1
|
Sunildutt N, Ahmed F, Salih ARC, Kim HC, Choi KH. Unraveling new avenues in pancreatic cancer treatment: A comprehensive exploration of drug repurposing using transcriptomic data. Comput Biol Med 2025; 185:109481. [PMID: 39644581 DOI: 10.1016/j.compbiomed.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Pancreatic cancer, a malignancy notorious for its late-stage diagnosis and low patient survival rates, remains a formidable global health challenge. The currently available FDA-approved treatments for pancreatic cancer, notably chemotherapeutic agents, exhibit suboptimal efficacy, often accompanied by concerns regarding toxicity. Given the intricate nature of pancreatic cancer pathogenesis and the time-intensive nature of in silico drug discovery approaches, drug repurposing emerges as a compelling strategy to expedite the development of novel therapeutic interventions. In our study, we harnessed transcriptomic data from an exhaustive exploration of four diverse databases, ensuring a rigorous and unbiased analysis of differentially expressed genes, with a particular focus on upregulated genes associated with pancreatic cancer. Leveraging these pancreatic cancer-associated host protein targets, we employed a battery of cutting-edge bioinformatics tools, including Cytoscape STRING, GeneMANIA, Connectivity Map, and NetworkAnalyst, to identify potential small molecule drug candidates and elucidate their interactions. Subsequently, we conducted meticulous docking and redocking simulations for the selected drug-protein target pairs. This rigorous computational approach culminated in the identification of two promising broad-spectrum drug candidates against four pivotal host genes implicated in pancreatic cancer. Our findings strongly advocate for further investigation and preclinical validation of these candidates. Specifically, we propose prioritizing Dasatinib for evaluation against MMP3, MMP9, and EGFR due to their remarkable binding affinities, as well as Pioglitazone against MMP3, MMP2 and MMP9. These discoveries hold great promise in advancing the therapeutic landscape for pancreatic cancer, offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, US; BioSpero, Inc, Jeju, Republic of Korea
| | - Hyung Chul Kim
- Department of Future Science and Technology Business, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
2
|
Zhang D, Zhang E, Cai Y, Sun Y, Zeng P, Jiang X, Lian Y. Deciphering the potential ability of DExD/H-box helicase 60 (DDX60) on the proliferation, diagnostic and prognostic biomarker in pancreatic cancer: a research based on silico, RNA-seq and molecular biology experiment. Hereditas 2025; 162:6. [PMID: 39844327 PMCID: PMC11753068 DOI: 10.1186/s41065-024-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most malignant abdominal tumors. DDX60 has been shown to be associated with a variety of tumor biological processes. However, DDX60 in pancreatic cancer has not been reported. Our study confirmed that DDX60 can serve as a novel biomarker for diagnosis and treatment of pancreatic cancer. MATERIALS AND METHODS We downloaded pancreatic cancer datasets from GEO and TCGA databases, respectively. To investigate the relationship between DDX60 expression and prognosis in pancreatic cancer. GSEA analysis was performed on DDX60. We performed RNA-seq to further explore the downstream biological targets of DDX60 and the signaling pathways that may be involved in pancreatic cancer. Finally, we tested it through molecular biology experiments. First, we constructed the plasmid and tested the plasmid effect by WB. Then MTT assay was performed to explore the effect of DDX60 knockout on the proliferation of pancreatic cancer cells. LDH assay was performed to explore the effect of DDX60 on the release of lactate dehydrogenase from tumor cells. The effect of DDX60 on cell proliferation was further explored by clonal formation experiment. Continue to explore clinical therapeutic drugs sensitive to DDX60 targets. RESULTS By analyzing the GSE71729, GSE183795, GSE16515, GSE28735 and GSE62452 data sets, we found that DDX60 was highly expressed in pancreatic cancer. And is associated with poorer outcomes for pancreatic patients. The mRNA expression level of DDX60 was correlated with lymph node metastasis and grade in clinical pancreatic patients. Through the results of RNA-seq analysis, GO and KEGG analysis showed that DDX60 may be associated with cell cycle in pancreatic cancer. Through molecular biology experiments (MTT, LDH, and clonal formation experiment), we found that When DDX60 is knocked down in pancreatic cancer cells, the proliferation ability of tumor cells is significantly decreased. Several drugs targeting about DDX60 have been found, such as JW-7-52-1, this could provide direction for drug therapy against the DDX60 target. CONCLUSION In summary, DDX60 can be used as a novel biomarker related to the diagnosis and treatment of pancreatic cancer, participate in tumor proliferation, and is associated with poor prognosis in patients.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Enze Zhang
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Ying Cai
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yixin Sun
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
- 3National Institute for Data Science in Health and Medicine, Xiamen UniversityXiamen, Fujian, 361000, China
| | - Peiji Zeng
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Xiaohua Jiang
- Department of Orthopedics, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China.
| | - Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| |
Collapse
|
3
|
Cen K, Zhou J, Yang X, Guo Y, Xiao Y. Lymphocyte antigen 6 family member E suppresses apoptosis and promotes pancreatic cancer growth and migration via Wnt/β-catenin pathway activation. Sci Rep 2024; 14:20196. [PMID: 39215036 PMCID: PMC11364638 DOI: 10.1038/s41598-024-70764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic cancer (PC) is the primary cause of cancer-related mortality. Due to the absence of reliable biomarkers for predicting prognosis or guiding treatment, there is an urgent need for molecular studies on PC. Lymphocyte antigen 6 family member E (LY6E) is implicated in uncontrolled cell growth across various cancers. However, the precise mechanism of LY6E in PC remains unclear. Here, we conducted comprehensive bioinformatic analyses using online tools and R- × 64-4.1.1, complemented by experimental validation through Western blotting, immunohistochemistry, immunosorbent assays, flow cytometry, cell assays, and animal models. Our findings reveal significantly elevated expression of LY6E in PC, correlating with poor prognosis. LY6E knockdown inhibited proliferation, invasion, and migration of PC cells, while enhancing apoptosis evidenced by increased cleaved caspase 3 levels and alterations in the Bcl-2/Bax ratio. Conversely, LY6E overexpression promoted PC cell proliferation and migration, and inhibited apoptosis. Mechanistically, LY6E downregulation suppressed the Wnt/β-catenin signaling pathway. In vivo studies demonstrated that LY6E suppression attenuated tumor growth in murine models. Additionally, LY6E suppression resulted in reduced tumor growth in mice. In conclusion, our study confirms the significant role of LY6E in the progression of PC. LY6E, serving as an independent prognostic indicator, has the potential to serve as a valuable biomarker for PC to inform treatment strategies.
Collapse
Affiliation(s)
- Kenan Cen
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jingyao Zhou
- Department of Pharmacy, Taizhou Central Hospital, Taizhou, China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanyi Xiao
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
4
|
G J, A S. Identification of potential biomarkers for pancreatic ductal adenocarcinoma: a bioinformatics analysis. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38773913 DOI: 10.1080/10255842.2024.2356648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
PDA is an aggressive cancer with a 5-year survival rate, which is very low. There is no effective prognosis or therapy for PDA because of the lack of target biomarkers. The objective of this article is to identify the target biomarkers for PDA using a bioinformatics approach. In this work, we have analysed the three microarray datasets from the NCBI GEO database. We used the Geo2R tool to analyse the microarray data with the Benjamini and Hochberg false discovery rate method, and the significance level cut-off was set to 0.05. We have identified 659 DEGs from the datasets. There are a total of 15 hub genes that were selected from the PPI network constructed using the STRING application. Furthermore, these 15 genes were evaluated on PDA patients using TCGA and GTEx databases in (GEPIA). The online tool DAVID was used to analyse the functional annotation information for the DEGs. The functional pathway enrichment was performed on the GO and KEGG. The hub genes were mainly enriched for cell division, chromosome segregation, protein binding and microtubule binding. Further, the gene alteration study was performed using the cBioportal tool and screened out six hub genes (ASPM, CENPF, BIRC5, TTK, DLGAP5, and TOP2A) with a high alteration rate in PDA samples. Furthermore, Kaplan-Meier survival analysis was performed on the six hub genes and identified poor-survival outcomes that may be involved in tumorigenesis and PDA development. So, this study concludes that, these six hub genes may be potential prognostic biomarkers for PDA.
Collapse
Affiliation(s)
- JagadeeswaraRao G
- Research scholar, AUTDRH, Andhra University, Visakhapatnam, 530003, India
- Department of IT, Aditya Institute of Technology and Management, Tekkali, 532201, India
| | - SivaPrasad A
- Department of Computer Science, Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, 530003, India
| |
Collapse
|
5
|
Liu Z, Sun B, Xu A, Tang J, Zhang H, Gao J, Wang L. MICAL2 implies immunosuppressive features and acts as an independent and adverse prognostic biomarker in pancreatic cancer. Sci Rep 2024; 14:3177. [PMID: 38326344 PMCID: PMC10850094 DOI: 10.1038/s41598-024-52729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
At present, clinical outcomes of pancreatic cancer patients are still poor. New therapeutic targets for pancreatic cancer are urgently needed. Previous studies have indicated that Microtubule Associated Monooxygenase, Calponin and LIM Domain Containing 2 (MICAL2) is highly expressed in many tumors and promotes tumor progression. However, the role played by MICAL2 in pancreatic cancer remains unclear. Based on gene expression and clinical information from multiple datasets, we used comprehensive bioinformatics analysis in combination with tissue microarray to explore the function and clinical value of MICAL2. The results showed that MICAL2 was highly expressed in pancreatic cancer tissue and exhibited potential diagnostic capability. High expression of MICAL2 was also associated with poor prognosis and acted as an independent prognostic factor. MICAL2, mainly expressed in fibroblasts of pancreatic cancer, was closely related to metastasis and immune-related features, such as epithelial-mesenchymal transformation, extracellular cell matrix degradation, and inflammatory response. Furthermore, higher MICAL2 expression in pancreatic cancer was also associated with an increase in cancer-associated fibroblasts as well as M2 macrophage infiltration, and a reduction in CD8 + T cell infiltration, thereby facilitating the formation of an immunosuppressive microenvironment. Our results helped elucidate the clinical value and function in metastasis and immunity of MICAL2 in pancreatic cancer. These findings provided potential clinical strategies for diagnosis, targeted therapy combination immunotherapy, and prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Bing Sun
- Jinzhou Medical University Postgraduate Training Base (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Aiguo Xu
- Department of Oncology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jingjiao Tang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Huiqin Zhang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Jie Gao
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China.
| |
Collapse
|
6
|
Shi YH, Xu QC, Zhu YQ, Liu ZD, Zhao GY, Liu Q, Wang XY, Wang JQ, Xu X, Su Q, Lai JM, Huang CS, Yin XY. Imatinib facilitates gemcitabine sensitivity by targeting epigenetically activated PDGFC signaling in pancreatic cancer. Mol Ther 2023; 31:503-516. [PMID: 36384875 PMCID: PMC9931609 DOI: 10.1016/j.ymthe.2022.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis. Gemcitabine-based chemotherapy has become one of the main modalities of its management. However, gemcitabine resistance frequently occurs, leading to failure of PDAC therapy. Platelet-derived growth factors (PDGFs) and their receptors play important roles in cancer progression and chemoresistance. We aimed to investigate the biological function and therapeutic significance of platelet-derived growth factor C (PDGFC) in drug-resistant PDAC. Our study showed that PDGFC was abnormally highly expressed in gemcitabine-resistant PDAC. Silencing PDGFC expression can enhance the therapeutic effect of gemcitabine on PDAC. Mechanistically, the transcription of PDGFC is mediated by H3K27 acetylation, and PDGFC promotes gemcitabine resistance by activating the PDGFR-PI3K-AKT signaling pathway. The PDGFR inhibitor imatinib inhibits the PDGFR pathway. Imatinib and gemcitabine have a synergistic effect on the treatment of PDAC, and imatinib can significantly enhance the anti-tumor effect of gemcitabine in a drug-resistant PDAC patient-derived xenograft model. In conclusion, PDGFC is a potential predictor of gemcitabine-resistant PDAC. Imatinib inhibits PDGFR activation to promote gemcitabine sensitivity in PDAC. Combined modality regimen of imatinib and gemcitabine is likely to translate into clinical trial for the treatment of PDGFC-associated gemcitabine-resistant patients.
Collapse
Affiliation(s)
- Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiao Su
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Ming Lai
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chen-Song Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Effects of the Exposure of Human Non-Tumour Cells to Sera of Pancreatic Cancer Patients. Biomedicines 2022; 10:biomedicines10102588. [PMID: 36289850 PMCID: PMC9599555 DOI: 10.3390/biomedicines10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high metastatic potential. The “genometastasis” theory proposes that the blood of some cancer patients contains elements able to transform healthy cells by transferring oncogenes. Since findings on genometastasis in PDAC are still scarce, we sought supporting evidence by treating non-tumour HEK293T and hTERT-HPNE human cell lines with sera of PDAC patients. Here, we showed that HEK293T cells have undergone malignant transformation, increased the migration and invasion abilities, and acquired a partial chemoresistance, whereas hTERT-HPNE cells were almost refractory to transformation by patients’ sera. Next-generation sequencing showed that transformed HEK293T cells gained and lost several genomic regions, harbouring genes involved in many cancer-associated processes. Our results support the genometastasis theory, but further studies are needed for the identification of the circulating transforming elements. Such elements could also be useful biomarkers in liquid biopsy assays.
Collapse
|
8
|
Neums L, Koestler DC, Xia Q, Hu J, Patel S, Bell-Glenn S, Pei D, Zhang B, Boyd S, Chalise P, Thompson JA. Assessing equivalent and inverse change in genes between diverse experiments. FRONTIERS IN BIOINFORMATICS 2022; 2:893032. [PMID: 36304274 PMCID: PMC9580844 DOI: 10.3389/fbinf.2022.893032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2024] Open
Abstract
Background: It is important to identify when two exposures impact a molecular marker (e.g., a gene's expression) in similar ways, for example, to learn that a new drug has a similar effect to an existing drug. Currently, statistically robust approaches for making comparisons of equivalence of effect sizes obtained from two independently run treatment vs. control comparisons have not been developed. Results: Here, we propose two approaches for evaluating the question of equivalence between effect sizes of two independent studies: a bootstrap test of the Equivalent Change Index (ECI), which we previously developed, and performing Two One-Sided t-Tests (TOST) on the difference in log-fold changes directly. The ECI of a gene is computed by taking the ratio of the effect size estimates obtained from the two different studies, weighted by the maximum of the two p-values and giving it a sign indicating if the effects are in the same or opposite directions, whereas TOST is a test of whether the difference in log-fold changes lies outside a region of equivalence. We used a series of simulation studies to compare the two tests on the basis of sensitivity, specificity, balanced accuracy, and F1-score. We found that TOST is not efficient for identifying equivalently changed gene expression values (F1-score = 0) because it is too conservative, while the ECI bootstrap test shows good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap test and TOST to publicly available microarray expression data from pancreatic cancer showed that, while TOST was not able to identify any equivalently or inversely changed genes, the ECI bootstrap test identified genes associated with pancreatic cancer. Additionally, when investigating publicly available RNAseq data of smoking vs. vaping, no equivalently changed genes were identified by TOST, but ECI bootstrap test identified genes associated with smoking. Conclusion: A bootstrap test of the ECI is a promising new statistical approach for determining if two diverse studies show similarity in the differential expression of genes and can help to identify genes which are similarly influenced by a specific treatment or exposure. The R package for the ECI bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.
Collapse
Affiliation(s)
- Lisa Neums
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Qing Xia
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shachi Patel
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Bo Zhang
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Boyd
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jeffrey A. Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| |
Collapse
|
9
|
Jo Y, Yeo MK, Dao T, Kwon J, Yi H, Ryu D. Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia. Front Oncol 2022; 12:942774. [PMID: 36059698 PMCID: PMC9428794 DOI: 10.3389/fonc.2022.942774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic cancer is one of the most fatal malignancies of the gastrointestinal cancer, with a challenging early diagnosis due to lack of distinctive symptoms and specific biomarkers. The exact etiology of pancreatic cancer is unknown, making the development of reliable biomarkers difficult. The accumulation of patient-derived omics data along with technological advances in artificial intelligence is giving way to a new era in the discovery of suitable biomarkers. Methods We performed machine learning (ML)-based modeling using four independent transcriptomic datasets, including GSE16515, GSE62165, GSE71729, and the pancreatic adenocarcinoma (PAC) dataset of the Cancer Genome Atlas. To find candidates for circulating biomarkers, we exported expression profiles of 1,703 genes encoding secretory proteins. Integrating three transcriptomic datasets into either a training or test set, ML-based modeling distinguishing PAC from normal was carried out. Another ML-model classifying long-lived and short-lived patients with PAC was also built to select prognosis-associated features. Finally, circulating level of SCG5 in the plasma was determined from the independent cohort (non-tumor = 25 and pancreatic cancer = 25). We also investigated the impact of SCG5 on adipocyte biology using recombinant protein. Results Three distinctive ML-classifiers selected 29-, 64- and 18-featured genes, recognizing the only common gene, SCG5. As per the prediction of ML-models, the SCG5 transcripts was significantly reduced in PAC and decreased further with the progression of the tumor, indicating its potential as a diagnostic as well as prognostic marker for PAC. External validation of SCG5 using plasma samples from patients with PAC confirmed that SCG5 was reduced significantly in patients with PAC when compared to controls. Interestingly, plasma SCG5 levels were correlated with the body mass index and age of donors, implying pancreas-originated SCG5 could regulate energy metabolism systemically. Additionally, analyses using publicly available Genotype-Tissue Expression datasets, including adipose tissue histology and pancreatic SCG5 expression, further validated the association between pancreatic SCG5 expression and the size of subcutaneous adipocytes in humans. However, we could not observe any definite effect of rSCG5 on the cultured adipocyte, in 2D in vitro culture. Conclusion Circulating SCG5, which may be associated with adipopenia, is a promising diagnostic biomarker for PAC.
Collapse
Affiliation(s)
- Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Jeongho Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
| | - Hyon‐Seung Yi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Hyon‐Seung Yi, ; Dongryeol Ryu,
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, South Korea
- *Correspondence: Hyon‐Seung Yi, ; Dongryeol Ryu,
| |
Collapse
|
10
|
Keratin 8 Is an Inflammation-Induced and Prognosis-Related Marker for Pancreatic Adenocarcinoma. DISEASE MARKERS 2022; 2022:8159537. [PMID: 35958278 PMCID: PMC9359862 DOI: 10.1155/2022/8159537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highest-grade malignancies in the world. More effective biomarkers and treatment plans are necessary to improve the diagnosis rate and clinical outcome. The oncogenesis of PDAC is influenced by several factors, including chronic pancreatitis (CP). Keratin 8 (KRT8) is an important member of the keratin protein family and plays a role in regulating the cellular response to stress stimuli and mediating inflammatory reactions. However, the role of KRT8 in pancreatitis and PDAC is still poorly understood. Here we assessed the differentially expressed genes (DEGs) by bioinformatic methods with expression profiles available online for a caerulein-induced mouse model and human PDAC tissue. The prognostic value was evaluated by Kaplan–Meier analysis and Cox regression analysis. The diagnostic value was evaluated by Receiver Operating Characteristic analysis (ROC). The function of the genes was predicted by protein-protein interaction analysis, correlation analysis, and GO analysis. The conclusion was further validated in rat pancreatitis model, human tissue, and PDAC cell lines, including immunohistochemical staining (IHC), CCK-8 assay, wound healing assay, and flow cytometry. KRT8 was found to be upregulated in murine pancreatitis tissue, human CP tissue, and human PDAC tissue. High expression of KRT8 had a negative impact on the prognosis of PDAC patients. KRT8 was predicted to be involved in the regulation of the migration and viability of PDAC cells, which was validated in PDAC cell lines. Knockdown of KRT8 impaired the migration and proliferation and induced apoptosis in PDAC cell lines. In conclusion, keratin 8 is an inflammation-induced molecule and could serve as a diagnostic and prognostic marker for PDAC patients. More studies are needed for further validation from the perspective of precision and individualized medicine.
Collapse
|
11
|
Domination based classification algorithms for the controllability analysis of biological interaction networks. Sci Rep 2022; 12:11897. [PMID: 35831440 PMCID: PMC9279401 DOI: 10.1038/s41598-022-15464-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Deciding the size of a minimum dominating set is a classic NP-complete problem. It has found increasing utility as the basis for classifying vertices in networks derived from protein-protein, noncoding RNA, metabolic, and other biological interaction data. In this context it can be helpful, for example, to identify those vertices that must be present in any minimum solution. Current classification methods, however, can require solving as many instances as there are vertices, rendering them computationally prohibitive in many applications. In an effort to address this shortcoming, new classification algorithms are derived and tested for efficiency and effectiveness. Results of performance comparisons on real-world biological networks are reported.
Collapse
|
12
|
Chen K, Liu X, Liu W, Wang F, Tian X, Yang Y. Development and validation of prognostic and diagnostic model for pancreatic ductal adenocarcinoma based on scRNA-seq and bulk-seq datasets. Hum Mol Genet 2022; 31:1705-1719. [PMID: 34957503 PMCID: PMC9122644 DOI: 10.1093/hmg/ddab343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
The 5-year overall survival (OS) of pancreatic ductal adenocarcinoma (PDAC) is only 10%, partly owing to the lack of reliable diagnostic and prognostic biomarkers. The raw gene-cell matrix for single-cell RNA-seq (scRNA-seq) analysis was downloaded from the GSA database. We drew cell atlas for PDAC and normal pancreatic tissues. The inferCNV analysis was used to distinguish tumor cells from normal ductal cells. We identified differential expression genes (DEGs) by comparing tumor cells and normal ductal cells. The common DEGs were used to conduct prognostic and diagnostic model using univariate and multivariate Cox or logistic regression analysis. Four genes, MET, KLK10, PSMB9 and ITGB6, were utilized to create risk score formula to predict OS and to establish diagnostic model for PDAC. Finally, we drew an easy-to-use nomogram to predict 2-year and 3-year OSs. In conclusion, we developed and validated the prognostic and diagnostic model for PDAC based on scRNA-seq and bulk-seq datasets.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xinxin Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Weikang Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Feng Wang
- Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
13
|
Huang S, Zhao J, Song J, Li Y, Zuo R, Sa Y, Ma Z, OuYang H. Interferon alpha-inducible protein 27 (IFI27) is a prognostic marker for pancreatic cancer based on comprehensive bioinformatics analysis. Bioengineered 2021; 12:8515-8528. [PMID: 34592906 PMCID: PMC8806992 DOI: 10.1080/21655979.2021.1985858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Accurate biomarkers to predict the genesis and progression of pancreatic adenocarcinoma (PAAD) are needed in the fight against this deadly disease. Here, we combined multiple datasets (GEO, TCGA and GTEx) to conduct a comprehensive analysis of pancreatic cancer. Through an in-depth analysis, we discovered that the expression of the gene encoding interferon alpha-inducible protein 27 (IFI27) was significantly higher in pancreatic cancer tissues than that in normal tissues, and that higher expression of IFI27 was negatively correlated with the overall survival rate of pancreatic cancer patients. The functional annotation of IFI27 demonstrated relationships to cellular immunity and metabolism, especially glycolysis. Analysis of infiltrating immune cells displayed that higher expression of IFI27 expression correlates with decreased CD8 + T cells and increased M2 macrophages in the tumor immune microenvironment (TIME), then biochemical analyses of a mouse model and immunohistochemical (IHC) staining verified that glycolytic enzymes and M2 macrophages increased significantly in pancreatic cancer tissues. We speculate that IFI27 may affect the tumor microenvironment (TME) of PAAD by regulating cellular immunity and metabolism, thereby promoting the progression of pancreatic carcinoma and worsening the prognosis. These findings of our present study are solid evidence that IFI27 is a potential prognostic biomarker of pancreatic cancer and that it affects the tumor immune microenvironment.
Collapse
Affiliation(s)
- Shu Huang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinglin Zhao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jianxin Song
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yanqiong Li
- Central Sterile Supply Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rongxia Zuo
- Center for Clinical Medicine Research (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yalian Sa
- Center for Clinical Medicine Research (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhihui Ma
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongmei OuYang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
14
|
Zhang W, Gao Z, Guan M, Liu N, Meng F, Wang G. ASF1B Promotes Oncogenesis in Lung Adenocarcinoma and Other Cancer Types. Front Oncol 2021; 11:731547. [PMID: 34568067 PMCID: PMC8459715 DOI: 10.3389/fonc.2021.731547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Anti-silencing function 1B histone chaperone (ASF1B) is known to be an important modulator of oncogenic processes, yet its role in lung adenocarcinoma (LUAD) remains to be defined. In this study, an integrated assessment of The Cancer Genome Atlas (TCGA) and genotype-tissue expression (GTEx) datasets revealed the overexpression of ASF1B in all analyzed cancer types other than LAML. Genetic, epigenetic, microsatellite instability (MSI), and tumor mutational burden (TMB) analysis showed that ASF1B was regulated by single or multiple factors. Kaplan-Meier survival curves suggested that elevated ASF1B expression was associated with better or worse survival in a cancer type-dependent manner. The CIBERSORT algorithm was used to evaluate immune microenvironment composition, and distinct correlations between ASF1B expression and immune cell infiltration were evident when comparing tumor and normal tissue samples. Gene set enrichment analysis (GSEA) indicated that ASF1B was associated with proliferation- and immunity-related pathways. Knocking down ASF1B impaired the proliferation, affected cell cycle distribution, and induced cell apoptosis in LUAD cell lines. In contrast, ASF1B overexpression had no impact on the malignant characteristics of LUAD cells. At the mechanistic level, ASF1B served as an indirect regulator of DNA Polymerase Epsilon 3, Accessory Subunit (POLE3), CDC28 protein kinase regulatory subunit 1(CKS1B), Dihydrofolate reductase (DHFR), as established through proteomic profiling and Immunoprecipitation-Mass Spectrometry (IP-MS) analyses. Overall, these data suggested that ASF1B serves as a tumor promoter and potential target for cancer therapy and provided us with clues to better understand the importance of ASF1B in many types of cancer.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhouyong Gao
- Department of Thoracic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingxiu Guan
- Department of Laboratory, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Ning Liu
- Department of Pathology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Fanjie Meng
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangshun Wang
- Department of Oncology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Wang C, Li X, Zhang L, Chen Y, Dong R, Zhang J, Zhao J, Guo X, Yang G, Li Y, Gu C, Xi Q, Zhang R. miR-194-5p down-regulates tumor cell PD-L1 expression and promotes anti-tumor immunity in pancreatic cancer. Int Immunopharmacol 2021; 97:107822. [PMID: 34098485 DOI: 10.1016/j.intimp.2021.107822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer of the digestive tract. Studies have shown that in some types of cancer, a high level of microRNA-194-5p (miR-194-5p) is beneficial for controlling tumor progression, while in other cancers it plays a completely opposite role. However, how miR-194-5p affects anti-tumor immunity of pancreatic cancer remains unclear. In this study, we found that high expression of miR-194-5p in human pancreatic cancer patients is associated with a better survival rate, while increased expression of programmed cell death ligand 1 (PD-L1) in human pancreatic cancer patients is associated with a worse survival rate. In pancreatic cancer, the expression level of PD-L1 is negatively correlated with the expression level of miR-194-5p, and we identified that PD-L1 was target gene of miR-194-5p. In addition, we found that overexpression of miR-194-5p inhibited the migration, invasion and proliferation of pancreatic cancer cells in vitro. The orthotopic mouse model of pancreatic cancer shown that miR-194-5p suppressed the progression of pancreatic cancer, promoted the infiltration of CD8+ T cells in tumor immune microenvironments, and enhanced the IFN-γ production of CD8+ T cells. Consistently, the co-culture experiments showed that overexpression of miR-194-5p in tumor cell enhanced IFN-γ production by CD8+ T cells. In conclusion, miR-194-5p may serve as a novel immunotherapeutic target for pancreatic ductal adenocarcinoma (PDAC) by inhibiting the expression of PD-L1, and play important roles in inhibiting the progression of pancreatic cancer and boosting the anti-tumor effect of CD8+ T cells.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruijie Dong
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyi Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Guangze Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao Gu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Qing Xi
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Gu J, Huang W, Zhang J, Wang X, Tao T, Yang L, Zheng Y, Liu S, Yang J, Zhu L, Wang H, Fan Y. TMPRSS4 Promotes Cell Proliferation and Inhibits Apoptosis in Pancreatic Ductal Adenocarcinoma by Activating ERK1/2 Signaling Pathway. Front Oncol 2021; 11:628353. [PMID: 33816264 PMCID: PMC8012900 DOI: 10.3389/fonc.2021.628353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jianyou Gu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wenjie Huang
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Tian Tao
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ludi Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liwei Zhu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Liang X, Peng J, Chen D, Tang L, Liu A, Fu Z, Shi L, Wang K, Shao C. Identification of novel hub genes and lncRNAs related to the prognosis and progression of pancreatic cancer by microarray and integrated bioinformatics analysis. Gland Surg 2021; 10:1104-1117. [PMID: 33842254 PMCID: PMC8033078 DOI: 10.21037/gs-21-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most invasive and metastatic neoplasms among the fatal malignancies of the digestive system. Abnormal expression of genes and long non-coding RNAs (lncRNAs) are reportedly linked to multiple cancers. However, the lncRNA-mRNA expression profiles and their molecular mechanisms in PC progression are poorly known. This study aimed to map the hub genes and lncRNAs which might play core roles in the development of PC. METHODS This study used microarray expression analysis to screen for both differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between PC and matched adjacent non-tumor (AN) tissues. In order to clarify the functional classification of DEGs, we conducted GO and KEGG pathway enrichment analyses via the Enrichr database. LncRNA-mRNA co-expressed networks were also constructed to explore the probable core regulating DEGs and DElncRNAs. Subsequently, the hub genes and lncRNAs were validated via the ONCOMINE and GEPIA databases and the co-expressed networks. RESULTS By analyzing an mRNA-lncRNA microarray, we identified 943 mRNAs and 1,138 lncRNAs differentially expressed in PC tumors compared with the matched AN tissues. GO analysis confirmed that both up-regulated and down-regulated DEGs were enriched in multiple terms. The KEGG pathways enrichment analyses revealed that DEGs were mostly enriched in the focal adhesion and glutathione metabolism pathways, amongst others. Co-expressed networks were established to reveal the differential interactions between DEGs and DElncRNAs, and to indicate the core regulatory factors located at the core nodes of the co-expressed networks. The expression levels of potential core-regulating DEGs were validated by the GEPIA and ONCOMINE databases, and the relationship between overall survival and tumor stage and the potential core-regulating DEGs was analyzed using the GEPIA database. As a result, five genes and sixteen lncRNAs were finally considered as the hub transcripts in PC. CONCLUSIONS This study identified DEGs and DElncRNAs between PC tumors and matched AN tissues, and these transcripts were connected with malignant phenotypes in PC through different BPs and signaling pathways. Furthermore, five hub genes and sixteen lncRNAs were identified, which are expected to represent candidate diagnostic biomarkers or potential therapeutic targets for PC.
Collapse
Affiliation(s)
- Xing Liang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junfeng Peng
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danlei Chen
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anan Liu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiping Fu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ligang Shi
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Keqi Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Qian X, Jiang C, Shen S, Zou X. GPRC5A: An emerging prognostic biomarker for predicting malignancy of Pancreatic Cancer based on bioinformatics analysis. J Cancer 2021; 12:2010-2022. [PMID: 33753999 PMCID: PMC7974517 DOI: 10.7150/jca.52578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Pancreatic cancer (PaCa) is a highly lethal malignancy. The treatment options for PaCa lack efficacy. The study aimed to explore the molecular biomarkers for predicting survival of PaCa and identify the potential carcinogenic mechanisms of the selected gene. Methods: Based on public databases of PaCa, differentially expressed genes (DEGs) were identified using Networkanalyst. Survival analyses were exerted on GEPIA. Oncomine and The Human Protein Atlas were used for verifying the expression on mRNA and protein levels. Enrichment analyses were generated on Metascape and gene set enrichment analysis (GSEA). Univariate analyses were performed to determine the clinical factors associated with the expression of GPRC5A. Results: GPRC5A was identified as the most valuable gene in predicting survival of PaCa patients. Patients with high expression of GPRC5A showed larger tumor size, higher TNM stages, higher tumor grade, and more positive resection margin. In mutant KRAS, TP53, CDKN2A and SMAD4 group, the expression of GPRC5A was higher than non-mutant group. Mechanistically, GPRC5A may promote metastasis of PaCa mainly via regulating epithelial-mesenchymal transition (EMT) and neuroactive ligand-receptor interaction. Conclusion: GPRC5A may act as an oncogene in the progression of PaCa and could be a prognostic biomarker in predicting survival of PaCa.
Collapse
Affiliation(s)
- Xuetian Qian
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Chengfei Jiang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shanshan Shen
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xiaoping Zou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
19
|
Jiang W, Qiao L, Zuo D, Qin D, Xiao J, An H, Wang Y, Zhang X, Jin Y, Ren L. Aberrant lactate dehydrogenase A signaling contributes metabolic signatures in pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:358. [PMID: 33708985 PMCID: PMC7944301 DOI: 10.21037/atm-21-295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Pancreatic cancer (PC) has the lowest 5-year survival rate; therefore, new early screening methods and therapeutic targets are still urgently required. Emerging technologies such as metabolomic-based liquid biopsy may contribute to the field. We found aberrant lactate dehydrogenase A (LDHA) signaling to be an unfavorable biomarker for PC. Methods A total of 9 genes of the glycolysis pathway were detected by enrichment analysis in the PC Gene Expression Omnibus (GEO) dataset. The relationship between LDHA/pyruvate kinase (PKM)/fructose biphosphate aldolase A (ALDOA)/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and patient survival was analyzed by Kaplan-Meier plotting analysis of The Cancer Genome Atlas (TCGA). The detection of changing metabolites in the serum of PC patients was performed using a nuclear magnetic resonance (NMR) spectrometer. Results We found LDHA was an independent predictor of overall survival (OS) in PC patients (P<0.001). Consistent with genetic aberrance of LDHA, we identified significant alterations in patients’ glycolysis-related metabolites, including upregulation of lactic acid and downregulation of pyruvic acid. A 0.956 area under the curve (AUC) was achieved using the combinative metabolites score of lactic acid, pyruvic acid, citric acid, and glucose to distinguish PC from healthy controls. Conclusions Aberrant LDHA signaling is an unfavorable biomarker for PC and consequential metabolic changes constitute potential diagnostic signatures of PCs.
Collapse
Affiliation(s)
- Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lu Qiao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Duo Zuo
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Di Qin
- Tianjin Key Laboratory of Clinical Multi-omics, Airport Economy Zone, Tianjin, China
| | - Jiawei Xiao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haohua An
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanhui Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xinwei Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu Jin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Liu Y, Jin ZR, Huang X, Che YC, Liu Q. Identification of Spindle and Kinetochore-Associated Family Genes as Therapeutic Targets and Prognostic Biomarkers in Pancreas Ductal Adenocarcinoma Microenvironment. Front Oncol 2020; 10:553536. [PMID: 33224872 PMCID: PMC7667267 DOI: 10.3389/fonc.2020.553536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Aim The role of spindle and kinetochore-associated (SKA) genes in tumorigenesis and cancer progression has been widely studied. However, so far, the oncogenic involvement of SKA family genes in pancreatic cancer and their prognostic potential remain unknown. Methods Here, we carried out a meta-analysis of the differential expression of SKA genes in normal and tumor tissue. Univariate and multivariate survival analyses were done to evaluate the correlation between SKA family gene expression and pancreas ductal adenocarcinoma (PDAC) prognosis. Joint-effect and stratified survival analysis as well as nomogram analysis were used to estimate the prognostic value of genes. The underlying regulatory and biological mechanisms were identified by Gene set enrichment analysis. Interaction between SKA prognosis-related genes and immune cell infiltration was assessed using the Tumor Immune Estimation Resource tool. Results We find that SKA1-3 are highly expressed in PDAC tissues relative to non-cancer tissues. Survival analysis revealed that high expression of SKA1 and SKA3 independently indicate poor prognosis but they are not associated with relapse-free survival. The prognostic value of SKA1 and SKA3 was further confirmed by the nomogram, joint-effect, and stratified survival analysis. Analysis of underlying mechanisms reveals that these genes influence cancer-related signaling pathways, kinases, miRNA, and E2F family genes. Notably, prognosis-related genes are inversely correlated with several immune cells infiltrating levels. Conclusion We find that SKA1 and SKA3 expression correlates with prognosis and immune cell infiltration in PDAC, highlighting their potential as pancreatic cancer prognostic biomarkers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zong-Rui Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Huang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye-Cheng Che
- Department of Emergency Medicine, First People's Hospital of Fuzhou, Fuzhou, China
| | - Qin Liu
- Department of Medical Ultrasonics, Second People's Hospital of Guilin, Guilin, China
| |
Collapse
|
21
|
Bioinformatics Data Mining Repurposes the JAK2 (Janus Kinase 2) Inhibitor Fedratinib for Treating Pancreatic Ductal Adenocarcinoma by Reversing the KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog)-Driven Gene Signature. J Pers Med 2020; 10:jpm10030130. [PMID: 32947833 PMCID: PMC7563462 DOI: 10.3390/jpm10030130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive and lethal cancer types due to the late diagnosis, high metastatic potential, and drug resistance. The development of novel therapeutic strategies is urgently needed. KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) is the major driver mutation gene for PDAC tumorigenesis. In this study, we mined cancer genomics data and identified a common KRAS-driven gene signature in PDAC, which is related to cell–cell and cell–extracellular matrix (ECM) interactions. Higher expression of this gene signature was associated with poorer overall survival of PDAC patients. Connectivity Map (CMap) analysis and drug sensitivity profiling predicted that a clinically approved JAK2 (Janus kinase 2)-selective inhibitor, fedratinib (also known as TG-101348), could reverse the KRAS-driven gene signature and exhibit KRAS-dependent anticancer activity in PDAC cells. As an approved treatment for myelofibrosis, the pharmacological and toxicological profiles of fedratinib have been well characterized. It may be repurposed for treating KRAS-driven PDAC in the future.
Collapse
|
22
|
HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood 2020; 135:2413-2419. [DOI: 10.1182/blood.2020005395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare autoimmune disorder caused by neutralizing anti-ADAMTS13 autoantibodies. In white individuals, HLA allele DRB1*11 is a predisposing factor for iTTP, whereas DRB1*04 is a protective factor. However, the role of HLA in Asians is unclear. In this study, we analyzed 10 HLA loci using next-generation sequencing in 52 Japanese patients with iTTP, and the allele frequency in the iTTP group was compared with that in a Japanese control group. We identified the following HLA alleles as predisposing factors for iTTP in the Japanese population: DRB1*08:03 (odds ratio [OR], 3.06; corrected P [Pc] = .005), DRB3/4/5*blank (OR, 2.3; Pc = .007), DQA1*01:03 (OR, 2.25; Pc = .006), and DQB1*06:01 (OR,: 2.41; Pc = .003). The estimated haplotype consisting of these 4 alleles was significantly more frequent in the iTTP group than in the control group (30.8% vs 6.0%; Pc < .001). DRB1*15:01 and DRB5*01:01 were weak protective factors for iTTP (OR, 0.23; Pc = .076; and OR, 0.23, Pc = .034, respectively). On the other hand, DRB1*11 and DRB1*04 were not associated with iTTP in the Japanese. These findings indicated that predisposing and protective factors for iTTP differ between Japanese and white individuals. HLA-DR molecules encoded by DRB1*08:03 and DRB1*11:01 have different peptide-binding motifs, but interestingly, bound to the shared ADAMTS13 peptide in an in silico prediction model.
Collapse
|
23
|
Zhou X, Huang H, Cui W, Wang Y, Luo W, Matskova L, Zhou X. Expression and Prognostic Significance of Cadherin 4 (CDH4) in Renal Cell Carcinoma. Med Sci Monit 2020; 26:e922836. [PMID: 32511216 PMCID: PMC7297024 DOI: 10.12659/msm.922836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant expression of cadherin family members and their possible biological function have been widely studied in renal cell carcinoma (RCC). However, the expression of cadherin 4 (CDH4) and its value in RCC diagnosis and prognosis remains elusive. Material/Methods The TCGA database was used to analyze the expression of CDH4 and its clinical parameters and prognosis in 891 RCC patients. In addition, real-time PCR was used to verify the transcription of CDH4 in renal clear cell carcinoma tissue, and the distribution of protein was observed by immunohistochemical staining. Results We found that the mRNA level of CDH4 was elevated in primary RCC in contrast with normal kidney samples using bioinformatics analysis based on the TCGA database. Among the 3 main subtypes of RCC, transcriptional CDH4 was significantly increased in KIRC and KIRP, while it was downregulated in KICH. Interestingly, CDH4 mRNA gradually decreased with the progression of KIRC and KIRP. The transcription of CDH4 in the primary tumor of KIRP patients at T3–T4 stages and KIRC patients with lymph node and distant metastasis were decreased significantly. Overall survival (OS) showed that KIRC and KICH patients with lower expression of CDH4 had worse outcomes. Conclusions The transcriptional level of CDH4 may serve as an effective diagnostic and prognostic biomarker for RCC patients.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Huimei Huang
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wanmeng Cui
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wenqi Luo
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
24
|
Zhao X, Liu Z, Ren Z, Wang H, Wang Z, Zhai J, Cao D, Lyu S, Li L, Lang R, He Q. Triptolide inhibits pancreatic cancer cell proliferation and migration via down-regulating PLAU based on network pharmacology of Tripterygium wilfordii Hook F. Eur J Pharmacol 2020; 880:173225. [PMID: 32464191 DOI: 10.1016/j.ejphar.2020.173225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook F (TwHF) exhibits anti-tumor efficacy in pancreatic ductal adenocarcinoma (PDAC), however the pharmacological mechanisms are unclear due to complicated formulae and target genes. Using Traditional Chinese Medicine Systems Pharmacology and GeneCards databases, we performed a network pharmacology (NP) of TwHF and screened out 22 ingredients and 25 target genes associated with PDAC. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the 25 target genes were performed. Using STRING database, protein-protein interaction network of the 25 target genes was constructed, and indicated that triptolide (TL)-plasminogen activator urokinase (PLAU) as a potential target for PDAC treatment. Hence, in vitro experiments were performed and validated that TL inhibited PDAC cell proliferation and migration by suppressing PLAU expression. The results of Western blot suggested that PLAU activated endothelial-mesenchymal transition (EMT) progression. In two Gene Expression Omnibus datasets (GSE16515 and GSE28735), PLAU was up-regulated in tumor tissues, and PLAU overexpression was associated with poor overall survival of PDAC cohort of The Cancer Genome Atlas (P < 0.01). Immunohistochemistry illustrated that overexpression of PLAU protein was related to lymph node metastasis in 20 PDAC patients (P < 0.01). Based on NP of TwHF, we identified and validated that TL-PLAU could serve as a potential target for PDAC treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhangyong Ren
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Huaguang Wang
- Department of Pharmacology, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zisong Wang
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jialei Zhai
- Department of Pathology, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Di Cao
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shaocheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lixin Li
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China.
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Lee J, Park SS, Lee YK, Norton JA, Jeffrey SS. Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol 2019; 13:1623-1650. [PMID: 31243883 PMCID: PMC6670020 DOI: 10.1002/1878-0261.12537] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Reliable biomarkers are required to evaluate and manage pancreatic ductal adenocarcinoma. Circulating tumor cells and circulating tumor DNA are shed into blood and can be relatively easily obtained from minimally invasive liquid biopsies for serial assays and characterization, thereby providing a unique potential for early diagnosis, forecasting disease prognosis, and monitoring of therapeutic response. In this review, we provide an overview of current technologies used to detect circulating tumor cells and circulating tumor DNA and describe recent advances regarding the multiple clinical applications of liquid biopsy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jee‐Soo Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Sung Sup Park
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Young Kyung Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineHallym University College of MedicineAnyangKorea
| | - Jeffrey A. Norton
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
26
|
Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment. Int J Mol Sci 2017; 18:ijms18061201. [PMID: 28587243 PMCID: PMC5486024 DOI: 10.3390/ijms18061201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic cancer has a very poor prognosis with an overall five-year survival rate of less than 5% and an average median survival time of six months. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Although our understanding of the molecular events underlying multi-step carcinogenesis in pancreatic cancer has steadily increased, translation into more effective therapeutic approaches has been inefficient in recent decades. Therefore, it is imperative that novel and targeted approaches are designed to facilitate the early detection and treatment of pancreatic cancer. Presently, there are numerous ongoing studies investigating the types of genomic variations in pancreatic cancer and their impact on tumor initiation and growth, as well as prognosis. This has led to the development of therapeutics to target these genetic variations for clinical benefit. Thus far, there have been minimal clinical successes directly targeting these genomic alterations; however research is ongoing to ultimately discover an innovative approach to tackle this devastating disease. This review will discuss the genomic variations in pancreatic cancer, and the resulting potential diagnostic and therapeutic implications.
Collapse
|