the heart rate and basal vascular tension and improving endothelium-dependent vascular relaxation in hypertension, which might occur by increasing eNOS activation and NO release and inhibiting NAD(P)H oxidase derived ROS production.
Collapse
Affiliation(s)
- Xuanxuan Liu
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Physiology and Pathologic Physiology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, People's Republic of China
| | - Xingxing Wang
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Pan
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Sun
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Changlei Bao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ying Han
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Wang X, Song W, Zhang F, Huang R. Dihydroartemisinin Inhibits TGF-β-Induced Fibrosis in Human Tenon Fibroblasts via Inducing Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:973-981. [PMID: 33688170 PMCID: PMC7937381 DOI: 10.2147/dddt.s280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Background The formation of hypertrophic scars (HS) can result in the failure of glaucoma surgery, and fibrosis is known to be closely associated with the progression of HS. Dihydroartemisinin (DHA) has been reported to inhibit the progression of fibrosis; however, whether DHA can alleviate the formation of HS remains unclear. Methods In the present study, in order to examine the effects of DHA on the progression of HS, human Tenon's capsule fibroblasts (HTFs) were isolated from patients who underwent glaucoma surgery. In addition, Western blot analysis, microtubule associated protein 1 light chain 3 α staining and reverse transcription-quantitative PCR were performed to detect protein and mRNA expression levels in the HTFs, respectively. Cell proliferation was detected by Ki67 staining. Flow cytometry was used to examine apoptosis and reactive oxygen species (ROS) levels in the HTFs. Results The results revealed that TGF-β promoted the proliferation and fibrosis of HTFs; however, DHA significantly reversed the effects of TGF-β by increasing cell autophagy. In addition, DHA notably induced the apoptosis of TGF-β-stimulated HTFs by increasing the ROS levels, while these increases were partially reversed by 3-methyladenine. Furthermore, DHA notably increased the expression of microRNA (miR)-145-5p in HTFs in a dose-dependent manner. Conclusion The present study demonstrated that DHA inhibits the TGF-β-induced fibrosis of HTFs by inducing autophagy. These findings may aid in the development of novel agents for the prevention of the formation of HS following glaucoma surgery.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wuqi Song
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Renping Huang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|