1
|
Sarhangi N, Fahimfar N, Rouhollah F, Sharifi F, Bidkhori M, Nikfar S, Ostovar A, Nabipour I, Patrinos GP, Hasanzad M. Allele frequency of genetic variations related to the UGT1A1 gene-drug pair in a group of Iranian population. J Diabetes Metab Disord 2024; 23:2279-2287. [PMID: 39610552 PMCID: PMC11599689 DOI: 10.1007/s40200-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Objectives The efficacy and safety of drug treatments vary widely due to genetic variations. Pharmacogenomics investigates the impact of genetic variations on patient drug response. This research investigates the frequency of UGT1A1 genetic variations in the Iranian population, comparing them with global data to provide insights into the pharmacogenomic approach in the Iranian population. Methods The study was conducted using the data of the Bushehr Elderly Health (BEH) program, a population-based cohort study of the elderly population aged ≥ 60 years. Genotyping of three UGT1A1 variant alleles (UGT1A1*6, UGT1A1*27, and UGT1A1*80) was performed on a group of 2730 elderly Iranian participants with the Infinium Global Screening Array. Results The genotyping analysis revealed significant differences compared to major global populations that were addressed in the gnomAD database. UGT1A1*80 was found at a high frequency (32.34%), and followed by UGT1A1*6 (0.76%) and UGT1A1*27 (0.018) at a low frequency in the Iranian group. Conclusions The UGT1A1*80 was the more prevalent allele between investigated alleles in the present study which can be considered as an important allele for pharmacogenomic testing.
Collapse
Affiliation(s)
- Negar Sarhangi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813 Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813 Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119 Iran
| | - Mohammad Bidkhori
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119 Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - George P. Patrinos
- School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Manna M, Brabant M, Greene R, Chamberlain MD, Kumar A, Alimohamed N, Brezden-Masley C. Canadian Expert Recommendations on Safety Overview and Toxicity Management Strategies for Sacituzumab Govitecan Based on Use in Metastatic Triple-Negative Breast Cancer. Curr Oncol 2024; 31:5694-5708. [PMID: 39330050 PMCID: PMC11431578 DOI: 10.3390/curroncol31090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Sacituzumab Govitecan (SG) is an antibody-drug conjugate (ADC) comprised of an anti-Trop-2 IgG1 molecule conjugated to SN-38, the active metabolite of irinotecan, via a pH-sensitive hydrolysable linker. As a result of recent Canadian funding for SG in advanced hormone receptor (HR)-positive breast cancer and triple-negative breast cancer (TNBC), experience with using SG and managing adverse events (AEs) has grown. This review presents a summary of evidence and adverse event recommendations derived from Canadian experience, with SG use in metastatic TNBC for extrapolation and guidance in all indicated settings. SG is dosed at 10 mg/kg on day 1 and day 8 of a 21-day cycle. Compared to treatment of physicians' choice (TPC) the phase III ASCENT and TROPiCS-02 studies demonstrated favorable survival data in unresectable locally advanced or metastatic TNBC and HR-positive HER2 negative metastatic breast cancer, respectively. The most common AEs were neutropenia, diarrhea, nausea, fatigue, alopecia, and anemia. This review outlines AE management recommendations for SG based on clinical trial protocols and Canadian guidelines, incorporating treatment delay, dose reductions, and the use of prophylactic and supportive medications.
Collapse
Affiliation(s)
- Mita Manna
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Michelle Brabant
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rowen Greene
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael Dean Chamberlain
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Aalok Kumar
- BC Cancer Surrey, University of British Columbia, Surrey, BC V3V 1Z2, Canada
| | - Nimira Alimohamed
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N2, Canada
| | | |
Collapse
|
3
|
González-Iglesias E, Ochoa D, Román M, Soria-Chacartegui P, Martín-Vilchez S, Navares-Gómez M, De Miguel A, Zubiaur P, Rodríguez-Lopez A, Abad-Santos F, Novalbos J. Genetic variation in UGT1A1 is not associated with altered liver biochemical parameters in healthy volunteers participating in bioequivalence trials. Front Pharmacol 2024; 15:1389968. [PMID: 38766628 PMCID: PMC11099905 DOI: 10.3389/fphar.2024.1389968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction: Bioequivalence clinical trials are conducted in healthy volunteers whose blood tests should be within normal limits; individuals with Gilbert syndrome (GS) are excluded from these studies on suspicion of any liver disease, even if the change is clinically insignificant. GS is a benign genetic disorder characterized by elevated bilirubin levels, the primary cause of which is the presence of polymorphisms in UGT1A1 gene. In this work, subjects with UGT1A1 intermediate (IM) or poor (PM) metabolizer genotype-informed phenotypes were investigated to determine whether they have a higher incidence of liver disease or other biochemical parameters. Methods: The study population comprised 773 healthy volunteers who underwent biochemical analysis at baseline and at the end of the study which were genotyped for UGT1A1*80 (rs887829), as an indicator of UGT1A1*80+*28 (rs887829 and rs3064744), and UGT1A1*6 (rs4148323). Results: Bilirubin levels were higher in subjects IMs and PMs compared to normal metabolizers (NMs). Decreased uric acid levels was observed in PMs compared to NMs. No associations were observed in liver enzyme levels according to UGT1A1 phenotype. Discussion: Considering that there is no hepatic toxicity in subjects with UGT1A1 IM or PM phenotype, who are more likely to develop GS, this study suggests that they could be included in bioequivalence clinical trials as their biochemical parameters are not affected outside normal ranges.
Collapse
Affiliation(s)
- Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alejandro De Miguel
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
4
|
Wang M, Chen T, Chen R, Bi Z, Peng J, Shao Q, Li J. Neonatal jaundice caused by compound mutations of SLC10A1 and a novel UGT1A1 gene. Clin Res Hepatol Gastroenterol 2024; 48:102340. [PMID: 38588793 DOI: 10.1016/j.clinre.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Meifen Wang
- Department of Infectious Diseases, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China
| | - Tao Chen
- Department of Stomatology, The Affiliated Hospital of Yunnan Normal University, Kunming, PR China
| | - Rui Chen
- Department of Infectious Diseases, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China
| | - Zhongrui Bi
- Department of Infectious Diseases, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China
| | - Junchao Peng
- Department of Infectious Diseases, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China
| | - Qi Shao
- Department of Infectious Diseases, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China
| | - Jiwei Li
- Department of Pathology, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, PR China.
| |
Collapse
|
5
|
Wang C, Li M, Liu Z, Guo Y, Liu H, Zhao P. Genetic evaluation in indeterminate acute liver failure: A post hoc analysis. Arab J Gastroenterol 2024; 25:125-128. [PMID: 38705812 DOI: 10.1016/j.ajg.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND STUDY AIMS There are limited data regarding indeterminate acute liver failure (ALF). The study aims to perform a post hoc analysis using genetic methods for the ALF cases with indeterminate etiology. PATIENTS AND METHODS Stored blood samples from these patients with indeterminate ALF were collected. Whole-exome sequencing (WES) was used to evaluate the pathogenesis of indeterminate ALF. RESULTS A total of 16 samples from 11 adult patients and 5 pediatric patients with indeterminate ALF were available. Among the adult patients, one female patient was identified with two heterozygous variants (c.2333G > T (p.Arg778Leu) and c.2310C > G (p.Leu770 = )) in the adenosine triphosphatase copper-transporting beta (ATP7B) gene, and two male patients were found to harbor heterozygous and homozygous variants (c.686C > A (p.Pro229Gln) plus homozygousvariantA(TA)6TAAinsTA (-), andc.1456 T > G (p.Tyr486Asp) plus c.211G > A (p.Gly71Arg)) in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene. For the pediatric patients, single heterozygous variant (c.2890C > T (p.Arg964Cys)) in the polymerase gamma (POLG) gene was found in 1 male child, and two heterozygous variants (c.1909A > G (p.Lys637Glu) and c.3646G > A (p.Val1216Ile)) in the tetratricopeptide repeat domain 37 (TTC37) gene were found in 1 female child. No variants clinically associated with known liver diseases were revealed in the remaining patients. CONCLUSION These results expand the knowledge of ALF with indeterminate etiology. WES is helpful to reveal possible candidate genes for indeterminate ALF, but incomplete consistency between the genotype and phenotype in some cases still challenge the accurate diagnosis.
Collapse
Affiliation(s)
- Chunya Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Meina Li
- Faculty of Military Health Services, Second Military Medical University, Shanghai 200433,China
| | - Zhenhua Liu
- Department of Pathology, Seventh Medical Center, Chinese PLA General Hospital, Beijing 100010, China
| | - Yupeng Guo
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Huijuan Liu
- Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing 100039, China
| | - Pan Zhao
- Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
6
|
Yao B, Xu Q, Zhang X, Han Y. Genetic variations underlying Gilbert syndrome and HBV infection outcomes: a cross-sectional study. Front Genet 2023; 14:1265268. [PMID: 38028601 PMCID: PMC10657892 DOI: 10.3389/fgene.2023.1265268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Constant cellular damage causes a poor prognosis of hepatitis B virus (HBV) infection. Accumulating evidence indicates the cytoprotective properties of bilirubin. Here, we investigated the association of UDP glucuronosyltransferase family 1 member A1 (UGT1A1), the genetic cause of Gilbert syndrome (GS), a common condition of mild unconjugated bilirubinemia, with HBV infection outcomes. Methods: Patients (n = 2,792) with unconjugated hyperbilirubinemia were screened for HBV infection and host UGT1A1 variations in Ruijin Hospital from January 2015 to May 2023, and those with confirmed HBV exposure were included. The promoter/exons/adjacent intronic regions of UGT1A1 were sequenced. HBV infection outcomes were compared between hosts with wild-type and variant-type UGT1A1. The effect magnitudes of UGT1A1 variations were evaluated using three classification approaches. Results: In total, 175 patients with confirmed HBV exposure were recruited for final analysis. Age, gender, level of HBV serological markers, and antiviral treatment were comparable between UGT1A1 wild-type and disease-causing variation groups. Five known disease-causing mutations (UGT1A1*28, UGT1A1*6, UGT1A1*27, UGT1A1*63, and UGT1A1*7) were detected. The incidence of cirrhosis or hepatocellular carcinoma (LC/HCC) was significantly lower in UGT1A1 variant hosts than in UGT1A1 wild-type hosts (13.14% vs. 78.95%, p < 0.0001). The rarer the UGT1A1 variation a patient possessed, the higher the age at which LC/HCC was diagnosed (R = 0.34, p < 0.05). In contrast, patients without cirrhosis achieving HBsAg clearance were identified only in the UGT1A1 variant group (12.32% vs. 0%). Conclusion: The findings of this study provide insights into the association between preexisting genetically mild bilirubin elevation and viral infection outcome. We showed that the accumulation of UGT1A1 variants or the rarity of the variation is associated with a better prognosis, and the effect magnitude correlates with UGT1A1 deficiency. This study demonstrates the therapeutic potential of host UGT1A1 variations underlying GS against HBV infection outcomes.
Collapse
Affiliation(s)
- Bilian Yao
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Xu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Cramer EY, Bartlett J, Chan ER, Gaedigk A, Ratsimbasoa AC, Mehlotra RK, Williams SM, Zimmerman PA. Pharmacogenomic variation in the Malagasy population: implications for the antimalarial drug primaquine metabolism. Pharmacogenomics 2023; 24:583-597. [PMID: 37551613 PMCID: PMC10621762 DOI: 10.2217/pgs-2023-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Aim: Antimalarial primaquine (PQ) eliminates liver hypnozoites of Plasmodium vivax. CYP2D6 gene variation contributes to PQ therapeutic failure. Additional gene variation may contribute to PQ efficacy. Information on pharmacogenomic variation in Madagascar, with vivax malaria and a unique population admixture, is scanty. Methods: The authors performed genome-wide genotyping of 55 Malagasy samples and analyzed data with a focus on a set of 28 pharmacogenes most relevant to PQ. Results: Mainly, the study identified 110 coding or splicing variants, including those that, based on previous studies in other populations, may be implicated in PQ response and copy number variation, specifically in chromosomal regions that contain pharmacogenes. Conclusion: With this pilot information, larger genome-wide association analyses with PQ metabolism and response are substantially more feasible.
Collapse
Affiliation(s)
- Estee Y Cramer
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jacquelaine Bartlett
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Research Institute (CMRI), Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar
- Centre National d'Application de Recherche Pharmaceutique (CNARP), Antananarivo, Madagascar
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott M Williams
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
9
|
Kilpatrick MC, Givens SK, Watts Alexander CS. What Is Precision Medicine? PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
Tsai HL, Chen PJ, Chen YC, Li CC, Chang TK, Su WC, Yin TC, Huang CW, Wang JY. Irinotecan dose reduction in metastatic colorectal cancer patients with homozygous UGT1A1*28 polymorphism: a single-center case series. J Int Med Res 2022; 50:3000605221110697. [PMID: 35822291 PMCID: PMC9284221 DOI: 10.1177/03000605221110697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The UGT1A1*28 polymorphism reduces UGT1A1 enzymatic activity, which may increase the risk of severe toxicity in patients who receive standard-dose irinotecan, such as severe neutropenia and diarrhea. This real-world study assessed the optimal irinotecan dose in terms of efficacy and toxicity in metastatic colorectal cancer (mCRC) patients homozygous for the UGT1A1*28 polymorphism and receiving FOLFIRI plus bevacizumab or cetuximab as first-line therapy. METHODS We analyzed toxicity and treatment outcomes in seven mCRC patients who were homozygous for UGT1A1*28 and received FOLFIRI plus bevacizumab or cetuximab, with an initial irinotecan dose of 120 mg/m2. RESULTS Six of the seven patients tolerated 120 mg/m2 irinotecan without requiring dose reductions in subsequent cycles. The overall response and disease control rates were 43.0% (3/7) and 71.4% (5/7), respectively. The median progression-free survival and overall survival were 11.0 and 33.0 months, respectively. Only one severe adverse event, grade III neutropenia (2.5%), was observed. CONCLUSIONS mCRC patients homozygous for the UGT1A1*28 allele can tolerate irinotecan at an initial dose of 120 mg/m2 with favorable oncological outcomes and toxicity profiles. Further prospective studies are warranted to optimize irinotecan-based chemotherapy in these patients.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Tzu-Chieh Yin
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Department of Surgery, Kaohsiung Municipal Tatung Hospital, Kaohsiung Medical University, Kaohsiung
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung.,Ministry of Health and Welfare Pingtung Hospital, Pingtung
| |
Collapse
|
11
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
12
|
Lin N, Damask A, Boyapati A, Hamilton JD, Hamon S, Ternes N, Nivens MC, Penn J, Lopez A, Reid JG, Overton J, Shuldiner AR, Abecasis G, Baras A, Paulding C. UGT1A1 genetic variants are associated with increases in bilirubin levels in rheumatoid arthritis patients treated with sarilumab. THE PHARMACOGENOMICS JOURNAL 2022; 22:160-165. [PMID: 35149777 PMCID: PMC9151390 DOI: 10.1038/s41397-022-00269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Sarilumab is a human monoclonal antibody against interleukin (IL)-6Rα that has been approved for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA) and an inadequate response or intolerance to one or more disease-modifying antirheumatic drugs (DMARDs). Mild liver function test abnormalities have been observed in patients treated with sarilumab. We describe a genome-wide association study of bilirubin elevations in RA patients treated with sarilumab. Array genotyping and exome sequencing were performed on DNA samples from 1075 patients. Variants in the UGT1A1 gene were strongly associated with maximum bilirubin elevations in sarilumab-treated patients (rs4148325; p = 2.88 × 10−41) but were not associated with aminotransferase elevations. No other independent loci showed evidence of association with bilirubin elevations after sarilumab treatment. These findings suggest that most bilirubin increases during sarilumab treatment are related to genetic variation in UGT1A1 rather than underlying liver injury.
Collapse
|
13
|
Han K, Wannamaker P, Lu H, Zhu B, Wang M, Paff M, Spreen WR, Ford SL. Safety, Tolerability, Pharmacokinetics, and Acceptability of Oral and Long-Acting Cabotegravir in HIV-Negative Chinese Men. Antimicrob Agents Chemother 2022; 66:e0205721. [PMID: 35129374 PMCID: PMC8923182 DOI: 10.1128/aac.02057-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Long-acting (LA) cabotegravir demonstrated superior efficacy versus daily oral standard-of-care for HIV-1 preexposure prophylaxis. This phase 1 study assessed safety, tolerability, pharmacokinetics, and acceptability of cabotegravir in 47 HIV-negative adult Chinese men at low risk of acquiring HIV-1. Participants received once-daily oral cabotegravir 30 mg for 4 weeks and, after a 1-week washout, five 600-mg (3-mL) intramuscular cabotegravir LA injections at weeks 5, 9, 17, 25, and 33. Pharmacokinetic plasma samples were intensively collected on day 27 (n = 17) and sparsely collected before each injection until 56 weeks after final injection (n = 47). Cabotegravir LA injections were acceptable and well tolerated. Common adverse events included injection site pain, injection site swelling, and upper respiratory tract infection. No drug-related serious adverse events or deaths occurred. Mean cabotegravir concentration remained above 1.33 μg/mL (8× in vitro protein-adjusted concentration for 90% of the maximum inhibition of viral growth [PA-IC90]) before each injection and above 0.166 μg/mL (PA-IC90) for >32 weeks after final injection. Trough concentrations remained above PA-IC90 in nearly all participants and showed minimal accumulation. Noncompartmental pharmacokinetic analysis was performed. Geometric mean of terminal half-life was 1.89 and 47 days after oral and LA dosing, respectively. Cabotegravir concentrations were estimated to remain quantifiable for 48.7 weeks after final injection. Steady-state area under the concentration-time curve (AUC), peak concentration, trough concentration, terminal half-life, time to peak concentration, and apparent clearance after cabotegravir oral and LA dosing were similar to those estimated in non-Asian men in historical studies. These results support further clinical development of cabotegravir LA in China. (This study has been registered at ClinicalTrials.gov under registration no. NCT03422172.).
Collapse
Affiliation(s)
- Kelong Han
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Paul Wannamaker
- ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Biao Zhu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meixia Wang
- State Drug Clinical Trial Institution, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Melanie Paff
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Susan L. Ford
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Pereira EEB, Leitão LPC, Andrade RB, Modesto AAC, Fernandes BM, Burbano RMR, Assumpção PP, Fernandes MR, Guerreiro JF, dos Santos SEB, dos Santos NPC. UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon. Genes (Basel) 2022; 13:493. [PMID: 35328047 PMCID: PMC8954358 DOI: 10.3390/genes13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most frequent neoplasms in the world. Because it is a complex disease, its formation occurs in several stages, stemming from interactions between environmental risk factors, such as smoking, and individual genetic susceptibility. Our objective was to investigate associations between a UGT1A1 gene polymorphism (rs8175347) and lung cancer risk in an Amazonian population. This is a pilot study, case-controlled study, which included 276 individuals with cancer and without cancer. The samples were analyzed for polymorphisms of the UGT1A1 gene (rs8175347) and genotyped in PCR, followed by fragment analysis in which we applied a previously developed set of informative ancestral markers. We used logistic regression to identify differences in allelic and genotypic frequencies between individuals. Individuals with the TA7 allele have an increased chance of developing lung adenocarcinoma (p = 0.035; OR: 2.57), as well as those with related genotypes of reduced or low enzymatic activity: TA6/7, TA5/7, and TA7/7 (p = 0.048; OR: 8.41). Individuals with homozygous TA7/7 have an increased chance of developing squamous cell carcinoma of the lung (p = 0.015; OR: 4.08). Polymorphism in the UGT1A1 gene (rs8175347) may contribute as a risk factor for adenocarcinoma and lung squamous cell carcinoma in the population of the Amazon region.
Collapse
Affiliation(s)
- Esdras E. B. Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Luciana P. C. Leitão
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Roberta B. Andrade
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Antônio A. C. Modesto
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Bruno M. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Rommel M. R. Burbano
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Paulo P. Assumpção
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Marianne R. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - João F. Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Sidney E. B. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Ney P. C. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| |
Collapse
|
15
|
Lopes JL, Harris K, Karow MB, Peterson SE, Kluge ML, Kotzer KE, Lopes GS, Larson NB, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Black JL, Moyer AM. Targeted Genotyping in Clinical Pharmacogenomics: What Is Missing? J Mol Diagn 2022; 24:253-261. [PMID: 35041929 PMCID: PMC8961466 DOI: 10.1016/j.jmoldx.2021.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacogenomic testing typically uses targeted genotyping, which only detects variants included in the test design and may vary among laboratories. To evaluate the potential patient impact of genotyping compared with sequencing, which can detect common and rare variants, an in silico targeted genotyping panel was developed based on the variants most commonly included in clinical tests and applied to a cohort of 10,030 participants who underwent sequencing for CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, DPYD, SLCO1B1, TPMT, UGT1A1, and VKORC1. The results of in silico targeted genotyping were compared with the clinically reported sequencing results. Of the 10,030 participants, 2780 (28%) had at least one potentially clinically relevant variant/allele identified by sequencing that would not have been detected in a standard targeted genotyping panel. The genes with the largest number of participants with variants only detected by sequencing were SLCO1B1, DPYD, and CYP2D6, which affected 13%, 6.3%, and 3.5% of participants, respectively. DPYD (112 variants) and CYP2D6 (103 variants) had the largest number of unique variants detected only by sequencing. Although targeted genotyping detects most clinically significant pharmacogenomic variants, sequencing-based approaches are necessary to detect rare variants that collectively affect many patients. However, efforts to establish pharmacogenomic variant classification systems and nomenclature to accommodate rare variants will be required to adopt sequencing-based pharmacogenomics.
Collapse
Affiliation(s)
- Jaime L. Lopes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kimberley Harris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mary Beth Karow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandra E. Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. Kluge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Katrina E. Kotzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Guilherme S. Lopes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - John L. Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ann M. Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota,Address correspondence to Ann M. Moyer, M.D., Ph.D., Mayo Clinic, 200 First St SW, Rochester, MN 55905.
| |
Collapse
|
16
|
Vítek L, Tiribelli C. Bilirubin: The yellow hormone? J Hepatol 2021; 75:1485-1490. [PMID: 34153399 DOI: 10.1016/j.jhep.2021.06.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Bilirubin is a tetrapyrrolic compound originating from heme catabolism. Although originally considered only a potentially dangerous waste product, it has become increasingly evident that this molecule represents an important modulator of various biological functions in the human body. Bilirubin appears to have versatile functions, from cell signaling (behaving almost like a "real" hormonal substance), modulation of metabolism, to immune regulation, affecting biological activities with apparent clinical and even therapeutic consequences. These activities may be the reason for the lower incidence of diseases of civilisation (cardiovascular diseases, arterial hypertension, diabetes, obesity, metabolic syndrome, certain cancers, autoimmune, and neurodegenerative diseases) observed in individuals with a chronic mild unconjugated hyperbilirubinemia, a typical sign of Gilbert's syndrome. While higher serum concentrations of unconjugated bilirubin may serve as an important protective factor against these diseases, low levels of bilirubin are associated with the opposite effect.
Collapse
Affiliation(s)
- Libor Vítek
- Faculty General Hospital and 1(st) Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Mathew JM, Mpangase PT, Sengupta D, Kwenda S, Mavri-Damelin D, Ramsay M. UGT1A1 regulatory variant with potential effect on efficacy of HIV and cancer drugs commonly prescribed in South Africa. Pharmacogenomics 2021; 22:963-972. [PMID: 34528449 DOI: 10.2217/pgs-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Despite the high disease burden of human immunodeficiency virus (HIV) infection and colorectal cancer (CRC) in South Africa (SA), treatment-relevant pharmacogenetic variants are understudied. Materials & methods: Using publicly available genotype and gene expression data, a bioinformatic pipeline was developed to identify liver expression quantitative trait loci (eQTLs). Results: A novel cis-eQTL, rs28967009, was identified for UGT1A1, which is predicted to upregulate UGT1A1 expression thereby potentially affecting the metabolism of dolutegravir and irinotecan, which are extensively prescribed in SA for HIV and colorectal cancer treatment, respectively. Conclusion: As increased UGT1A1 expression could affect the clinical outcome of dolutegravir and irinotecan treatment by increasing drug clearance, patients with the rs28967009A variant may require increased drug doses to reach therapeutic levels or should be prescribed alternative drugs.
Collapse
Affiliation(s)
- Jenny Mary Mathew
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Phelelani Thokozani Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, 2192, South Africa
| | - Demetra Mavri-Damelin
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
18
|
Riera P, Páez D. Elucidating the role of pharmacogenetics in irinotecan efficacy and adverse events in metastatic colorectal cancer patients. Expert Opin Drug Metab Toxicol 2021; 17:1157-1163. [PMID: 34486919 DOI: 10.1080/17425255.2021.1974397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Irinotecan is a cytotoxic agent that is widely used in the treatment of several types of solid tumors. However, although it is generally well tolerated, approximately 20% to 35% of patients develop severe toxicity, particularly delayed-type diarrhea and neutropenia. As the incidence of such toxicities is often associated with the UGT1A1 *28/*28, *6/*28 and *6/*6 genotypes, individualized dosing could reduce these adverse events. Furthermore, prospective trials have shown that patients harboring the UGT1A1 *1/*1 and *1/*28 genotypes can tolerate higher doses of irinotecan, which may in turn impact on a better outcome. Upfront UGT1A1 genotyping could therefore be a usefulness strategy in order to individualize irinotecan dosing, but consensus on the recommended dose based on the UGT1A1 genotype is still lacking. AREAS COVERED This review summarizes the results of the main pharmacogenetic studies focused on irinotecan. We provide an overview of current evidence and recommendations for individualized dosing of irinotecan in metastatic colorectal cancer patients. EXPERT OPINION Implementation of UGT1A1*28 and UGT1A1*6 genotyping in clinical practice is a first step toward personalizing irinotecan therapy. This approach is likely to improve patient care and reduce healthcare costs. Future large and prospective studies will help to clarify the clinical value of other genetic markers in irinotecan treatment personalization.
Collapse
Affiliation(s)
- Pau Riera
- Pharmacy Department, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,U705, Isciii Center for Biomedical Research on Rare Diseases (Ciberer), Barcelona, Spain
| | - David Páez
- U705, Isciii Center for Biomedical Research on Rare Diseases (Ciberer), Barcelona, Spain.,Medical Oncology Department, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
19
|
Tafazoli A, Guchelaar HJ, Miltyk W, Kretowski AJ, Swen JJ. Applying Next-Generation Sequencing Platforms for Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2021; 12:693453. [PMID: 34512329 PMCID: PMC8424415 DOI: 10.3389/fphar.2021.693453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pharmacogenomics (PGx) studies the use of genetic data to optimize drug therapy. Numerous clinical centers have commenced implementing pharmacogenetic tests in clinical routines. Next-generation sequencing (NGS) technologies are emerging as a more comprehensive and time- and cost-effective approach in PGx. This review presents the main considerations for applying NGS in guiding drug treatment in clinical practice. It discusses both the advantages and the challenges of implementing NGS-based tests in PGx. Moreover, the limitations of each NGS platform are revealed, and the solutions for setting up and management of these technologies in clinical practice are addressed.
Collapse
Affiliation(s)
- Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Network of Personalized Therapeutics, Leiden, Netherlands
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam J. Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Jesse J. Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Network of Personalized Therapeutics, Leiden, Netherlands
| |
Collapse
|
20
|
Patel P, Xue Z, King KS, Parham L, Ford S, Lou Y, Bakshi KK, Sutton K, Margolis D, Hughes AR, Spreen WR. Evaluation of the effect of UGT1A1 polymorphisms on the pharmacokinetics of oral and long-acting injectable cabotegravir. J Antimicrob Chemother 2021; 75:2240-2248. [PMID: 32361755 PMCID: PMC7366207 DOI: 10.1093/jac/dkaa147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Cabotegravir is an HIV integrase inhibitor in clinical development with both oral and long-acting (LA) injectable formulations. Cabotegravir is primarily metabolized by uridine 5′-diphospho-glucuronosyltransferase (UGT) 1A1, a known polymorphic enzyme with functional variants that can affect drug metabolism and exposure. Objectives To investigate the pharmacogenetic effects of the reduced-function alleles UGT1A1*6, UGT1A1*28 and/or UGT1A1*37 on steady-state pharmacokinetics (PK) and safety of oral cabotegravir (30 mg/day) and intramuscular cabotegravir LA (400 mg every 4 weeks or 600 mg every 8 weeks). Methods Plasma cabotegravir PK was assessed in 346 UGT-genotyped participants with and without UGT1A1 functional variants across six studies (four Phase I and two Phase II) of oral cabotegravir, including 215 HIV-infected participants who received oral cabotegravir followed by cabotegravir LA. Changes from baseline in total bilirubin and ALT were assessed in one study (LATTE; NCT01641809). Results Statistically significant (P < 0.05) associations were observed between UGT1A1 genotype and plasma cabotegravir PK parameters, with 28%–50% increases following oral cabotegravir [plasma cabotegravir concentration at the end of the dosing interval (Ctau), 1.50-fold; AUCtau, 1.41-fold; and Cmax, 1.28-fold] and 16%–24% increases following cabotegravir LA administration (48 week Ctau, 1.24-fold; AUCtau, 1.16-fold; and Cmax, 1.18-fold) among those with low-versus-normal genetically predicted UGT1A1 activity. A statistically significant (P < 10−5) association between predicted UGT1A1 activity and maximum change in total bilirubin was also observed (2.45-fold asymptomatic increase for low versus normal) without a corresponding change in ALT. Conclusions This modest increase in oral and parenteral cabotegravir exposure associated with a reduced function of UGT1A1 is not considered clinically relevant based on accumulated safety data; no dose adjustment is required.
Collapse
Affiliation(s)
- Parul Patel
- ViiV Healthcare, Research Triangle Park, NC, USA
| | | | | | | | - Susan Ford
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Yu Lou
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | | | | | |
Collapse
|
21
|
Minichmayr IK, Karlsson MO, Jönsson S. Pharmacometrics-Based Considerations for the Design of a Pharmacogenomic Clinical Trial Assessing Irinotecan Safety. Pharm Res 2021; 38:593-605. [PMID: 33733372 PMCID: PMC8057977 DOI: 10.1007/s11095-021-03024-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Pharmacometric models provide useful tools to aid the rational design of clinical trials. This study evaluates study design-, drug-, and patient-related features as well as analysis methods for their influence on the power to demonstrate a benefit of pharmacogenomics (PGx)-based dosing regarding myelotoxicity. METHODS Two pharmacokinetic and one myelosuppression model were assembled to predict concentrations of irinotecan and its metabolite SN-38 given different UGT1A1 genotypes (poor metabolizers: CLSN-38: -36%) and neutropenia following conventional versus PGx-based dosing (350 versus 245 mg/m2 (-30%)). Study power was assessed given diverse scenarios (n = 50-400 patients/arm, parallel/crossover, varying magnitude of CLSN-38, exposure-response relationship, inter-individual variability) and using model-based data analysis versus conventional statistical testing. RESULTS The magnitude of CLSN-38 reduction in poor metabolizers and the myelosuppressive potency of SN-38 markedly influenced the power to show a difference in grade 4 neutropenia (<0.5·109 cells/L) after PGx-based versus standard dosing. To achieve >80% power with traditional statistical analysis (χ2/McNemar's test, α = 0.05), 220/100 patients per treatment arm/sequence (parallel/crossover study) were required. The model-based analysis resulted in considerably smaller total sample sizes (n = 100/15 given parallel/crossover design) to obtain the same statistical power. CONCLUSIONS The presented findings may help to avoid unfeasible trials and to rationalize the design of pharmacogenetic studies.
Collapse
Affiliation(s)
- Iris K Minichmayr
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Mats O Karlsson
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Siv Jönsson
- Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
22
|
Pattanaik S, Jain A, Ahluwalia J. Evolving Role of Pharmacogenetic Biomarkers to Predict Drug-Induced Hematological Disorders. Ther Drug Monit 2021; 43:201-220. [PMID: 33235023 DOI: 10.1097/ftd.0000000000000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Drug-induced hematological disorders constitute up to 30% of all blood dyscrasias seen in the clinic. Hematologic toxicity from drugs may range from life-threatening marrow aplasia, agranulocytosis, hemolysis, thrombosis to mild leukopenia, and thrombocytopenia. Pathophysiologic mechanisms underlying these disorders vary from an extension of the pharmacological effect of the drug to idiosyncratic and immune-mediated reactions. Predicting these reactions is often difficult, and this makes clinical decision-making challenging. Evidence supporting the role of pharmacogenomics in the management of these disorders in clinical practice is rapidly evolving. Despite the Clinical Pharmacology Implementation Consortium and Pharmacogenomics Knowledge Base recommendations, few tests have been incorporated into routine practice. This review aims to provide a comprehensive summary of the various drugs which are implicated for the hematological adverse events, their underlying mechanisms, and the current evidence and practical recommendations to incorporate pharmacogenomic testing in clinical care for predicting these disorders.
Collapse
Affiliation(s)
| | - Arihant Jain
- Internal Medicine, Hematology and Bone Marrow Transplantation, and
| | - Jasmina Ahluwalia
- Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
23
|
Nelson RS, Seligson ND, Bottiglieri S, Carballido E, Cueto AD, Imanirad I, Levine R, Parker AS, Swain SM, Tillman EM, Hicks JK. UGT1A1 Guided Cancer Therapy: Review of the Evidence and Considerations for Clinical Implementation. Cancers (Basel) 2021; 13:1566. [PMID: 33805415 PMCID: PMC8036652 DOI: 10.3390/cancers13071566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multi-gene assays often include UGT1A1 and, in certain instances, may report associated toxicity risks for irinotecan, belinostat, pazopanib, and nilotinib. However, guidance for incorporating UGT1A1 results into therapeutic decision-making is mostly lacking for these anticancer drugs. We summarized meta-analyses, genome-wide association studies, clinical trials, drug labels, and guidelines relating to the impact of UGT1A1 polymorphisms on irinotecan, belinostat, pazopanib, or nilotinib toxicities. For irinotecan, UGT1A1*28 was significantly associated with neutropenia and diarrhea, particularly with doses ≥ 180 mg/m2, supporting the use of UGT1A1 to guide irinotecan prescribing. The drug label for belinostat recommends a reduced starting dose of 750 mg/m2 for UGT1A1*28 homozygotes, though published studies supporting this recommendation are sparse. There was a correlation between UGT1A1 polymorphisms and pazopanib-induced hepatotoxicity, though further studies are needed to elucidate the role of UGT1A1-guided pazopanib dose adjustments. Limited studies have investigated the association between UGT1A1 polymorphisms and nilotinib-induced hepatotoxicity, with data currently insufficient for UGT1A1-guided nilotinib dose adjustments.
Collapse
Affiliation(s)
- Ryan S. Nelson
- Department of Consultative Services, ARUP Laboratories, Salt Lake City, UT 84108, USA;
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL 32610, USA;
- Department of Hematology and Oncology, Nemours Children’s Specialty Care, Jacksonville, FL 32207, USA
| | - Sal Bottiglieri
- Department of Pharmacy, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Estrella Carballido
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alex Del Cueto
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Iman Imanirad
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Richard Levine
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Satellite and Community Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Sandra M. Swain
- Georgetown University Medical Center, MedStar Health, Washington, DC 20007, USA;
| | - Emma M. Tillman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
| |
Collapse
|
24
|
Ruiz-Bañobre J, Goel A. Genomic and epigenomic biomarkers in colorectal cancer: From diagnosis to therapy. Adv Cancer Res 2021; 151:231-304. [PMID: 34148615 PMCID: PMC10338180 DOI: 10.1016/bs.acr.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. Despite ongoing efforts aimed at increasing screening for CRC and early detection, and development of more effective therapeutic regimens, the overall morbidity and mortality from this malignancy remains a clinical challenge. Therefore, identifying and developing genomic and epigenomic biomarkers that can improve CRC diagnosis and help predict response to current therapies are of paramount importance for improving survival outcomes in CRC patients, sparing patients from toxicity associated with current regimens, and reducing the economic burden associated with these treatments. Although efforts to develop biomarkers over the past decades have achieved some success, the recent availability of high-throughput analytical tools, together with the use of machine learning algorithms, will likely hasten the development of more robust diagnostic biomarkers and improved guidance for clinical decision-making in the coming years. In this chapter, we provide a systematic and comprehensive overview on the current status of genomic and epigenomic biomarkers in CRC, and comment on their potential clinical significance in the management of patients with this fatal malignancy, including in the context of precision medicine.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
25
|
Ivanov A, Semenova E. Gilbert's Syndrome, Bilirubin Level and UGT1A1∗28 Genotype in Men of North-West Region of Russia. J Clin Exp Hepatol 2021; 11:691-699. [PMID: 34866848 PMCID: PMC8617539 DOI: 10.1016/j.jceh.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/OBJECTIVES Gilbert's syndrome (GS) is a hereditary pathology that affects approximately 10% of the world's population. In most cases, GS is associated with the UGT1A1∗28 polymorphism of UGT1A1 gene coding the enzyme bilirubin uridine diphosphate glucuronosyltransferase (UGT-1A) which plays a key role in the bilirubin metabolism. The presence of an additional TA repeat in the TATA box of the UGT1A1 gene promoter (the allelic variant of 7TA, abbreviated as UGT1A1∗28) leads to a significant decrease in the enzymatic activity of UGT-1A in the liver and to decrease in glucuronidation process as a consequence. The aim of the study is to estimate the prevalence of the 6TA/6TA, 6TA/7TA, and 7TA/7TA genotypes of UGT1A1 promoter and to analyze the effect of these variants on bilirubin levels in healthy men in North-West Russia and patients with a clinical diagnosis of GS. METHODS Genotyping of the UGT1A1 ∗28 (rs8175347) polymorphism was carried out by real-time PCR. RESULTS The results obtained indicate an increased probability of GS developing in residents of the North-West region of Russia compared with other representatives of the Caucasians. CONCLUSIONS Despite the fact that the level of serum bilirubin increases with the rise in the number of additional TA dinucleotides in the UGT1A1 gene promoter tests of clinical manifestations only (jaundice, fatigue, sleep disturbances, nausea, belching, and so on) and increased bilirubin levels in patients with normal liver function do not allow unequivocally diagnose GS. UGT1A1∗28 genotyping should be used as a prognostic risk factor for such pathology development.
Collapse
Affiliation(s)
- Andrei Ivanov
- Human Genetics Department, Saint-Petersburg State University Hospital, 154, Fontanka River Embankment, St.Petersburg, 198103, Russia
- Address for correspondence. Ivanov Andrei V., Human Genetics Department, Saint-Petersburg State University Hospital, 154, Fontanka River Embankment, St.Petersburg, 198103, Russia.
| | - Elena Semenova
- Division of Molecular and Radiation Biophysics, National Research Center “Kurchatov Institute” B.P.Konstantinov St Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| |
Collapse
|
26
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, Iemwimangsa N, Fukunaga K, Mushiroda T, Chantratita W, Ali BR. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10:21310. [PMID: 33277594 PMCID: PMC7718919 DOI: 10.1038/s41598-020-78231-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency ≤ 0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.,Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates. .,Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
29
|
Nagy M, Attya M, Patrinos GP. Unraveling heterogeneity of the clinical pharmacogenomic guidelines in oncology practice among major regulatory bodies. Pharmacogenomics 2020; 21:1247-1264. [PMID: 33124490 DOI: 10.2217/pgs-2020-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmacogenomics (PGx) implementation in clinical practice is steadily increasing. PGx uses genetic information to personalize medication use, which increases medication efficacy and decreases side effects. The availability of clinical PGx guidelines is essential for its implementation in clinical settings. Currently, there are few organizations/associations responsible for releasing those guidelines, including the Clinical Pharmacogenetics Implementation Consortium, Dutch Pharmacogenetics Working Group, the Canadian Pharmacogenomics Network for Drug Safety and the French National Network of Pharmacogenetics. According to the US FDA, oncology medications are highly correlated to PGx biomarkers. Therefore, summarizing the PGx guidelines for oncology drugs will positively impact the clinical decisions for cancer patients. This review aims to scrutinize side-by-side available clinical PGx guidelines in oncology.
Collapse
Affiliation(s)
- Mohamed Nagy
- Personalized Medication Management Unit, Children's Cancer Hospital Egypt (57357), Cairo, Egypt.,Department of Pharmaceutical Services, Children's Cancer Hospital Egypt (57357), Cairo, Egypt
| | - Mohamed Attya
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt (57357), Cairo, Egypt
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
30
|
Hockings JK, Castrillon JA, Cheng F. Pharmacogenomics meets precision cardio-oncology: is there synergistic potential? Hum Mol Genet 2020; 29:R177-R185. [PMID: 32601683 PMCID: PMC7574955 DOI: 10.1093/hmg/ddaa134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/12/2022] Open
Abstract
An individual's inherited genetic makeup and acquired genomic variants may account for a significant portion of observable variability in therapy efficacy and toxicity. Pharmacogenomics (PGx) is the concept that treatments can be modified to account for these differences to increase chances of therapeutic efficacy while minimizing risk of adverse effects. This is particularly applicable to oncology in which treatment may be multimodal. Each tumor type has a unique genomic signature that lends to inclusion of targeted therapy but may be associated with cumulative toxicity, such as cardiotoxicity, and can impact quality of life. A greater understanding of therapeutic agents impacted by PGx and subsequent implementation has the potential to improve outcomes and reduce risk of drug-induced adverse effects.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica A Castrillon
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
32
|
Gagno S, Bartoletti M, Romualdi C, Poletto E, Scalone S, Sorio R, Zanchetta M, De Mattia E, Roncato R, Cecchin E, Giorda G, Toffoli G. Pharmacogenetic score predicts overall survival, progression-free survival and platinum sensitivity in ovarian cancer. Pharmacogenomics 2020; 21:995-1010. [PMID: 32894980 DOI: 10.2217/pgs-2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To define the impact of polymorphisms in genes involved in platinum-taxane and estrogen activity in the outcome of platinum-based treated ovarian cancer patients (OCP). Patients & Methods: Two hundred and thirty OCP were analyzed for 124 germ-line polymorphisms to generate a prognostic score for overall survival (OS), progression-free survival (PFS) and platinum-free interval (PFI). Results: ABCG2 rs3219191D>I, UGT1A rs10929302G>A and UGT1A rs2741045T>C polymorphisms were significantly associated with all three parameters (OS, PFS and PFI) and were used to generate a score. Patients in high-risk group had a poorer OS (hazard ratio [HR]: 1.8; 95% CI: 1.3-2.7; p = 0.0019), PFS (HR: 2.0; 95% CI: 1.4-2.9; p < 0.0001) and PFI (HR: 1.9; 95% CI: 1.4-2.8; p = 0.0002) compared with those in low-risk group. Conclusion: The prognostic-score including polymorphisms involved in drug and estrogen pathways stratifies OCP according to OS, PFS and PFI.
Collapse
Affiliation(s)
- Sara Gagno
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Via Palladio 8, 33100, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35122, Padova, Italy
| | - Elena Poletto
- Department of Oncology, ASUI Udine University Hospital, Via Pozzuolo 330, 33100, Udine, Italy
| | - Simona Scalone
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Roberto Sorio
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Martina Zanchetta
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Elena De Mattia
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Rossana Roncato
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Giorgio Giorda
- Gynaecological Oncology Unit, Centro di Riferimento Oncologico (CRO) di Aviano, IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081, Aviano, Italy
| |
Collapse
|
33
|
Pharmacogenomics of Antibiotics. Int J Mol Sci 2020; 21:ijms21175975. [PMID: 32825180 PMCID: PMC7504675 DOI: 10.3390/ijms21175975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.
Collapse
|
34
|
Scott SA, Scott ER, Seki Y, Chen AJ, Wallsten R, Owusu Obeng A, Botton MR, Cody N, Shi H, Zhao G, Brake P, Nicoletti P, Yang Y, Delio M, Shi L, Kornreich R, Schadt EE, Edelmann L. Development and Analytical Validation of a 29 Gene Clinical Pharmacogenetic Genotyping Panel: Multi-Ethnic Allele and Copy Number Variant Detection. Clin Transl Sci 2020; 14:204-213. [PMID: 32931151 PMCID: PMC7877843 DOI: 10.1111/cts.12844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
To develop a novel pharmacogenetic genotyping panel, a multidisciplinary team evaluated available evidence and selected 29 genes implicated in interindividual drug response variability, including 130 sequence variants and additional copy number variants (CNVs). Of the 29 genes, 11 had guidelines published by the Clinical Pharmacogenetics Implementation Consortium. Targeted genotyping and CNV interrogation were accomplished by multiplex single‐base extension using the MassARRAY platform (Agena Biosciences) and multiplex ligation‐dependent probe amplification (MRC Holland), respectively. Analytical validation of the panel was accomplished by a strategic combination of > 500 independent tests performed on 170 unique reference material DNA samples, which included sequence variant and CNV accuracy, reproducibility, and specimen (blood, saliva, and buccal swab) controls. Among the accuracy controls were 32 samples from the 1000 Genomes Project that were selected based on their enrichment of sequence variants included in the pharmacogenetic panel (VarCover.org). Coupled with publicly available samples from the Genetic Testing Reference Materials Coordination Program (GeT‐RM), accuracy validation material was available for the majority (77%) of interrogated sequence variants (100% with average allele frequencies > 0.1%), as well as additional structural alleles with unique copy number signatures (e.g., CYP2D6*5, *13, *36, *68; CYP2B6*29; and CYP2C19*36). Accuracy and reproducibility for both genotyping and copy number were > 99.9%, indicating that the optimized panel platforms were precise and robust. Importantly, multi‐ethnic allele frequencies of the interrogated variants indicate that the vast majority of the general population carries at least one of these clinically relevant pharmacogenetic variants, supporting the implementation of this panel for pharmacogenetic research and/or clinical implementation programs.
Collapse
Affiliation(s)
- Stuart A Scott
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erick R Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Aniwaa Owusu Obeng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana R Botton
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Neal Cody
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Paola Nicoletti
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yao Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Lisong Shi
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth Kornreich
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric E Schadt
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Edelmann
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Argevani L, Hughes C, Schuh MJ. Dosage Adjustment of Irinotecan in Patients with UGT1A1 Polymorphisms: A Review of Current Literature. Innov Pharm 2020; 11. [PMID: 34007623 PMCID: PMC8075136 DOI: 10.24926/iip.v11i3.3203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: To review available literature regarding pharmacogenomics (PGx) effects on the metabolism of irinotecan by the UGT1A1 gene and the resulting dose adjustments based on PGx genetic variant. Summary: Irinotecan is a chemotherapy agent commonly used in treatment of various cancers such as metastatic colorectal cancer (mCRC) and others. The extent of decreased function of UGT1A1 varies based on genotype so irinotecan dose adjustments may be needed. Those with UGT1A1 homozygous *28/*28 genotype may experience 70% reduction in activity, while heterozygous genotypes with *1/*28 may only experience 30% loss. UGT1A1*6 variants may also play a role in decreased function. The incidence of *28 and *6 alleles varies among ethnic populations resulting in the need for dosage adjustments to avoid toxicities. Conclusion: These findings add to a growing body of literature that suggest patients with UGT1A1 *28 or *6 variant alleles benefit from lower doses of irinotecan. However, due to the heterogeneity of currently available studies, more evidence that investigates various regimens in different patient populations is needed to determine the most appropriate dosing strategies. Although other factors, as well as efficacy considerations will likely influence clinical decision making, genotype may be an important factor when determining dose.
Collapse
|
36
|
Sun LN, Sun GX, Yang YQ, Shen Y, Huang FR, Xie LJ, Cheng J, Zhang HW, Zhang XH, Liu Y, Wang YQ. Effects of ABCB1, UGT1A1, and UGT1A9 Genetic Polymorphisms on the Pharmacokinetics of Sitafloxacin Granules in Healthy Subjects. Clin Pharmacol Drug Dev 2020; 10:57-67. [PMID: 32687695 PMCID: PMC7818398 DOI: 10.1002/cpdd.848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Sitafloxacin, a new fluoroquinolone, has strong antibacterial activity. We evaluated the effects of sitafloxacin granules in single‐dose and multidose cohorts and the effects of ABCB1, UGT1A1, and UGT1A9 genetic polymorphisms on the pharmacokinetics (PK) of sitafloxacin in healthy subjects. The single‐dose study included 3 fasted cohorts receiving 50, 100, and 200 mg of sitafloxacin granules and 1 cohort receiving 50 mg of sitafloxacin granules with a high‐fat meal. The multidose study included 1 cohort receiving 100 mg of sitafloxacin granules once daily for 5 days. PK parameters were calculated using noncompartmental parameters based on concentration‐time data. The genotypes for ABCB1, UGT1A1, and UGT1A9 single‐nucleotide polymorphisms were determined using Sanger sequencing. Subsequently, the association between sitafloxacin PK parameters and target single‐nucleotide polymorphisms was analyzed. Sitafloxacin granules were well tolerated up to 200 and 100 mg in the single‐dose and multidose studies, respectively. Sitafloxacin AUC and Cmax increased linearly within the detection range, and a steady state was reached within 3 days after the administration of multiple oral doses. Our findings showed that Cmax was lower in the ABCB1 (rs1045642) mutation group, whereas t1/2 was longer in the UGT1A1 (rs2741049) and UGT1A9 (rs3832043) mutation groups. In conclusion, sitafloxacin granules were safe at single doses and multiple doses up to 200 and 100 mg/day, respectively, with a linear plasma PK profile. However, ABCB1 (rs1045642), UGT1A1 (rs2741049), and UGT1A9 (rs3832043) genetic polymorphisms are likely to influence the Cmax or t1/2 and thereby merit further clinical evaluation.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Xian Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yu-Qing Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Jun Xie
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Wen Zhang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| | - Yun Liu
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| |
Collapse
|
37
|
Ortega-Vázquez A, Fricke-Galindo I, Dorado P, Jung-Cook H, Martínez-Juárez IE, Monroy-Jaramillo N, Rojas-Tomé IS, Peñas-Lledó E, Llerena A, López-López M. Influence of genetic variants and antiepileptic drug co-treatment on lamotrigine plasma concentration in Mexican Mestizo patients with epilepsy. THE PHARMACOGENOMICS JOURNAL 2020; 20:845-856. [PMID: 32483200 DOI: 10.1038/s41397-020-0173-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Genetic and nongenetic factors may contribute to lamotrigine (LTG) plasma concentration variability among patients. We simultaneously investigated the association of UGT1A1, UGT1A4, UGT2B7, ABCB1, ABCG2, and SLC22A1 variants, as well as antiepileptic drug co-treatment, on LTG plasma concentration in 97 Mexican Mestizo (MM) patients with epilepsy. UGT1A4*1b was associated with lower LTG dose-corrected concentrations. Patients with the UGT2B7-161T allele were treated with 21.22% higher LTG daily dose than those with CC genotype. Two novel UGT1A4 variants (c.526A>T; p.Thr185= and c.496T>C; p.Ser166Leu) were identified in one patient. Patients treated with LTG + valproic acid (VPA) showed higher LTG plasma concentration than patients did on LTG monotherapy or LTG + inducer. Despite the numerous drug-metabolizing enzymes and transporter genetic variants analyzed, our results revealed that co-treatment with VPA was the most significant factor influencing LTG plasma concentration, followed by UGT1A4*1b, and that patients carrying UGT2B7 c.-161T required higher LTG daily doses. These data provide valuable information for the clinical use of LTG in MM patients with epilepsy.
Collapse
Affiliation(s)
| | | | - Pedro Dorado
- Biosanitary Research Institute of Extremadura (INUBE), University of Extremadura, Badajoz, Spain
| | - Helgi Jung-Cook
- National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico.,National Autonomous University of Mexico, Mexico City, Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Irma S Rojas-Tomé
- National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Eva Peñas-Lledó
- Biosanitary Research Institute of Extremadura (INUBE), University of Extremadura, Badajoz, Spain
| | - Adrián Llerena
- Biosanitary Research Institute of Extremadura (INUBE), University of Extremadura, Badajoz, Spain.,CICAB Clinical Research Center, Extremadura University Hospital, Badajoz, Spain
| | | |
Collapse
|
38
|
Kim V, Wal TVD, Nishi MY, Montenegro LR, Carrilho FJ, Hoshida Y, Ono SK. Brazilian cohort and genes encoding for drug-metabolizing enzymes and drug transporters. Pharmacogenomics 2020; 21:575-586. [PMID: 32486903 DOI: 10.2217/pgs-2020-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background & aim: Genetic variability in drug absorption, distribution, metabolism and excretion (ADME) genes contributes to the high heterogeneity of drug responses. The present study investigated polymorphisms of ADME genes frequencies and compared the findings with populations from other continents, available in the 1000 Genome Project (1 KGP) and the Exome Aggregation Consortium (ExAC) databases. Methodology & results: We conducted a study of 100 patients in Brazil and a total of 2003 SNPs were evaluated by targeted next-generation sequencing in 148 genes, including Phase I enzymes (n = 50), Phase II enzymes (n = 38) and drug transporters (n = 60). Overall, the distribution of minor allele frequency (MAF) suggests that the distribution of 2003 SNPs is similar between Brazilian cohort, 1 KGP and ExAC; however, we found moderate SNP allele-frequency divergence between Brazilian cohort and both 1000 KGP and ExAC. These differences were observed in several relevant genes including CYP3A4, NAT2 and SLCO1B1. Conclusion: We concluded that the Brazilian population needs clinical assessment of drug treatment based on individual genotype rather than ethnicity.
Collapse
Affiliation(s)
- Vera Kim
- Division of Clinical Gastroenterology & Hepatology, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil.,Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Thijs van der Wal
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Miriam Yumie Nishi
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Luciana Ribeiro Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Flair Jose Carrilho
- Division of Clinical Gastroenterology & Hepatology, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Liver Tumor Transnational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive & Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzane Kioko Ono
- Division of Clinical Gastroenterology & Hepatology, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| |
Collapse
|
39
|
Niogret J, Limagne E, Thibaudin M, Blanc J, Bertaut A, Le Malicot K, Rinaldi Y, Caroli-Bosc FX, Audemar F, Nguyen S, Sarda C, Lombard-Bohas C, Locher C, Carreiro M, Legoux JL, Etienne PL, Baconnier M, Porneuf M, Aparicio T, Ghiringhelli F. Baseline Splenic Volume as a Prognostic Biomarker of FOLFIRI Efficacy and a Surrogate Marker of MDSC Accumulation in Metastatic Colorectal Carcinoma. Cancers (Basel) 2020; 12:cancers12061429. [PMID: 32486421 PMCID: PMC7352427 DOI: 10.3390/cancers12061429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Predictive biomarkers of response to chemotherapy plus antiangiogenic for metastatic colorectal cancer (mCRC) are lacking. The objective of this study was to test the prognostic role of splenomegaly on baseline CT scan. Methods: This study is a sub-study of PRODIGE-9 study, which included 488 mCRC patients treated by 5-fluorouracil, leucovorin and irinotecan (FOLFIRI) and bevacizumab in first line. The association between splenic volume, and PFS and OS was evaluated by univariate and multivariable Cox analyses. The relation between circulating monocytic Myeloid derived suppressor cells (mMDSC) and splenomegaly was also determined. Results: Baseline splenic volume > 180 mL was associated with poor PFS (median PFS = 9.2 versus 11.1 months; log-rank p = 0.0125), but was not statistically associated with OS (median OS = 22.6 versus 28.5 months; log-rank p = 0.1643). The increase in splenic volume at 3 months had no impact on PFS (HR 0.928; log-rank p = 0.56) or on OS (HR 0.843; log-rank p = 0.21). Baseline splenic volume was positively correlated with the level of baseline circulating mMDSC (r = 0.48, p-value = 0.031). Conclusion: Baseline splenomegaly is a prognostic biomarker in patients with mCRC treated with FOLFIRI and bevacizumab, and a surrogate marker of MDSC accumulation.
Collapse
Affiliation(s)
- Julie Niogret
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France;
- Department of Medical Oncology, University of Burgundy-Franche-Comté, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France;
- INSERM U1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (E.L.); (M.T.)
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (E.L.); (M.T.)
| | - Marion Thibaudin
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (E.L.); (M.T.)
| | - Julie Blanc
- Methodology, Data-Management, and Biostatistics Unit, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (J.B.); (A.B.)
| | - Aurelie Bertaut
- Methodology, Data-Management, and Biostatistics Unit, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (J.B.); (A.B.)
| | - Karine Le Malicot
- Department of Medical Oncology, University of Burgundy-Franche-Comté, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France;
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM U1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
| | - Yves Rinaldi
- Department of Hepato-Gastroenterology, European Hospital, 6 Rue Désirée Clary, 13003 Marseille, France;
| | | | - Franck Audemar
- Department of Gastroenterology, Côte Basque Hospital Center, 13 Avenue de l’Interne Jacques Loeb, 64100 Bayonne, France;
| | - Suzanne Nguyen
- Department of Medical Oncology, Hospital Center, 4 Boulevard Hauterive, 64000 Pau, France;
| | - Corinne Sarda
- Department of Medical Oncology, Saintonge Hospital Center, 11 Boulevard Ambroise Paré, 17100 Saintes, France;
| | - Catherine Lombard-Bohas
- Department of Medical Oncology, Edouard Herriot Hospital, HCL, 5 Place d’Arsonval, 69003 Lyon, France;
| | - Christophe Locher
- Department of Gastroenterology, Est-Francilien Great Hospital, 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Miguel Carreiro
- Department of Medical Oncology and Internal medicine, Hospital Center, 100 Rue Léon Cladel, 82000 Montauban, France;
| | - Jean-Louis Legoux
- Department of Hepato-Gastroenterology and Digestive Oncology, Regional Hospital Center, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Pierre-Luc Etienne
- Department of Medical Oncology, CARIO, Côtes d’Armor Private Hospital, 10 Rue François Jacob, 22190 Plerin, France;
| | - Mathieu Baconnier
- Department of Hepato-Gastroenterology, Annecy Genevois Hospital Center, 1 Avenue de l’Hôpital, 74374 Pringy, France;
| | - Marc Porneuf
- Department of Medical Oncology and Hematology, Yves Le Foll Hospital Center, 10 Rue Marcel Proust, 22000 Saint-Brieuc, France;
| | - Thomas Aparicio
- Department of Gastroenterology, University Hospital Center Saint Louis, APHP, 1 Avenue Claude Vellefaux, 75010 Paris, France;
| | - Francois Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France;
- Department of Medical Oncology, University of Burgundy-Franche-Comté, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France;
- INSERM U1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center—UNICANCER, 1 rue Professeur Marion, 21000 Dijon, France; (E.L.); (M.T.)
- Correspondence:
| |
Collapse
|
40
|
Itou M, Fujita T, Inoue K, Uchida N, Takagaki T, Ishii D, Kakuyama H. Pharmacokinetics and Safety of Ranirestat in Patients With Hepatic Impairment. J Clin Pharmacol 2020; 60:1397-1403. [PMID: 32437025 DOI: 10.1002/jcph.1636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 11/09/2022]
Abstract
Ranirestat is an aldose reductase inhibitor hypothesized to improve diabetic neuropathy. An open-label, single-dose, parallel-group study was conducted to compare pharmacokinetic (PK) characteristics of an oral dose of ranirestat across subjects with normal hepatic function and patients with mild and moderate hepatic impairment because ranirestat is expected to be used by patients with diabetes mellitus, possibly including those with hepatic impairment. To evaluate the necessity for dose adjustment, PK profiles and tolerability were studied at the dose of 40 mg, the expected optimal clinical dose in patients with diabetic neuropathy and normal hepatic function. In total, 20 subjects, including 5, 10, and 5 subjects with normal hepatic function, mild hepatic impairment, and moderate hepatic impairment, respectively, completed the study. Serial PK sampling was conducted up to 504 hours, and PK parameters were calculated and compared between healthy subjects and patients with mild or moderate hepatic impairment. The geometric mean ratios of peak concentration and area under the concentration-time curve in patients with mild hepatic impairment (90%CI) were 86.7% (55.3% to 135.9%) and 84.7% (68.5% to 104.8%), respectively. The values in patients with moderate hepatic impairment were 81.3% (48.8% to 135.5%) and 91.7% (72.1% to 116.7%), respectively. These results demonstrated that plasma ranirestat exposure and the plasma protein binding of the drug were not substantially altered by normal, mild, or moderate hepatic impairment (protein binding 99.22%, 99.29%, and 99.00%, respectively). All adverse events were mild in severity. Based on these findings, no dose adjustment will be required for ranirestat in patients with mild or moderate hepatic impairment.
Collapse
Affiliation(s)
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuaki Inoue
- Division of Gastroenterology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Naoki Uchida
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Takeshi Takagaki
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Daisuke Ishii
- Group I, Oncology Clinical Development Unit, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Hiroyoshi Kakuyama
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| |
Collapse
|
41
|
Valmiki S, Mandapati KK, Miriyala LKV, Kelgeri CC, Rela M, Shanmugam NP, Vegulada DR. A case report of a novel 22 bp duplication within exon 1 of the UGT1A1 in a Sudanese infant with Crigler-Najjar syndrome type I. BMC Gastroenterol 2020; 20:62. [PMID: 32143638 PMCID: PMC7060512 DOI: 10.1186/s12876-020-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Crigler Najjar type 1 is a rare autosomal recessive condition caused by the absence of UDPGT enzyme due to mutations in the UGT1A1 gene. This enzyme is responsible for elimination of unconjugated bilirubin from the body by glucuronidation. Affected individuals are at risk for kernicterus and require lifelong phototherapy. Liver transplant is the only definitive treatment. Case presentation Here we report a case of a 6 month old Sudanese female infant with CN1 whose molecular analysis revealed a novel homozygous 22 base pair duplication (c.55_76dup) in the coding exon 1 of the UGT1A1 gene. This 22 bp duplication causes a frame shift leading to a premature stop codon. She underwent a successful liver transplant at 7 months of age and is doing well at 1 year follow-up. Conclusion This study shows that molecular diagnosis helps in precise diagnosis of CN1 and in prognosis, prompt medical intervention and appropriate therapy. This particular 22 bp duplication within the coding region of UGT1A1 can be a founder mutation in the Sudanese population.
Collapse
Affiliation(s)
- Sailaja Valmiki
- Department of Molecular Diagnostics, Genes N Life Healthcare Pvt. Ltd., Punjagutta, Hyderabad, 500 082, India.
| | - Kiran Kumar Mandapati
- Department of Molecular Diagnostics, Genes N Life Healthcare Pvt. Ltd., Punjagutta, Hyderabad, 500 082, India
| | | | - Chayarani Chandrashekhar Kelgeri
- Department of Paediatric Gastroenterology, Hepatology and Transplantation, Institute of Liver Diseases and Transplantation, Gleneageles Global Health City, Chennai, India
| | - Mohamed Rela
- Department of Paediatric Gastroenterology, Hepatology and Transplantation, Institute of Liver Diseases and Transplantation, Gleneageles Global Health City, Chennai, India
| | - Naresh P Shanmugam
- Department of Paediatric Gastroenterology, Hepatology and Transplantation, Institute of Liver Diseases and Transplantation, Gleneageles Global Health City, Chennai, India
| | - Durga Rao Vegulada
- Department of Molecular Diagnostics, Genes N Life Healthcare Pvt. Ltd., Punjagutta, Hyderabad, 500 082, India.
| |
Collapse
|
42
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Sci Rep 2019; 9:13008. [PMID: 31506518 PMCID: PMC6736932 DOI: 10.1038/s41598-019-49477-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
This study investigated the potential of single nucleotide polymorphisms as predictors of survival in two cohorts comprising 417 metastatic colorectal cancer (mCRC) patients treated with the FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) regimen. The rs4806668G > T of the ribosomal protein gene RPL28 was associated with shorter progression-free survival and overall survival by 5 and 9 months (P = 0.002), with hazard ratios of 3.36 (P < 0.001) and 3.07 (P = 0.002), respectively. The rs4806668T allele was associated with an increased RPL28 expression in transverse normal colon tissues (n = 246, P = 0.007). RPL28 expression was higher in colorectal tumors compared to paired normal tissues by up to 124% (P < 0.001) in three independent datasets. Metastatic cases with highest RPL28 tumor expression had a reduced survival in two datasets (n = 88, P = 0.009 and n = 56, P = 0.009). High RPL28 was further associated with changes in immunoglobulin and extracellular matrix pathways. Repression of RPL28 reduced proliferation by 1.4-fold to 5.6-fold (P < 0.05) in colon cancer HCT116 and HT-29 cells. Our findings suggest that the ribosomal RPL28 protein may influence mCRC outcome.
Collapse
|
44
|
Affiliation(s)
- Glyn Steventon
- Consultant in ADMET, England, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
45
|
Abudahab S, Hakooz N, Jarrar Y, Al Shahhab M, Saleh A, Zihlif M, Dajani R. Interethnic Variations of UGT1A1 and UGT1A7 Polymorphisms in the Jordanian Population. Curr Drug Metab 2019; 20:399-410. [PMID: 31132973 DOI: 10.2174/1389200220666190528085151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Glucuronidation is one of the most important phase II metabolic pathways. It is catalyzed by a family of UDP-glucuronosyltransferase enzymes (UGTs). UGT1A1 and UGT1A7 catalyze the glucuronidation of a diverse range of medications, environmental chemicals and endogenous compounds. Polymorphisms in the UGT1A gene could potentially be significant for the pharmacological, toxicological and physiological effects of the enzymes. OBJECTIVE The UGT1A gene is polymorphic among ethnic groups and the aim of this study was to investigate the different UGT1A1 and UGT1A7 polymorphisms in Circassians, Chechens and Jordanian-Arabs. METHODS A total of 168 healthy Jordanian-Arabs, 56 Circassians and 54 Chechens were included in this study. Genotyping of 20 different Single-nucleotide polymorphism (SNPs) was done by using polymerase chain reaction- DNA sequencing. RESULTS We found that Circassians and Chechens have significantly higher allele frequencies of UGT1A7*2, UGT1A7*3 and UGT1A7*4 than the Jordanian-Arab population, but all three populations have similar frequencies of UGT1A1*28. Therefore, Circassians and Chechens are expected to have significantly lower levels of the UGT1A7 enzyme with almost 90% of these populations having genes that encode low or intermediate enzyme activity. CONCLUSION This inter-ethnic variation in the UGT1A alleles frequencies may affect drug response and susceptibility to cancers among different subethnic groups in Jordan. Our results can also provide useful information for the Jordanian population and for future genotyping of Circassian and Chechen populations in general.
Collapse
Affiliation(s)
- Sara Abudahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Nancy Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mohammad Al Shahhab
- Department of Pharmacology, School of Medicine, University of Jordan, Amman, Jordan
| | - Ahmad Saleh
- Department of Pharmacology, School of Medicine, University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, University of Jordan, Amman, Jordan
| | - Rana Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| |
Collapse
|
46
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
47
|
Naidoo A, Chirehwa M, Ramsuran V, McIlleron H, Naidoo K, Yende-Zuma N, Singh R, Ncgapu S, Adamson J, Govender K, Denti P, Padayatchi N. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics 2019; 20:225-240. [PMID: 30767706 PMCID: PMC6562923 DOI: 10.2217/pgs-2018-0166] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
AIM We report the prevalence and effect of genetic variability on pharmacokinetic parameters of isoniazid and rifampicin. MATERIALS & METHODS Genotypes for SLCO1B1, NAT2, PXR, ABCB1 and UGT1A genes were determined using a TaqMan® Genotyping OpenArray™. Nonlinear mixed-effects models were used to describe drug pharmacokinetics. RESULTS Among 172 patients, 18, 43 and 34% were classified as rapid, intermediate and slow NAT2 acetylators, respectively. Of the 58 patients contributing drug concentrations, rapid and intermediate acetylators had 2.3- and 1.6-times faster isoniazid clearance than slow acetylators. No association was observed between rifampicin pharmacokinetics and SLCO1B1, ABCB1, UGT1A or PXR genotypes. CONCLUSION Clinical relevance of the effects of genetic variation on isoniazid concentrations and low first-line tuberculosis drug exposures observed require further investigation.
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation & Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis & Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Sinaye Ncgapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Adamson
- Pharmacology Core, Africa Health Research Institute (AHRI), Durban, South Africa
| | - Katya Govender
- Pharmacology Core, Africa Health Research Institute (AHRI), Durban, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis & Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
48
|
|
49
|
Sharma MR, Joshi SS, Karrison TG, Allen K, Suh G, Marsh R, Kozloff MF, Polite BN, Catenacci DVT, Kindler HL. A UGT1A1 genotype-guided dosing study of modified FOLFIRINOX in previously untreated patients with advanced gastrointestinal malignancies. Cancer 2019; 125:1629-1636. [PMID: 30645764 DOI: 10.1002/cncr.31938] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND FOLFIRINOX (5-fluorouracil [5-FU], leucovorin, irinotecan, oxaliplatin) is an effective but toxic therapy for pancreatic cancer. UGT1A1 (UDP glucuronosyltransferase 1A1) eliminates the active metabolite of irinotecan. Polymorphisms reduce UGT1A1 activity, leading to toxicity. The primary objective was to determine the dose-limiting toxicity (DLT) rate in cycle 1 of modified FOLFIRINOX (mFOLFIRINOX) using genotype-guided dosing of irinotecan for the most common UGT1A1 genotypes (*1/*1, *1/*28) in advanced gastrointestinal malignancies, with expansion in pancreatic and biliary tract cancers. METHOD 5-FU (2400 mg/m2 over 46 hours), leucovorin (400 mg/m2 ), oxaliplatin (85 mg/m2 ), and irinotecan were given every 14 days. Irinotecan doses of 180, 135, and 90 mg/m2 were administered for UGT1A1 genotypes *1/*1, *1/*28, and *28/*28, respectively. Prophylactic pegfilgrastim was omitted in cycle 1 for cohort 1 (tolerability by genotype), but was given in cohort 2 (tolerability by tumor type). Doses were tolerable if the upper limit of a 2-sided 80% confidence interval for DLT rate was ≤33%. RESULTS In cohort 1, DLTs (most commonly febrile neutropenia, fatigue, diarrhea) occurred in 2/15 (13%), 3/16 (19%), and 4/10 (40%) patients with *1/*1, *1/*28, and *28/*28 genotypes, respectively. In cohort 2, 6/19 (32%) pancreatic and 4/19 (21%) biliary tract cancer patients experienced DLTs (most commonly fatigue, diarrhea, nausea/vomiting). In cohort 2, upper confidence limits of DLT rates exceeded 33%. Response rates were 38% in pancreatic and 21% in biliary tract cancers. CONCLUSION On the basis of our prespecified criteria, tolerability of UGT1A1 genotype-guided mFOLFIRINOX was not established in pancreatic and biliary tract cancers. However, this regimen was effective.
Collapse
Affiliation(s)
- Manish R Sharma
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Smita S Joshi
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Theodore G Karrison
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Kenisha Allen
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Grace Suh
- The University of Chicago Medicine Comprehensive Cancer Center at Silver Cross Hospital, New Lenox, Illinois
| | - Robert Marsh
- Northshore University Health System, Evanston, Illinois
| | | | - Blase N Polite
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | | | - Hedy L Kindler
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Abstract
The UGT1A1 enzyme is involved in the metabolism of bilirubin and numerous medications. Unconjugated hyperbilirubinemia, commonly presented as Gilbert syndrome (GS), is a result of decreased activity of the UGT1A1 enzyme, variable number of TA repeats in the promoter of the UGT1A1 gene affects enzyme activity. Seven and eight TA repeats cause a decrease of UGT1A1 activity and risk GS alleles, while six TA repeats contribute to normal UGT1A1 activity and non-risk GS allele. Also, the UGT1A1 (TA)n promoter genotype is recognized as a clinically relevant pharmacogenetic marker. The aim of this study was to assess diagnostic value of UGT1A1 (TA)n promoter genotyping in pediatric GS patients. Correlation of the UGT1A1 (TA)n genotypes and level of unconjugated bilirubin at diagnosis and after hypocaloric and phenobarbitone tests in these patients was analyzed. Another aim of the study was to assess pharmacogenetic potential of UGT1A1 (TA)n variants in Serbia. Fifty-one pediatric GS patients and 100 healthy individuals were genotyped using different methodologies, polymerase chain reaction (PCR) followed by acrylamide electrophoresis, fragment length analysis and/or DNA sequencing. Concordance of the UGT1A1 (TA)n promoter risk GS genotypes with GS was found in 80.0% of patients. Therefore, UGT1A1 (TA)n promoter genotyping is not a reliable genetic test for GS, but it is useful for differential diagnosis of diseases associated with hyperbilirubinemia. Level of bilirubin in pediatric GS patients at diagnosis was UGT1A1 (TA)n promoter genotype-dependent. We found that the frequency of pharmacogenetic relevant UGT1A1 (TA)n promoter genotypes was 63.0%, pointing out that UGT1A1 (TA)n promoter genotyping could be recommended for preemptive pharmacogenetic testing in Serbia.
Collapse
|