1
|
Kato Y, Mukai Y, Rane A, Inotsume N, Toda T. The Inhibitory Effect of Telmisartan on the Metabolism of Arachidonic Acid by CYP2C9 and CYP2C8: An in Vitro Study. Biol Pharm Bull 2018; 40:1409-1415. [PMID: 28867723 DOI: 10.1248/bpb.b17-00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatorienoic acids (EETs) are generated from arachidonic acid (AA) by CYPs. EETs comprise four regioisomers (14,15-, 11,12-, 8,9-, and 5,6-EET). EETs show potent physiological effects, including vasodilation, anti-inflammation, myocardial preconditioning, and anti-platelet aggregation effects. We recently demonstrated that telmisartan, one of angiotensin II receptor blockers, inhibits AA metabolism by CYP enzymes, including CYP2C8, CYP2C9, and CYP2J2. We conducted studies of AA metabolism using recombinant CYP enzymes to estimate the inhibition constant and the type of inhibition by telmisartan of CYP2C9 and CYP2C8. The contribution ratio (CR) of each CYP enzyme was investigated using human liver microsomes. Dixon and Lineweaver-Burk plots indicated that telmisartan is a mixed inhibitor of both CYP2C9 and CYP2C8; telmisartan did not show a time-dependent inhibition toward these CYP enzymes. Based on the CRs, both CYP2C9 and CYP2C8 are the key enzymes in the metabolism of AA in the human liver. Uptake of telmisartan in the liver by organic anion transporting polypeptide (OATP) 1B3 and the non-linear metabolism in gastrointestinal tract augment the potential of the drug to inhibit the CYP enzymes in the liver.
Collapse
Affiliation(s)
- Yuka Kato
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Yuji Mukai
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Nobuo Inotsume
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Takaki Toda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
2
|
Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS. Metabolites 2018; 8:metabo8010024. [PMID: 29558381 PMCID: PMC5876013 DOI: 10.3390/metabo8010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.
Collapse
|
3
|
Bukhari IA, Almotrefi AA, Mohamed OY, Al-Masri AA, Sheikh SA. Protective effect of fenofibrate against ischemia-/reperfusion-induced cardiac arrhythmias in isolated rat hearts. Fundam Clin Pharmacol 2018; 32:141-146. [DOI: 10.1111/fcp.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ishfaq A. Bukhari
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abdulrahman A. Almotrefi
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Osama Y. Mohamed
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abeer A. Al-Masri
- Department of Physiology; Cardiovascular Research Group; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Saeed A. Sheikh
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
6
|
Dai H, Wang M, Patel PN, Kalogeris T, Liu Y, Durante W, Korthuis RJ. Preconditioning with the BK Ca channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: roles for ROS and heme oxygenase-1. Am J Physiol Heart Circ Physiol 2017; 313:H988-H999. [PMID: 28822969 DOI: 10.1152/ajpheart.00620.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Activation of large-conductance Ca2+-activated K+ (BKCa) channels evokes cell survival programs that mitigate intestinal ischemia and reperfusion (I/R) inflammation and injury 24 h later. The goal of the present study was to determine the roles of reactive oxygen species (ROS) and heme oxygenase (HO)-1 in delayed acquisition of tolerance to I/R induced by pretreatment with the BKCa channel opener NS-1619. Superior mesentery arteries were occluded for 45 min followed by reperfusion for 70 min in wild-type (WT) or HO-1-null (HO-1-/-) mice that were pretreated with NS-1619 or saline vehicle 24 h earlier. Intravital microscopy was used to quantify the numbers of rolling and adherent leukocytes. Mucosal permeability, tumor necrosis factor-α (TNF-α) levels, and HO-1 activity and expression in jejunum were also determined. I/R induced leukocyte rolling and adhesion, increased intestinal TNF-α levels, and enhanced mucosal permeability in WT mice, effects that were largely abolished by pretreatment with NS-1619. The anti-inflammatory and mucosal permeability-sparing effects of NS-1619 were prevented by coincident treatment with the HO-1 inhibitor tin protoporphyrin-IX or a cell-permeant SOD mimetic, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), in WT mice. NS-1619 also increased jejunal HO-1 activity in WT animals, an effect that was attenuated by treatment with the BKCa channel antagonist paxilline or MnTBAP. I/R also increased postischemic leukocyte rolling and adhesion and intestinal TNF-α levels in HO-1-/- mice to levels comparable to those noted in WT animals. However, NS-1619 was ineffective in preventing these effects in HO-1-deficient mice. In summary, our data indicate that NS-1619 induces the development of an anti-inflammatory phenotype and mitigates postischemic mucosal barrier disruption in the small intestine by a mechanism that may involve ROS-dependent HO-1 activity.NEW & NOTEWORTHY Antecedent treatment with the large-conductance Ca2+-activated K+ channel opener NS-1619 24 h before ischemia-reperfusion limits postischemic tissue injury by an oxidant-dependent mechanism. The present study shows that NS-1619-induced oxidant production prevents ischemia-reperfusion-induced inflammation and mucosal barrier disruption in the small intestine by provoking increases in heme oxygenase-1 activity.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Parag N Patel
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Theodore Kalogeris
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Yajun Liu
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - William Durante
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
7
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
8
|
Long A, Ma S, Li Q, Lin N, Zhan X, Lu S, Zhu Y, Jiang L, Tan L. Association between the maternal serum levels of 19 eicosanoids and pre-eclampsia. Int J Gynaecol Obstet 2016; 133:291-6. [PMID: 27039049 DOI: 10.1016/j.ijgo.2015.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/10/2015] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate whether serum levels of 19 eicosanoids are associated with pre-eclampsia. METHODS A case-control study was performed using data for pregnant women with pre-eclampsia, normotensive pregnant women, and nonpregnant women, for all of whom serum samples had been collected at a hospital in Shanghai, China, between December 2012 and December 2013. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure the serum levels of 19 eicosanoids. RESULTS Overall, 49 pregnant women with pre-eclampsia, 26 normotensive pregnant women, and 14 nonpregnant women were included. Women with pre-eclampsia had significantly higher serum levels of 11,12-epoxyeicosatrienoic acid (11,12-EET), the hydroxyeicosatetraenoic acids 5-HETE, 8-HETE, 12-HETE, and 15-HETE, and leukotriene B4 than did women with a normal pregnancy and nonpregnant women, both before and after the onset of pre-eclampsia (P<0.01 for all comparisons). Women with severe pre-eclampsia had significantly higher serum levels of 5-HETE, 15-HETE, and leukotriene B4 than did women with mild pre-eclampsia, women with a normal pregnancy, and nonpregnant women (P<0.01 for all comparisons). CONCLUSION The eicosanoids 11,12-EET, 5-HETE, 8-HETE, 12-HETE, 15-HETE, and leukotriene B4 might play important parts in the occurrence and development of pre-eclampsia.
Collapse
Affiliation(s)
- Anxiong Long
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China; Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Shungao Ma
- Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Qian Li
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Na Lin
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Xia Zhan
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Shuaijun Lu
- Clinical Laboratory Department, Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuli Zhu
- Clinical Laboratory Department, Jiujiang First People's Hospital, Jiujiang, China
| | - Liansheng Jiang
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Longyi Tan
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China.
| |
Collapse
|
9
|
Vanella L, Canestraro M, Lee CR, Cao J, Zeldin DC, Schwartzman ML, Abraham NG. Soluble epoxide hydrolase null mice exhibit female and male differences in regulation of vascular homeostasis. Prostaglandins Other Lipid Mediat 2015; 120:139-47. [PMID: 25908301 DOI: 10.1016/j.prostaglandins.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/09/2023]
Abstract
Increased CYP epoxygenase activity and consequently up regulation of epoxyeicosatrienoic acids (EETs) levels provides protection against metabolic syndrome and cardiovascular diseases. Conversion of arachidonic acid epoxides to diols by soluble epoxide hydrolase (sEH) diminishes the beneficial cardiovascular properties of these epoxyeicosanoids. We therefore examined the possible biochemical consequences of sEH deletion on vascular responses in male and female mice. Through the use of the sEH KO mouse, we provide evidence of differences in the compensatory response in the balance between nitric oxide (NO), carbon monoxide (CO), EETs and the vasoconstrictor 20-HETE in male and female KO mice. Serum levels of adiponectin, TNFα, IL-1b and MCP1 and protein expression in vascular tissue of p-AMPK, p-AKT and p-eNOS were measured. Deletion of sEH caused a significant (p<0.05) decrease in body weight, and an increase in adiponectin, pAMPK and pAKT levels in female KO mice compared to male KO mice. Gene deletion resulted in a higher production of renal EETs in female KO compared to male KO mice and, concomitantly, we observed an increase in renal 20-HETEs levels and superoxide anion production only in male KO mice. sEH deletion increased p-AKT and p-eNOS protein expression but decreased p-AMPK levels in female KO mice. Increased levels of p-eNOS at Thr-495 were observed only in KO male mice. While p-eNOS at 1177 were not significantly different between male and female. Nitric oxide production was unaltered in male KO mice. These results provide evidence of gender differences in the preservation of vascular homeostasis in response to sEH deletion which involves regulation of phosphorylation of eNOS at the 495 site.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA; Department of Drug Sciences, University of Catania, Catania, Italy
| | - Martina Canestraro
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Craig R Lee
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian Cao
- Chinese PLA General Hospital, Beijing 100853, China
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA; Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA.
| |
Collapse
|
10
|
Mukai Y, Toda T, Takeuchi S, Senda A, Yamashita M, Eliasson E, Rane A, Inotsume N. Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System. Biol Pharm Bull 2015; 38:1673-9. [DOI: 10.1248/bpb.b15-00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mukai
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Takaki Toda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Satoya Takeuchi
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Asuna Senda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Miki Yamashita
- Division of Clinical Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | - Erik Eliasson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Nobuo Inotsume
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
11
|
Dumais G, Iovu M, du Souich P. Inflammatory reactions and drug response: importance of cytochrome P450 and membrane transporters. Expert Rev Clin Pharmacol 2014; 1:627-47. [DOI: 10.1586/17512433.1.5.627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Palenski TL, Gurel Z, Sorenson CM, Hankenson KD, Sheibani N. Cyp1B1 expression promotes angiogenesis by suppressing NF-κB activity. Am J Physiol Cell Physiol 2013; 305:C1170-84. [PMID: 24088896 DOI: 10.1152/ajpcell.00139.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nuclear factor-κB (NF-κB) is a master regulator of genes that control a large number of cellular processes, including angiogenesis and inflammation. We recently demonstrated that cytochrome P-450 1B1 (Cyp1B1) deficiency in endothelial cells (EC) and pericytes (PC) results in increased oxidative stress, alterations in migration, attenuation of capillary morphogenesis, sustained activation of NF-κB, and increased expression of thrombospondin-2 (TSP2), an endogenous inhibitor of angiogenesis. On the basis of a growing body of evidence that phenethyl isothiocyanate (PEITC) and pyrrolidine dithiocarbamate (PDTC) function as antioxidants and suppressors of NF-κB activation, we investigated their potential ability to restore a normal phenotype in Cyp1B1-deficient (cyp1b1(-/-)) vascular cells. PEITC and PDTC inhibited NF-κB activity and expression in cyp1b1(-/-) EC and PC. We also observed restoration of migration and capillary morphogenesis of cyp1b1(-/-) EC and decreased cellular oxidative stress in cyp1b1(-/-) EC and PC without restoration to normal TSP2 levels. In addition, expression of a dominant-negative inhibitor κBα, a suppressor of NF-κB activation, decreased NF-κB activity without affecting TSP2 expression in these cells. In contrast, knockdown of TSP2 expression resulted in attenuation of NF-κB activity in cyp1b1(-/-) vascular cells. Furthermore, expression of TSP2 in wild-type (cyp1b1(+/+)) cells resulted in increased NF-κB activity. Together, our results demonstrate an important role for TSP2 in modulation of NF-κB activity and attenuation of angiogenesis. Thus Cyp1B1 expression in vascular cells plays an important role in the regulation of vascular homeostasis through modulation of the cellular reductive state, TSP2 expression, and NF-κB activation.
Collapse
Affiliation(s)
- Tammy L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | |
Collapse
|
13
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Lee AR, Pechenino AS, Dong H, Hammock BD, Knowlton AA. Aging, estrogen loss and epoxyeicosatrienoic acids (EETs). PLoS One 2013; 8:e70719. [PMID: 23967089 PMCID: PMC3742755 DOI: 10.1371/journal.pone.0070719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/26/2013] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system.
Collapse
Affiliation(s)
- Alison R. Lee
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
| | - Angela S. Pechenino
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
| | - Hua Dong
- Department of Entymology, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entymology, University of California Davis, Davis, California, United States of America
| | - Anne A. Knowlton
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- The Department of Veteran's Affairs, Northern California VA, Sacramento, California, United States of America
| |
Collapse
|
15
|
Wu B, Zhang M, Lv RX, Luo TX, Li YS, Wang LL. 11,12-Epoxyeicosatrienoic acid inhibits free fatty acid-induced apoptosis of pancreatic β-cells through targeting nuclear ATF4 and ATF6. Shijie Huaren Xiaohua Zazhi 2012; 20:1088-1093. [DOI: 10.11569/wcjd.v20.i13.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of 11,12-epoxyeicosatrienoic acid (EET) on free fatty acid-induced cell apoptosis and translocation of activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) in primarily cultured murine pancreatic β-cells.
METHODS: Primary pancreatic β-cells were isolated from murine pancreas islets and cultured. After treatment with palmitic acid (400 μmol/L), pancreatic β-cells were incubated with 11,12-EET (100 nmol/L) for 24 h. Viability of primary pancreatic β-cells was examined by WST-1 colorimetric assay. Changes in mitochondrial membrane potential were evaluated to observe depolarization of cellular mitochondria by flow cytometry. Western blot was used to determine the protein expression of cytoplasmic and nuclear ATF4 and ATF6 to observe their translocation.
RESULTS: After treatment with palmitic acid and 11,12-EET for 24 h, viability of primary pancreatic β-cells was significantly increased (62.1% ± 7.3% vs 53.0% ± 6.1%, P < 0.05), and mitochondrial depolarization (23.6% ± 3.4% vs 35.2% ± 4.7%, P < 0.05) and apoptosis rate (24.5% ± 4.2% vs 40.1% ± 5.6%, P < 0.05) were markedly decreased compared to cells treated with palmitic acid alone. Palmitic acid significantly increased cytoplasmic but decreased nuclear protein levels of ATF4 and ATF6 in pancreatic β-cells.
CONCLUSION: 11,12-EET significantly inhibits FFA-induced apoptosis of pancreatic β-cells by inhibiting the translocation of ATF4 and ATF6.
Collapse
|
16
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
17
|
Gross GJ, Hsu A, Gross ER, Falck JR, Nithipatikom K. Factors mediating remote preconditioning of trauma in the rat heart: central role of the cytochrome p450 epoxygenase pathway in mediating infarct size reduction. J Cardiovasc Pharmacol Ther 2012; 18:38-45. [PMID: 22407888 DOI: 10.1177/1074248412437586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study further identified factors involved in the cardioprotective phenomenon of remote preconditioning of trauma (RPCT) with special emphasis on the role of the epoxyeicosatrienoic acids (EETs) in mediating this phenomenon. Remote preconditioning of trauma was produced by an abdominal incision only through the skin. Subsequently, all rats were subjected to 30 minutes of left coronary artery occlusion followed by 2 hours of reperfusion and the infarct size was determined. Remote preconditioning of trauma produced a reduction in infarct size expressed as a percentage of the area at risk from 63.0% ± 1.1% to 44.7% ± 1.4%; P < .01 versus control. To test the 3 major triggers of classical preconditioning in mediating RPCT, blockers of the bradykinin B2 receptor (B2BK), (S)-4-[2-[Bis(cyclohexylamino)methyleneamino]-3-(2-naphthalenyl)-1-oxopropylamino]benzyl tributyl phosphonium (WIN 64338, 1 mg/kg, iv), or HOE 140 (50 μg/kg, iv), the nonselective opioid receptor blocker, naloxone (3 mg/kg, iv), or the adenosine A1 receptor blocker, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg/kg, iv) were administered 10 minutes prior to RPCT. Only the 2 B2BK selective antagonists blocked RPCT (60.2% ± 1.1%, WIN 64338; 62.3% ± 2.0%, HOE 140). To test EETs in RPCT, we administered the EET receptor antagonist 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5 mg/kg, iv) or the EET synthesis inhibitor, N-(Methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH, 3.0 mg/kg, iv) 10 minutes prior to RPCT. In both groups, the EET antagonists completely blocked RPCT (62.0% ± 0.8%, 14,15-EEZE; 61.8% ± 1.0%, MSPPOH). The EET antagonists also blocked the effect of B2BK activation. We also determined whether the sarcolemmal K(ATP) or the mitochondrial K(ATP) channel mediate RPCT by pretreating rats with 1-[5-[2-(5-Chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3 methylthiourea, sodium salt (HMR 1098) or 5-hydroxydecanoic acid (5-HD), respectively. Interestingly, 5-HD blocked RPCT (64.7% ± 1.3%), whereas, HMR 1098 did not (50.3% ± 1.3%). The 2 EET antagonists completely blocked capsaicin-induced cardioprotection. These results clearly suggest that EETs mediate RPCT-, bradykinin- and capsaicin-induced cardioprotection in rat hearts.
Collapse
Affiliation(s)
- Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, WI 53226, USA.
| | | | | | | | | |
Collapse
|
18
|
Chen G, Wang P, Zhao G, Xu G, Gruzdev A, Zeldin DC, Wang DW. Cytochrome P450 epoxygenase CYP2J2 attenuates nephropathy in streptozotocin-induced diabetic mice. Prostaglandins Other Lipid Mediat 2011; 96:63-71. [PMID: 21742052 DOI: 10.1016/j.prostaglandins.2011.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important and diverse roles in the cardiovascular system. The anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-hypertensive properties of EETs in the cardiovascular system suggest a beneficial role for EETs in diabetic nephropathy. This study investigated the effects of endothelial specific overexpression of CYP2J2 epoxygenase on diabetic nephropathy in streptozotocin-induced diabetic mice. Endothelial CYP2J2 overexpression attenuated renal damage as measured by urinary microalbumin and glomerulosclerosis. These effects were associated with inhibition of TGF-β/Smad signaling in the kidney. Indeed, overexpression of CYP2J2 prevented TGF-β1-induced renal tubular epithelial-mesenchymal transition in vitro. These findings highlight the beneficial roles of the CYP epoxygenase-EET system in the pathogenesis of diabetic nephropathy.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/urine
- Animals
- Arachidonic Acid/blood
- Arachidonic Acid/urine
- Cell Line
- Cytochrome P-450 CYP2J2
- Cytochrome P-450 Enzyme System/blood
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/urine
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/chemically induced
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/urine
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression/drug effects
- Kidney/drug effects
- Kidney/metabolism
- Kidney/physiopathology
- Kidney Function Tests
- Mice
- Mice, Transgenic
- Signal Transduction
- Smad Proteins/blood
- Smad Proteins/genetics
- Smad Proteins/urine
- Streptozocin/administration & dosage
- Streptozocin/adverse effects
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Guangzhi Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
|
21
|
Yang C, Kwan YW, Au ALS, Poon CCW, Zhang Q, Chan SW, Lee SMY, Leung GPH. 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP2 receptors in rat mesenteric artery. Prostaglandins Other Lipid Mediat 2010; 93:44-51. [DOI: 10.1016/j.prostaglandins.2010.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/19/2010] [Accepted: 06/14/2010] [Indexed: 12/19/2022]
|
22
|
Sonodynamic and photodynamic mechanisms of action of the novel hypocrellin sonosensitizer, SL017: mitochondrial cell death is attenuated by 11, 12-epoxyeicosatrienoic acid. Invest New Drugs 2010; 29:1328-36. [PMID: 20676746 DOI: 10.1007/s10637-010-9495-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/12/2010] [Indexed: 12/24/2022]
Abstract
Development of sonosensitizers for sonodynamic therapy (SDT) which selectively target abnormal cells can limit undesired side effects in chemotherapeutic applications. Hypocrellin-B (HB) derivatives are low molecular weight compounds which belong to the perylenequinone family of photosensitizing and sonosensitizing compounds. In this study, we investigate the cytotoxic mechanisms of a novel HB-derived photo- and sonosensitizer, SL017. Human fibroblast WI-38 cells were treated with SL017 (0 μM, 0.1 μM or 10 μM) and subjected to photodynamic therapy (PDT) or SDT. Studies demonstrate that maximal uptake of SL017 occurs within 30 min, with a mitochondrial subcellular localization. Activation of SL017 by either visible light or ultrasound resulted in significant increases in reactive oxygen species (ROS) production as measured by CM-H2-DCFDA (5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester). Co-administration of the antioxidant, ascorbic acid, attenuated ROS production. Low concentrations of SL017 (100 nM) induced a rapid (<90 s) loss of mitochondrial membrane potential (ΔΨm). Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid (AA) involved in maintaining homeostasis and protection against cell injury, were able to attenuate loss of ΔΨm, however ascorbic acid was not. SL017 treatment resulted in increased mitochondrial fragmentation which followed loss of ΔΨm. Our studies demonstrate that SL017 targets mitochondria, triggering collapse of mitochondrial membrane potential, generates ROS and subsequently results in mitochondrial fragmentation.
Collapse
|
23
|
Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, Hammock BD. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res 2010; 51:3481-90. [PMID: 20664072 DOI: 10.1194/jlr.m006007] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Beneficial physiological effects of long-chain n-3 polyunsaturated fatty acids are widely accepted but the mechanism(s) by which these fatty acids act remains unclear. Herein, we report the presence, distribution, and regulation of the levels of n-3 epoxy-fatty acids by soluble epoxide hydrolase (sEH) and a direct antinociceptive role of n-3 epoxy-fatty acids, specifically those originating from docosahexaenoic acid (DHA). The monoepoxides of the C18:1 to C22:6 fatty acids in both the n-6 and n-3 series were prepared and the individual regioisomers purified. The kinetic constants of the hydrolysis of the pure regioisomers by sEH were measured. Surprisingly, the best substrates are the mid-chain DHA epoxides. We also demonstrate that the DHA epoxides are present in considerable amounts in the rat central nervous system. Furthermore, using an animal model of pain associated with inflammation, we show that DHA epoxides, but neither the parent fatty acid nor the corresponding diols, selectively modulate nociceptive pathophysiology. Our findings support an important function of epoxy-fatty acids in the n-3 series in modulating nociceptive signaling. Consequently, the DHA and eicosapentaenoic acid epoxides may be responsible for some of the beneficial effects associated with dietary n-3 fatty acid intake.
Collapse
Affiliation(s)
- Christophe Morisseau
- Department of Entomology and Cancer Center, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Inhibition of soluble epoxide hydrolase by trans-4- [4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol 2010; 55:67-73. [PMID: 19834332 DOI: 10.1097/fjc.0b013e3181c37d69] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Arachidonic acid, a polyunsaturated fatty acid, can be metabolized to cardioprotective epoxyeicosatrienoic acids (EETs) by cytochrome P450 epoxygenases, which are subsequently hydrolyzed to less bioactive dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). To study the effects of pharmacological inhibitor of sEH (sEHi), C57BL6 mice hearts were perfused in Langendorff mode for 40 minutes of baseline and subjected to 30 minutes of global no-flow ischemia followed by 40 minutes of reperfusion. Hearts were perfused with the sEHi, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB; 0.05, 0.1, 0.5, and 1 microM). To study the mechanism(s), hearts were perfused with 0.1 microM t-AUCB in the presence or absence of putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 microM) or phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin (200 nM) or LY294002 (5 microM).Infarct size was determined at the end of 2-hour reperfusion by 2,3,5-triphenyltetrazolium chloride staining. Inhibition of sEH by t-AUCB significantly improved postischemic left ventricular developed pressure (LVDP) recovery and reduced the infarct size after ischemia and reperfusion, as compared with control hearts. Perfusion with 14,15-epoxyeicosa-5(Z)-enoic acid, wortmannin or LY294002 before ischemia abolished the cardioprotective phenotype; however, co-perfusion of both t-AUCB and 11,12-EET did not result in an additive effect on improved LVDP recovery. Together, our data suggest that pharmacological inhibition of sEH by t-AUCB is cardioprotective.
Collapse
|
25
|
Tsai HJ, Hwang SH, Morisseau C, Yang J, Jones PD, Kasagami T, Kim IH, Hammock BD. Pharmacokinetic screening of soluble epoxide hydrolase inhibitors in dogs. Eur J Pharm Sci 2010; 40:222-38. [PMID: 20359531 DOI: 10.1016/j.ejps.2010.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/03/2010] [Accepted: 03/23/2010] [Indexed: 02/02/2023]
Abstract
Epoxyeicosatrienoic acids that have anti-hypertensive and anti-inflammatory properties are mainly metabolized by soluble epoxide hydrolase (sEH, EC 3.3.2.3). Therefore, sEH has emerged as a therapeutic target for treating various cardiovascular diseases and inflammatory pain. N,N'-Disubstituted ureas are potent sEH inhibitors in vitro. However, in vivo usage of early sEH inhibitors has been limited by their low bioavailability and poor physiochemical properties. Therefore, a group of highly potent compounds with more drug-like physiochemical properties were evaluated by monitoring their plasma profiles in dogs treated orally with sEH inhibitors. Urea compounds with an adamantyl or a 4-trifluoromethoxyphenyl group on one side and a piperidyl or a cyclohexyl ether group on the other side of the urea function showed pharmacokinetic profiles with high plasma concentrations and long half lives. In particular, the inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) not only is very potent with good physiochemical properties, but also shows high oral bioavailability for doses ranging from 0.01 to 1mg/kg. This compound is also very potent against the sEH of several mammals, suggesting that t-AUCB will be an excellent tool to evaluate the biology of sEH in multiple animal models. Such compounds may also be a valuable lead for the development of veterinary therapeutics.
Collapse
Affiliation(s)
- Hsing-Ju Tsai
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Development of a High Throughput Cell-Based Assay for Soluble Epoxide Hydrolase Using BacMam Technology. Mol Biotechnol 2010; 45:207-17. [DOI: 10.1007/s12033-010-9271-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Pozzi A, Popescu V, Yang S, Mei S, Shi M, Puolitaival SM, Caprioli RM, Capdevila JH. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J Biol Chem 2010; 285:12840-50. [PMID: 20178979 DOI: 10.1074/jbc.m109.081554] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prevalence and mortality make cancer a health challenge in need of effective and better tolerated therapeutic approaches, with tumor angiogenesis identified as a promising target for drug development. The epoxygenase products, the epoxyeicosatrienoic acids, are pro-angiogenic, and down-regulation of their biosynthesis by peroxisomal proliferator-activated receptor alpha (PPARalpha) ligands reduces tumor angiogenesis and growth. Endothelial cells lacking a Cyp2c44 epoxygenase, a PPARalpha target, show reduced proliferative and tubulogenic activities that are reversed by the enzyme's metabolites. In a mouse xenograft model of tumorigenesis, disruption of the host Cyp2c44 gene causes marked reductions in tumor volume, mass, and vascularization. The relevance of these studies to human cancer is indicated by the demonstration that: (a) activation of human PPARalpha down-regulates endothelial cell CYP2C9 epoxygenase expression and blunts proliferation and tubulogenesis, (b) in a PPARalpha-humanized mouse model, activation of the receptor inhibits tumor angiogenesis and growth, and (c) the CYP2C9 epoxygenase is expressed in the vasculature of human tumors. The identification of anti-angiogenic/anti-tumorigenic properties of PPARalpha points to a role for the receptor and its epoxygenase regulatory target in the pathophysiology of cancer, and for its ligands as candidates for the development of a new generation of safer and better tolerated anti-cancer drugs.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen Y, Falck JR, Tuniki VR, Campbell WB. 20-125Iodo-14,15-epoxyeicosa-5(Z)-enoic acid: a high-affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. J Pharmacol Exp Ther 2009; 331:1137-45. [PMID: 19762546 DOI: 10.1124/jpet.109.157818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are endothelium-derived metabolites of arachidonic acid. They relax vascular smooth muscle by membrane hyperpolarization. These actions are inhibited by the EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE). We synthesized 20-(125)iodo-14,15-EE5ZE (20-(125)I-14,15-EE5ZE), a radiolabeled EET antagonist, and characterized its binding to cell membranes. 14,15-EET (10(-9)-10(-5)M) caused a concentration-related relaxation of the preconstricted bovine coronary artery and phosphorylation of p38 in U937 cells that were inhibited by 20-(125)I-14,15-EE5ZE. Specific 20-(125)I-14,15-EE5ZE binding to U937 cell membranes reached equilibrium within 5 min and remained unchanged for 30 min. The binding was saturable and reversible, and it exhibited K(D) and B(max) values of 1.11 +/- 0.13 nM and 1.13 +/- 0.04 pmol/mg protein, respectively. Guanosine 5'-O-(3-thio)triphosphate (10 muM) did not change the binding, indicating antagonist binding of the ligand. Various EETs and EET analogs (10(-10)-10(-5)M) competed for 20-(125)I-14,15-EE5ZE binding with an order of potency of 11,12-EET = 14,15-EET > 8,9-EET = 14,15-EE5ZE > 15-hydroxyeicosatetraenoic acid = 14,15-dihydroxyeicosatrienoic acid. 8,9-Dihydroxyeicosatrienoic acid and 11-hydroxyeicosatetraenoic acid did not compete for binding. The soluble and microsomal epoxide hydrolase inhibitors (1-cyclohexyl-3-dodecyl-urea, elaidamide, and 12-hydroxyl-elaidamide) and cytochrome P450 inhibitors (sulfaphenazole and proadifen) did not compete for the binding. However, two cytochrome P450 inhibitors, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) and miconazole competed for binding with K(i) of 1558 and 315 nM, respectively. Miconazole and MS-PPOH, but not proadifen, inhibited 14,15-EET-induced relaxations. These findings define an EET antagonist's binding site and support the presence of an EET receptor. The inhibition of binding by some cytochrome P450 inhibitors suggests an alternative mechanism of action for these drugs and could lead to new drug candidates that target the EET binding sites.
Collapse
Affiliation(s)
- Yuenmu Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
29
|
Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM. Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Mol Cell Cardiol 2009; 46:978-88. [PMID: 19336274 DOI: 10.1016/j.yjmcc.2009.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/30/2008] [Accepted: 01/15/2009] [Indexed: 01/25/2023]
Abstract
Epoxyeicosatrienoic acid(s) (EETs) have been shown to protect cardiovascular tissue against apoptosis dependent on activation of targets such as ATP-sensitive K+ (KATP) channels (sarcolemmal and mitochondrial), calcium-activated K+ channels, extracellular signal-regulated kinase or phosphoinositide 3-kinase (PI3K). We tested if EETs protect human atrial tissue ex vivo from hypoxia/reoxygenation (H/R) injury, and compared our results with myocardium from two rodent species, rats and mice. EETs reduced myocardial caspase 3 activity in all three species and protected against loss of mitochondrial membrane potential in primary cultures of neonatal rat ventricular myocytes submitted to H/R. In addition, EETs protected mouse pulmonary arteries ex vivo exposed to H/R. Myocardium and pulmonary arteries from genetically engineered mice having elevated plasma levels of EETs (Ephx2-/-) exhibited protection from H/R-induced injury over that of wild type controls, suggesting that endogenously produced EETs may have pro-survival effects. Electrophysiological studies in myocytes demonstrated that EETs can stimulate KATP currents even when PI3K is inhibited. Similarly, activation of PI3K/Akt occurred in the presence of the KATP channel blocker glibenclamide. Based upon loss of protection with EETs in the presence of either wortmannin (a PI3K inhibitor) or glibenclamide, simultaneous activation of at least 2 pathways, PI3K and KATP channels respectively, appears to be required for protection. In conclusion, we demonstrate that exogenous and endogenous EETs have powerful pro-survival effects in cardiovascular tissues including diseased human myocardium, mediated by activation of not only one but at least two pathways, PI3K and KATP channels.
Collapse
Affiliation(s)
- Sreedhar Bodiga
- Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The endothelium controls vascular tone not only by releasing NO and prostacyclin, but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the term 'endothelium-derived hyperpolarizing factor' (EDHF). However, this acronym includes different mechanisms. Arachidonic acid metabolites derived from the cyclo-oxygenases, lipoxygenases and cytochrome P450 pathways, H(2)O(2), CO, H(2)S and various peptides can be released by endothelial cells. These factors activate different families of K(+) channels and hyperpolarization of the vascular smooth muscle cells contribute to the mechanisms leading to their relaxation. Additionally, another pathway associated with the hyperpolarization of both endothelial and vascular smooth muscle cells contributes also to endothelium-dependent relaxations (EDHF-mediated responses). These responses involve an increase in the intracellular Ca(2+) concentration of the endothelial cells, followed by the opening of SK(Ca) and IK(Ca) channels (small and intermediate conductance Ca(2+)-activated K(+) channels respectively). These channels have a distinct subcellular distribution: SK(Ca) are widely distributed over the plasma membrane, whereas IK(Ca) are preferentially expressed in the endothelial projections toward the smooth muscle cells. Following SK(Ca) activation, smooth muscle hyperpolarization is preferentially evoked by electrical coupling through myoendothelial gap junctions, whereas, following IK(Ca) activation, K(+) efflux can activate smooth muscle Kir2.1 and/or Na(+)/K(+)-ATPase. EDHF-mediated responses are altered by aging and various pathologies. Therapeutic interventions can restore these responses, suggesting that the improvement in the EDHF pathway contributes to their beneficial effect. A better characterization of EDHF-mediated responses should allow the determination of whether or not new drugable targets can be identified for the treatment of cardiovascular diseases.
Collapse
|
31
|
Yousif MHM, Benter IF, Roman RJ. Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. ACTA ACUST UNITED AC 2009; 29:33-41. [PMID: 19302554 DOI: 10.1111/j.1474-8673.2009.00429.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1 This study examined the contribution of cytochrome P450 metabolites of arachidonic acid in mediating ischaemia/reperfusion (I/R)-induced cardiac dysfunction in normal and diabetic rats. 2 We first compared the metabolism of arachidonic acid in microsomes prepared from the hearts of control rats and rats treated with streptozotocin (55 mg kg(-1)) to induce diabetes. The production of dihydroxyeicosatrienoic acids and epoxyeicosatrienoic acids (EETs) were similar in microsomes prepared from the hearts of control and diabetic rats, but the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was two-fold higher in diabetic hearts than in control animals. 3 We then compared the change in left ventricular pressure (P(max)), left ventricular end-diastolic pressure, coronary flow and coronary vascular resistance in isolated perfused hearts obtained from control and diabetic animals after 40 min of global ischaemia (I) followed by 30 min of reperfusion (R). The decline in cardiac function was three- to five-fold greater in the hearts obtained from diabetic vs. control animals. 4 Pretreatment of the hearts with N-hydroxy-N'-(4-butyl-2-methyl-phenyl)-formamidine (HET0016, 1 microm), a selective inhibitor of the synthesis of 20-HETE, for 30 min before I/R resulted in significant improvement in the recovery of cardiac function in the hearts obtained from diabetic but not in control rats. Perfusion with an inhibitor of soluble epoxide hydrolase, 1-cyclohexyl-3-dodecyl urea (CDU), before I/R improved the recovery of cardiac function in hearts obtained from both control and diabetic animals. Perfusion with both HET0016 and CDU resulted in significantly better recovery of cardiac function of diabetic hearts following I/R than that seen using either drug alone. Pretreatment of the hearts with glibenclamide (1 microm), an inhibitor of ATP-sensitive potassium channels, attenuated the cardioprotective effects of both CDU and HET0016. 5 This is the first study to suggest that acute blockade of the formation of 20-HETE and/or reduced inactivation of EETs could be an important strategy to reduce cardiac dysfunction following I/R events in diabetes.
Collapse
Affiliation(s)
- M H M Yousif
- Department of Pharmacology & Toxicology, Kuwait University, Safat, Kuwait
| | | | | |
Collapse
|
32
|
Schildknecht S, Ullrich V. Peroxynitrite as regulator of vascular prostanoid synthesis. Arch Biochem Biophys 2009; 484:183-9. [DOI: 10.1016/j.abb.2008.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/20/2008] [Indexed: 01/17/2023]
|
33
|
Nettleton JA. Concerning PUFA in fish. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 2008; 108:1830-1832. [PMID: 18954569 DOI: 10.1016/j.jada.2008.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 05/27/2023]
|
34
|
Determination of epoxyeicosatrienoic acids in human red blood cells and plasma by GC/MS in the NICI mode. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 876:83-8. [PMID: 19004672 DOI: 10.1016/j.jchromb.2008.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 10/09/2008] [Accepted: 10/17/2008] [Indexed: 01/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid involved in the regulation of vascular tone. Despite the importance of EETs in a variety of physiological effects, few methods have been developed to quantify them in human blood. This led us to develop a method by GC/MS with negative ion chemical ionization. As EETs are primarily located in phospholipids, red blood cells (RBCs) and plasma phospholipids were hydrolyzed with phospholipase A(2) after a solid phase extraction. Then, EETs were derivatized as pentafluorobenzyl esters, and [(2)H(8)]-arachidonic acid was used as internal standard for quantification. EETs were found to be at concentrations of 106+/-37ng mL(-1) in plasma and 33.4+/-8.5 ng/10(9) RBCs (mean+/-S.D.) in 10 healthy volunteers. Their amount in RBCs was 3-fold that in plasma; both parameters proved to be well correlated.
Collapse
|
35
|
Yang C, Kwan YW, Seto SW, Leung GPH. Inhibitory effects of epoxyeicosatrienoic acids on volume-activated chloride channels in rat mesenteric arterial smooth muscle. Prostaglandins Other Lipid Mediat 2008; 87:62-7. [PMID: 18812234 DOI: 10.1016/j.prostaglandins.2008.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 08/26/2008] [Indexed: 02/04/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by cytochrome P450 epoxygenases in endothelial cells. It has previously been shown that EETs activate K(+) channels, which are important for the hyperpolarization and dilation of blood vessels. However, the effects of EETs on other ion channels have been less well studied. We investigated the effects of EETs on volume-activated Cl(-) channels (VACCs) in rat mesenteric arterial smooth muscle cells. Whole-cell patch clamp recording demonstrated that hypotonic solution and guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) induced a 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB)- and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive VACC current in the primary cultured rat mesenteric arterial smooth muscle cells. The VACC current was inhibited by EETs and the order of potency was 8,9-EET>5,6-EET>11,12-EET>14,15-EET. The inhibitory effects of EETs could be reversed by 14,15 epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an EET analog), Rp-cGMP and KT-5823 (protein kinase G inhibitors). Interestingly, the inhibitory effects of EETs on VACCs were not influenced by Rp-cAMP (a protein kinase A antagonist) but it could be abolished by NF-449 (a Gs protein inhibitor), indicating the involvement of cAMP but not protein kinase A. In conclusion, our results demonstrate that EETs inhibit VACCs in rat mesenteric arterial smooth muscle cells through a cGMP-dependent pathway, which is probably due to the cross-activation by cAMP. This mechanism may be involved in the regulation of cell volume and membrane potential.
Collapse
Affiliation(s)
- Cui Yang
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|