1
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
2
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Booyse RP, Twesigomwe D, Hazelhurst S. Characterization of POR haplotype distribution in African populations and comparison with other global populations. Pharmacogenomics 2022; 23:771-782. [PMID: 36043428 PMCID: PMC9531186 DOI: 10.2217/pgs-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background & aim: POR is an enzyme that mediates electron transfer to enable the drug-metabolizing activity of CYP450 proteins. However, POR has been understudied in pharmacogenomics despite this vital role. This study aimed to characterize the genetic variation in POR across African populations and to compare the star allele (haplotype) distribution with that in other global populations. Materials & methods: POR star alleles were called from whole-genome sequencing data using the StellarPGx pipeline. Results: In addition to the common POR*1 and *28 (defined by rs1057868), five novel rare haplotypes were computationally inferred. No significant frequency differences were observed among the majority of African populations. However, POR*28 was observed at a higher frequency in individuals of non-African ancestry. Conclusion: This study highlights the distribution of POR alleles in Africa and across global populations with a view toward informing future precision medicine implementation.
Collapse
Affiliation(s)
- Ross P Booyse
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Twesigomwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Gao Y, Ma J. Cytochrome P450 oxidoreductase variant A503V contributes to the increased CYP3A5 activity with tacrolimus in vitro. Expert Opin Drug Metab Toxicol 2022; 18:529-535. [PMID: 35946839 DOI: 10.1080/17425255.2022.2112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Tacrolimus is a calcineurin inhibitor with a strong efficacy in prevention of graft rejection after transplantation. It is well known that cytochrome P450 3A5 (CYP3A5) has a high metabolic capacity for tacrolimus, and mutations in human cytochrome P450 oxidoreductase (POR) cause altered CYP3A5 activity. Recently, clinical studies have revealed that POR*28 contributes enhanced tacrolimus clearance in CYP3A5 expressers. A503V is an amino acid sequence variant encoded by POR*28. In this study, we first evaluated the impact of A503V on CYP3A5 activity with tacrolimus as the substrate in vitro. RESEARCH DESIGN & METHODS Wild-type (WT) and A503V POR, with WT CYP3A5 were expressed in recombinant HepG2 cells and reconstituted proteins. Michaelis constant (Km) and maximum velocity (Vmax) of CYP3A5 with tacrolimus as substrates were determined, and catalytic efficiency is expressed as Vmax/Km. RESULTS WT and A503V POR both down-regulated the CYP3A5 mRNA expression, and WT POR rather than A503V down-regulated the protein expression of CYP3A5 in recombinant HepG2 cells. Compared with WT POR, A503V increased metabolism of tacrolimus by CYP3A5 in both cellular and protein level. CONCLUSION A503V can affect CYP3A5-catalyzed tacrolimus metabolism in vitro, which suggests that A503V has the potential to serve as a biomarker for tacrolimus treatment in transplantation recipients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Ma
- Department of Pharmacy, Medical center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
5
|
Sabri Bens M, Dassamiour S, Hambaba L, Akram Mela M, Sami R, M. Al-Mush AA, Benajiba N, Al Masoudi LM. In silico Investigation and BSA Denaturation Inhibitory Activity of Ethyl Acetate and N-butanol Extracts of Centaurea tougourensis Boiss. and Reut. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1296.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Darakjian L, Deodhar M, Turgeon J, Michaud V. Chronic Inflammatory Status Observed in Patients with Type 2 Diabetes Induces Modulation of Cytochrome P450 Expression and Activity. Int J Mol Sci 2021; 22:ijms22094967. [PMID: 34067027 PMCID: PMC8124164 DOI: 10.3390/ijms22094967] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that causes a hyperglycemic status which leads, over time, to serious damage to the heart, blood vessels, eyes, kidneys and nerves. The most frequent form of diabetes is type 2 diabetes mellitus (T2DM) which is often part of a metabolic syndrome (hyperglycaemia, hypertension, hypercholesterolemia, abdominal obesity) that usually requires the use of several medications from different drug classes to bring each of these conditions under control. T2DM is associated with an increase in inflammatory markers such as interleukin-6 (IL-6) and the tumor necrosis factor alpha (TNF-α). Higher levels of IL-6 and TNF-α are associated with a downregulation of several drug metabolizing enzymes, especially the cytochrome P450 (P450) isoforms CYP3As and CYP2C19. A decrease in these P450 isoenzymes may lead to unexpected rise in plasma levels of substrates of these enzymes. It could also give rise to a mismatch between the genotypes determined for these enzymes, the predicted phenotypes based on these genotypes and the phenotypes observed clinically. This phenomenon is described as phenoconversion. Phenoconversion typically results from either a disease (such as T2DM) or concomitant administration of medications inducing or inhibiting (including competitive or non-competitive inhibition) a P450 isoenzyme used by other substrates for their elimination. Phenoconversion could have a significant impact on drug effects and genotypic-focused clinical outcomes. As the aging population is exposed to polypharmacy along with inflammatory comorbidities, consideration of phenoconversion related to drug metabolizing enzymes is of importance when applying pharmacogenomic results and establishing personalized and more precise drug regimens.
Collapse
Affiliation(s)
- Lucy Darakjian
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Malavika Deodhar
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-407-454-9964
| |
Collapse
|
7
|
Heintze T, Klein K, Hofmann U, Zanger UM. Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells. Sci Rep 2021; 11:1000. [PMID: 33441761 PMCID: PMC7806635 DOI: 10.1038/s41598-020-79952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
HepaRG cells are increasingly accepted as model for human drug metabolism and other hepatic functions. We used lentiviral transduction of undifferentiated HepaRG cells to deliver Cas9 and two alternative sgRNAs targeted at NADPH:cytochrome P450 oxidoreductase (POR), the obligate electron donor for microsomal cytochromes P450 (CYP). Cas9-expressing HepaRGVC (vector control) cells were phenotypically similar to wild type HepaRG cells and could be differentiated into hepatocyte-like cells by DMSO. Genetic POR-knockout resulted in phenotypic POR knockdown of up to 90% at mRNA, protein, and activity levels. LC–MS/MS measurement of seven CYP-activities showed differential effects of POR-knockdown with CYP2C8 being least and CYP2C9 being most affected. Further studies on cytochrome b5 (CYB5), an alternative NADH-dependent electron donor indicated particularly strong support of CYP2C8-dependent amodiaquine N-deethylation by CYB5 and this was confirmed by genetic CYB5 single- and POR/CYB5 double-knockout. POR-knockdown also affected CYP expression on mRNA and protein level, with CYP1A2 being induced severalfold, while CYP2C9 was strongly downregulated. In summary our results show that POR/NADPH- and CYB5/NADH-electron transport systems influence human drug metabolizing CYPs differentially and differently than mouse Cyps. Our Cas9-expressing HepaRGVC cells should be suitable to study the influence of diverse genes on drug metabolism and other hepatic functions.
Collapse
Affiliation(s)
- Tamara Heintze
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany. .,Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
8
|
Ding L, Li L, Liu S, Bao X, Dickman KG, Sell SS, Mei C, Zhang QY, Gu J, Ding X. Proximal Tubular Vacuolization and Hypersensitivity to Drug-Induced Nephrotoxicity in Male Mice With Decreased Expression of the NADPH-Cytochrome P450 Reductase. Toxicol Sci 2020; 173:362-372. [PMID: 31693140 DOI: 10.1093/toxsci/kfz225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effect of variations in the expression of cytochrome P450 reductase (CPR or POR) is determined in mice with decreased POR expression to identify potential vulnerabilities in people with low POR expression. There is an age-dependent appearance of increasing vacuolization in the proximal tubules of the renal cortex in 4- to 9-month-old male (but not female) Cpr-low (CL) mice. These mice have low POR expression in all cells of the body and upregulation of lysosome-associated membrane protein 1 expression in the renal cortex. Vacuolization is also seen in extrahepatic CL and extrarenal CL male mice, but not in mice with tissue-specific Por deletion in liver, intestinal epithelium, or kidney. The occurrence of vacuolization is accompanied by increases in serum blood-urea-nitrogen levels. Male CL mice are hypersensitive to cisplatin- and gentamicin-induced renal toxicity at 3 months of age, before proximal tubular (PT) vacuoles are detectable. At doses that do not cause renal toxicity in wild-type mice, both drugs cause substantial increases in serum blood-urea-nitrogen levels and PT vacuolization in male but not female CL mice. The hypersensitivity to drug-induced renal toxicity is accompanied by increases in circulating drug levels. These novel findings demonstrate deficiency of renal function in mice with globally reduced POR expression and suggest that low POR expression may be a risk factor for drug-induced nephrotoxicity in humans.
Collapse
Affiliation(s)
- Liang Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Lei Li
- New York State Department of Health, Wadsworth Center, Albany, New York
| | - Senyan Liu
- New York State Department of Health, Wadsworth Center, Albany, New York.,Kidney Institute & Division of Nephrology, Changzheng Hospital, Shanghai 200003, China
| | - Xiaochen Bao
- New York State Department of Health, Wadsworth Center, Albany, New York
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Stewart S Sell
- New York State Department of Health, Wadsworth Center, Albany, New York.,School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Changlin Mei
- Kidney Institute & Division of Nephrology, Changzheng Hospital, Shanghai 200003, China
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,New York State Department of Health, Wadsworth Center, Albany, New York.,School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Jun Gu
- New York State Department of Health, Wadsworth Center, Albany, New York.,School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| |
Collapse
|
9
|
Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, Howe R, Hassan M, Aklillu E. Population Pharmacokinetic, Pharmacogenetic, and Pharmacodynamic Analysis of Cyclophosphamide in Ethiopian Breast Cancer Patients. Front Pharmacol 2020; 11:406. [PMID: 32390827 PMCID: PMC7191301 DOI: 10.3389/fphar.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclophosphamide (CPA) containing chemotherapy regimen is the standard of care for breast cancer treatment in sub-Saharan Africa. Wide inter-individual variations in pharmacokinetics (PK) of cyclophosphamide (CPA) influence the efficacy and toxicity of CPA containing chemotherapy. Data on the pharmacokinetics (PK) profile of CPA and its covariates among black African patients is lacking. We investigated population pharmacokinetic/pharmacogenetic/pharmacodynamic (PK-PG-PD) of CPA in Ethiopian breast cancer patients. During the first cycle of CPA-based chemotherapy, the population PK parameters for CPA were determined in 267 breast cancer patients. Absolute neutrophil count was recorded at baseline and day 20 post-CPA administration. A population PK and covariate model analysis was performed using non-linear mixed effects modeling. Semi-mechanistic and empiric drug response models were explored to describe the relationship between the area under concentration-time curve (AUC), and neutrophil toxicity. One compartment model better described CPA PK with population clearance and apparent volume of distribution (VD) of 5.41 L/h and 46.5 L, respectively. Inter-patient variability in CPA clearance was 54.5%. Patients carrying CYP3A5*3 or *6 alleles had lower elimination rate constant and longer half-life compared to wild type carriers. CYP2C9 *2 or *3 carriers were associated with increased clearance of CPA. Patients who received 500 mg/m2 based CPA regimen were associated with a 32.3% lower than average clearance and 37.1% lower than average VD compared to patients who received 600 mg/m2. A 0.1 m2 unit increase in body surface area (BSA) was associated with a 5.6% increment in VD. The mean VD (33.5 L) in underweight group (BMI < 18.5 kg/m2) was significantly lower compared to those of overweight (48.1 L) or obese patients (51.9 L) (p < 0.001). AUC of CPA was positively correlated with neutropenic toxicity. In conclusion, we report large between-patient variability in clearance of CPA. CYP3A5 and CYP2C9 genotypes, BSA, BMI, and CPA dosage regimen influence PK of CPA. Plasma CPA exposure positively predicts chemotherapy-associated neutropenic toxicity.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ronald Kuteesa Bisaso
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Kijumba Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Aseffa
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Center (KFC), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Fatunde OA, Brown SA. The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology. Int J Mol Sci 2020; 21:E604. [PMID: 31963461 PMCID: PMC7014347 DOI: 10.3390/ijms21020604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As many novel cancer therapies continue to emerge, the field of Cardio-Oncology (or onco-cardiology) has become crucial to prevent, monitor and treat cancer therapy-related cardiovascular toxicity. Furthermore, given the narrow therapeutic window of most cancer therapies, drug-drug interactions are prevalent in the cancer population. Consequently, there is an increased risk of affecting drug efficacy or predisposing individual patients to adverse side effects. Here we review the role of cytochrome P450 (CYP450) enzymes in the field of Cardio-Oncology. We highlight the importance of cardiac medications in preventive Cardio-Oncology for high-risk patients or in the management of cardiotoxicities during or following cancer treatment. Common interactions between Oncology and Cardiology drugs are catalogued, emphasizing the impact of differential metabolism of each substrate drug on unpredictable drug bioavailability and consequent inter-individual variability in treatment response or development of cardiovascular toxicity. This inter-individual variability in bioavailability and subsequent response can be further enhanced by genomic variants in CYP450, or by modifications of CYP450 gene, RNA or protein expression or function in various 'omics' related to precision medicine. Thus, we advocate for an individualized approach to each patient by a multidisciplinary team with clinical pharmacists evaluating a treatment plan tailored to a practice of precision Cardio-Oncology. This review may increase awareness of these key concepts in the rapidly evolving field of Cardio-Oncology.
Collapse
Affiliation(s)
- Olubadewa A. Fatunde
- Department of Medicine, University of Texas Health Science Center at Tyler–CHRISTUS Good Shepherd Medical Center, Longview, TX 75601, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Ahmed JH, Makonnen E, Fotoohi A, Aseffa A, Howe R, Aklillu E. CYP2D6 Genotype Predicts Plasma Concentrations of Tamoxifen Metabolites in Ethiopian Breast Cancer Patients. Cancers (Basel) 2019; 11:cancers11091353. [PMID: 31547390 PMCID: PMC6770728 DOI: 10.3390/cancers11091353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen displays wide inter-individual variability (IIV) in its pharmacokinetics and treatment outcome. Data on tamoxifen pharmacokinetics and pharmacogenetics from black African breast cancer patient populations is lacking. We investigated the pharmacokinetic and pharmacogenetic profile of tamoxifen and its major active metabolite, endoxifen, in Ethiopian breast cancer patients. A total of 81 female breast cancer patients on adjuvant tamoxifen therapy were enrolled. Tamoxifen (Tam) and its major metabolites, N-desmethyltamoxifen (NDM), 4-hydroxy-tamoxifen (4-HT), and (Z)-endoxifen (E) were quantified using LC-MS/MS. Genotyping for CYP2D6, CYP2C9, CYP2C19, CYP3A5, POR, and ABCB1 and UGT2B15 and copy number variation for CYP2D6 were done. The proportion of patients with low endoxifen level (<5.9 ng/mL) was 35.8% (median concentration 7.94 ng/mL). The allele frequency of CYP2D6 gene deletion (*5) and duplication (*1×N or *2×N) was 4.3% and 14.8%, respectively. Twenty-six percent of the patients carried duplicated or multiplicated CYP2D6 gene. An increase in CYP2D6 activity score was associated with increased endoxifen concentration and MRE/NDM (p < 0.001). The IIV in endoxifen concentration and MRE/NDM was 74.6% and 59%, respectively. CYP2D6 diplotype explained 28.2% and 44% of the variability in absolute endoxifen concentration and MRE/NDM, respectively. The explanatory power of CYP2D6 diplotype was improved among ABCB1c.4036G carriers (43% and 65.2%, respectively for endoxifen concentration and MRE/NDM) compared to A/A genotype. CYP2C9, CYP2C19, and CYP3A5 genotypes had no significant influence on endoxifen concentration or MRE/NDM. In conclusion, we report a high rate of low endoxifen level as well as large IIV in tamoxifen and its metabolite concentrations. CYP2D6 is significant predictor of plasma endoxifen level in a gene-dose dependent manner.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Solna Stockholm 171 76, Sweden.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| |
Collapse
|
12
|
Gao B, Zhao S, Zhang Z, Li L, Hu K, Kaziem AE, He Z, Hua X, Shi H, Wang M. A potential biomarker of isofenphos-methyl in humans: A chiral view. ENVIRONMENT INTERNATIONAL 2019; 127:694-703. [PMID: 30991225 DOI: 10.1016/j.envint.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Isofenphos-methyl (IFP) is a very active and persistent chiral insecticide. However, IFP has lower activity against acetylcholinesterases (AChEs). Previously, it was confirmed that phosphorothioate organophosphorus pesticides with N-alkyl (POPN) require activation by oxidative desulfuration and N-dealkylation. In this work, we demonstrated that IFP could be metabolized in human liver microsomes to isofenphos-methyl oxon (IFPO, 52.7%), isocarbophos (ICP, 14.2%) and isocarbophos oxon (ICPO, 11.2%). It was found that (R)-IFP was preferentially degraded compared to the (S)-enantiomer, and the enantiomeric fraction (EF) value reached 0.61 at 60 min. However, (S)-enantiomers of the three metabolites, were degraded preferentially, and the EF values ranged from 0.34 to 0.45. Cytochrome P450 (CYP) isoforms CYP3A4, CYP2E1, and CYP1A2 and carboxylesterase enzyme have an essential role in the enantioselective metabolism of IFP; but, the enzymes that participate in the degradation of IFP metabolites are different. The AChE inhibition bioassay indicated that ICPO is the only effective inhibitor of AChE. The covalent molecular docking has proposed that the metabolites of IFP and its analogs after N-dealkylation and oxidative desulfuration will possess the highest inhibitory activity against AChE. This study is the first to demonstrate that ICPO can be regarded as a potential biomarker for the biomonitoring of IFP and ICP exposure in humans.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Kunming Hu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Amir E Kaziem
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University. Cairo11566, Egypt
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
13
|
Huang K, Liao X, Han C, Wang X, Yu T, Yang C, Liu X, Yu L, Chen Z, Qin W, Zhu G, Su H, Liu Z, Zeng X, Zhou X, Lu S, Huang J, Liang Y, Liu Z, Deng J, Ye X, Peng T. Genetic variants and Expression of Cytochrome p450 Oxidoreductase Predict Postoperative Survival in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. J Cancer 2019; 10:1453-1465. [PMID: 31031855 PMCID: PMC6485213 DOI: 10.7150/jca.28919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/14/2018] [Indexed: 01/27/2023] Open
Abstract
Our current study investigates the prognostic values of genetic variants and mRNA expression of cytochrome p450 oxidoreductase (POR) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). A total of 19 candidate single nucleotide polymorphisms (SNPs) located in the exons of POR were genotyped using Sanger sequencing from 476 HBV-related HCC patients who underwent hepatectomy between 2003 and 2013. The mRNA expression of POR in 212 patients with HBV-related HCC was obtained from GSE14520 dataset. Survival analysis was performed to investigate the association of POR variants and mRNA expression with overall survival (OS) and recurrence-free survival (RFS). Nomograms were used to predict the prognosis of HBV-related HCC patients. Gene set enrichment analysis (GSEA) was used to investigate the mechanism of POR in HBV-related HCC prognosis. The polymorphism POR-rs1057868 was significantly associated with HBV-related HCC OS (CT/TT vs. CC, hazard ratio [HR] = 0.69, 95% confidence interval [CI] = [0.54, 0.88], P = 0.003), but not significantly associated with RFS (CT/TT vs. CC, P = 0.378). POR mRNA expression was also significantly associated with HBV-related HCC OS (high vs. low, HR = 0.61, 95% CI = [0.38, 0.97], P = 0.036), but not significantly associated with the RFS (high vs. low, P = 0.201). Two nomograms were developed to predict the HBV-related HCC OS. Furthermore, GSEA suggests that multiple gene sets were significantly enriched in liver cancer survival and recurrence, as well as POR-related target therapy in the liver. In conclusion, our study suggests that POR-rs1057868 and mRNA expression may serve as a potential postoperative prognosis biomarker in HBV-related HCC.
Collapse
Affiliation(s)
- Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sicong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
14
|
Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. Biotransformation and bioactivation reactions - 2017 literature highlights *. Drug Metab Rev 2018; 50:221-255. [PMID: 29954222 DOI: 10.1080/03602532.2018.1473875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This annual review is the third one to highlight recent advances in the study and assessment of biotransformations and bioactivations ( Table 1 ). We followed the same format as the previous years with selection and authoring each section (see Baillie et al. 2016 ; Khojasteh et al. 2017 ). We acknowledge that many universities no longer train students in mechanistic biotransformation studies reflecting a decline in the investment for those efforts by public funded granting institutions. We hope this work serves as a resource to appreciate the knowledge gained each year to understand and hopefully anticipate toxicological outcomes dependent on biotransformations and bioactivations. This effort itself also continues to evolve. I am pleased that Drs. Rietjens and Miller have again contributed to this annual review. We would like to welcome Kaushik Mitra as an author for this year's issue, and we thank Deepak Dalvie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. As always, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | - Grover P Miller
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- c Department of Safety Assessment and Laboratory Animal Resources , Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | |
Collapse
|
15
|
Nakano M, Nakajima M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 2018; 14:493-504. [PMID: 29718737 DOI: 10.1080/17425255.2018.1472237] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.
Collapse
Affiliation(s)
- Masataka Nakano
- a Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences , WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University , Kanazawa , Japan.,b Research Fellow of Japan Society for the Promotion Science
| | - Miki Nakajima
- a Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences , WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University , Kanazawa , Japan
| |
Collapse
|
16
|
Song T, Wang B, Chen H, Zhu J, Sun H. In vitro fertilization-frozen embryo transfer in a patient with cytochrome P450 oxidoreductase deficiency: a case report. Gynecol Endocrinol 2018; 34:385-388. [PMID: 29069987 DOI: 10.1080/09513590.2017.1393663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cytochrome P450 enzymes are required for the synthesis of cholesterol and steroid hormones. Cytochrome P450 oxidoreductase (POR) donates electrons to microsomal cytochrome P450 enzymes. POR deficiency (PORD) is a rare autosomal recessive disease. In patients with PORD, steroid hormone synthesis is disrupted, which can cause infertility. The objective of this study was to report on a case of in vitro fertilization-frozen embryo transfer (IVF-FET) in a patient with PORD. The patient's hormone (i.e. 17α-hydroxyprogesterone) and electrolyte levels were within normal ranges ordinarily. Upon controlled ovarian stimulation, follicle growth was normal, but serum estrogen and progesterone levels were low and high, respectively. The serum progesterone level was elevated after long-acting gonadotropin-releasing hormone agonist treatment, and an endometrial biopsy showed a change in the proliferative phase. Genetic tests detected homozygous mutations (c.976 T > G, p.Y326D) in exon 10 of the POR gene. The frozen embryo was transferred during the administration of hormone replacement therapy. No significant morphological or metabolic abnormalities were observed in the neonate. Our findings suggest that infertile women with normal hormone levels may have metabolic diseases such as PORD. Further studies are needed to determine the cause of these diseases and to assist pregnancy in such women.
Collapse
Affiliation(s)
- Tianran Song
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Bin Wang
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Huan Chen
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Jingjing Zhu
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Haixiang Sun
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| |
Collapse
|
17
|
Adam AAA, van der Mark VA, Donkers JM, Wildenberg ME, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. A practice-changing culture method relying on shaking substantially increases mitochondrial energy metabolism and functionality of human liver cell lines. PLoS One 2018; 13:e0193664. [PMID: 29672606 PMCID: PMC5908182 DOI: 10.1371/journal.pone.0193664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Practice-changing culturing techniques of hepatocytes are highly required to increase their differentiation. Previously, we found that human liver cell lines HepaRG and C3A acquire higher functionality and increased mitochondrial biogenesis when cultured in the AMC-Bioartificial liver (BAL). Dynamic medium flow (DMF) is one of the major contributors to this stimulatory effect. Recently, we found that DMF-culturing by shaking of HepaRG monolayers resulted in higher mitochondrial biogenesis. Here we further investigated the effect of DMF-culturing on energy metabolism and hepatic functionality of HepaRG and C3A monolayers. HepaRG and C3A DMF-monolayers were incubated with orbital shaking at 60 rpm during the differentiation phase, while control monolayers were maintained statically. Subsequently, energy metabolism and hepatic functionality were compared between static and DMF-cultures. DMF-culturing of HepaRG cells substantially increased hepatic differentiation; transcript levels of hepatic structural genes and hepatic transcription regulators were increased up to 15-fold (Cytochrome P450 3A4) and nuclear translocation of hepatic transcription factor CEBPα was stimulated. Accordingly, hepatic functions were positively affected, including ammonia elimination, urea production, bile acid production, and CYP3A4 activity. DMF-culturing shifted energy metabolism from aerobic glycolysis towards oxidative phosphorylation, as indicated by a decline in lactate production and glucose consumption, and an increase in oxygen consumption. Similarly, DMF-culturing increased mitochondrial energy metabolism and hepatic functionality of C3A cells. In conclusion, simple shaking of monolayer cultures substantially improves mitochondrial energy metabolism and hepatic differentiation of human liver cell lines. This practice-changing culture method may prove to prolong the in-vitro maintenance of primary hepatocytes and increase hepatic differentiation of stem cells.
Collapse
Affiliation(s)
- Aziza A. A. Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent A. van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Department Of Gastroenterology and Hepatology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. F. M. Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, Oswald S. Protein Abundance of Clinically Relevant Drug-Metabolizing Enzymes in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin Pharmacol Ther 2017; 104:515-524. [DOI: 10.1002/cpt.967] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Diana Busch
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Janett Müller
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| | - Marek Ostrowski
- Department of General and Transplantation Surgery; Pomeranian Medical University; Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| |
Collapse
|
19
|
El-Serafi I, Terelius Y, Abedi-Valugerdi M, Naughton S, Saghafian M, Moshfegh A, Mattsson J, Potácová Z, Hassan M. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway. PLoS One 2017; 12:e0187294. [PMID: 29121650 PMCID: PMC5679629 DOI: 10.1371/journal.pone.0187294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and hence improving the clinical outcomes of HSCT.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ylva Terelius
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Seán Naughton
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Maryam Saghafian
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center of Karolinska (CCK), Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jonas Mattsson
- Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital-Huddinge, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zuzana Potácová
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
20
|
Methaneethorn J, Panomvana D, Vachirayonstien T. Preliminary study of the association between the elimination parameters of phenytoin and phenobarbital. Drug Metab Pers Ther 2017; 32:151-156. [PMID: 28873066 DOI: 10.1515/dmpt-2017-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Therapeutic drug monitoring is essential for both phenytoin and phenobarbital therapy given their narrow therapeutic indexes. Nevertheless, the measurement of either phenytoin or phenobarbital concentrations might not be available in some rural hospitals. Information assisting individualized phenytoin and phenobarbital combination therapy is important. This study's objective was to determine the relationship between the maximum rate of metabolism of phenytoin (Vmax) and phenobarbital clearance (CLPB), which can serve as a guide to individualized drug therapy. METHODS Data on phenytoin and phenobarbital concentrations of 19 epileptic patients concurrently receiving both drugs were obtained from medical records. Phenytoin and phenobarbital pharmacokinetic parameters were studied at steady-state conditions. The relationship between the elimination parameters of both drugs was determined using simple linear regression. RESULTS A high correlation coefficient between Vmax and CLPB was found [r=0.744; p<0.001 for Vmax (mg/kg/day) vs. CLPB (L/kg/day)]. Such a relatively strong linear relationship between the elimination parameters of both drugs indicates that Vmax might be predicted from CLPB and vice versa. CONCLUSIONS Regression equations were established for estimating Vmax from CLPB, and vice versa in patients treated with combination of phenytoin and phenobarbital. These proposed equations can be of use in aiding individualized drug therapy.
Collapse
|
21
|
Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet Genomics 2017; 27:337-346. [DOI: 10.1097/fpc.0000000000000297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Tong HY, Borobia AM, Martínez Ávila JC, Lubomirov R, Muñoz M, Blanco Bañares MJ, Hernández R, Fernández Capitán C, Ramírez E, Frías J, Carcas AJ. Influence of two variants of CYP450 oxidoreductase on the stable dose of acenocoumarol in a Spanish population. Pharmacogenomics 2017; 18:797-805. [PMID: 28592191 DOI: 10.2217/pgs-2017-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM To evaluate the influence of two variants of P450 oxidoreductase (POR), rs2868177 and POR*28, on the stable dosage of acenocoumarol. PATIENTS & METHODS For this observational, cross-sectional study, patients were undergone stable anticoagulant treatment with acenocoumarol. Univariate and multiple regression analyses were performed to assess the influence of POR polymorphisms. RESULTS About 340 patients were enrolled. Multiple regression had a coefficient of determination (R2) of 51.5% and an Akaike information criterion of 234.22. The inclusion of POR*28 polymorphisms increased the R2 to 52.0% and reduced the Akaike information criteria to 230.58. The POR*28 heterozygote showed statistical significance in the algorithm. CONCLUSION The POR*28 heterozygote appears to be associated with the stable dose of acenocoumarol, but its clinical contribution to the prediction of the dosing of this drug is minimal.
Collapse
Affiliation(s)
- Hoi Y Tong
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | | | - Rubin Lubomirov
- Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Mario Muñoz
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Rafael Hernández
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Elena Ramírez
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Antonio J Carcas
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| |
Collapse
|
23
|
Piekos S, Pope C, Ferrara A, Zhong XB. Impact of Drug Treatment at Neonatal Ages on Variability of Drug Metabolism and Drug-drug Interactions in Adult Life. ACTA ACUST UNITED AC 2017; 3:1-9. [PMID: 28344923 DOI: 10.1007/s40495-016-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW As the number of patients taking more than one medication concurrently continues to increase, predicting and preventing drug-drug interactions (DDIs) is now more important than ever. Administration of one drug can cause changes in the expression and activity of drug metabolizing enzymes (DMEs) and alter the efficacy or toxicity of other medications that are substrates for these enzymes, resulting in a DDI. In today's medical practice, potential DDIs are evaluated based on the current medications a patient is taking with little regard to drugs the patient has been exposed to in the past. The purpose of this review is to discuss potential impacts of drug treatment at neonatal ages on the variability of drug metabolism and DDIs in adult life. RECENT FINDINGS Existing evidence from the last thirty years has shown that exposure to certain xenobiotics during neonatal life has the potential to persistently alter DME expression through adult life. With recent advancements in the understanding of epigenetic regulation on gene expression, this phenomenon is resurfacing in the scientific community in hopes of defining possible mechanisms. Exposure to compounds that have the ability to bind nuclear receptors and trigger epigenetic modifications at neonatal and pediatric ages may have long-term, if not permanent, consequences on gene expression and DME activity. SUMMARY The information summarized in this review should challenge the way current healthcare providers assess DDI potential and may offer an explanation to the significant interindividual variability in drug metabolism that is observed among patients.
Collapse
Affiliation(s)
- Stephanie Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Austin Ferrara
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
24
|
Burkhard FZ, Parween S, Udhane SS, Flück CE, Pandey AV. P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol 2017; 165:38-50. [PMID: 27068427 DOI: 10.1016/j.jsbmb.2016.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is required for metabolic reactions of steroid and drug metabolizing cytochrome P450 proteins located in endoplasmic reticulum. Mutations in POR cause a complex set of disorders resembling combined deficiencies of multiple steroid metabolizing enzymes. The P450 oxidoreductase deficiency (PORD) was first reported in patients with symptoms of defects in steroidogenic cytochrome P450 enzymes and ambiguous genitalia, and bone malformation features resembling Antley-Bixler syndrome. POR is now classified as a separate and rare form of congenital adrenal hyperplasia (CAH), which may cause disorder of sexual development (DSD). Since the initial description of PORD in 2004, a large number of POR mutations and polymorphisms have been described. In this report we have performed computational analysis of mutations and polymorphisms in POR linked to metabolism of steroids and xenobiotics and pathology of PORD from the reported cases. The mutations in POR that were identified in patients with disruption of steroidogenesis also have severe effects on cytochrome P450 proteins involved in metabolism of drugs. Different variations in POR show a range of diverse effects on different partner proteins that are often linked to the location of the particular variants. The variations in POR that cause defective binding of co-factors always have damaging effects on all partner proteins, while the mutations causing subtle structural changes may lead to altered interaction with partner proteins and the overall effect may be different for each individual partner. Computational analysis of available sequencing data and mutation analysis shows that Japanese (R457H), Caucasian (A287P) and Turkish (399-401) populations can be linked to unique founder mutations. Other mutations identified so far were identified as rare alleles or in single isolated reports. The common polymorphism of POR is the variant A503V which can be found in about 27% of alleles in general population but there are remarkable differences among different sub populations.
Collapse
Affiliation(s)
- Fabian Z Burkhard
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Shaheena Parween
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Sameer S Udhane
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
25
|
Gupta S, Jhawat V. Quality by design (QbD) approach of pharmacogenomics in drug designing and formulation development for optimization of drug delivery systems. J Control Release 2016; 245:15-26. [PMID: 27871989 DOI: 10.1016/j.jconrel.2016.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Conventional approaches of drug discovery are very complex, costly and time consuming. But after the completion of human genome project, applications of pharmacogenomics in this area completely revolutionize the drug discovery and development process to produce a quality by design (QbD) approach based products. The applications of two areas of pharmacogenomics i.e. structural and functional pharmacogenomics excel the drug discovery process by employing genomic data in drug target identification and evaluation, lead optimization via high throughput screening, evaluation of drug metabolizing enzymes, drug transporters and drug receptors using computer aided technique and bioinformatics library data base. Pharmacogenomics also provides an important and reliable basis for evaluation and optimization of the dosage forms as well as repositioning of failed drugs for the treatment of new disease. Various dosage forms of category of drugs such as anticancer drugs, vaccines, gene and DNA delivery systems and immunological agents can be easily evaluated based on the genetic markers of the related disease. The effect of different formulation polymers on pharmacokinetic and pharmacodynamic properties of drugs can be assessed easily and therefore it plays an important role in formulation optimization. However, current applications of pharmacogenomics in drug discovery and formulation optimization are very limited because of costly and non accessible techniques for everyone, but in future, with the advancement in the technology; the application of genomic data in drug discovery will provide us with innovative, safer and more efficacious medicines.
Collapse
Affiliation(s)
- Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, Ambala, Haryana, India.
| | - Vikas Jhawat
- Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, Ambala, Haryana, India
| |
Collapse
|
26
|
Hatta FHM, Aklillu E. P450 (Cytochrome) Oxidoreductase Gene (POR) Common Variant (POR*28) Significantly Alters CYP2C9 Activity in Swedish, But Not in Korean Healthy Subjects. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:777-81. [PMID: 26669712 DOI: 10.1089/omi.2015.0159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations.
Collapse
Affiliation(s)
- Fazleen H M Hatta
- 1 Department of Laboratory Medicine, Karolinska Institutet, Division of Clinical Pharmacology, Karolinska University Hospital , Huddinge, Sweden .,2 Faculty of Pharmacy, Universiti Teknologi MARA , Selangor, Malaysia
| | - Eleni Aklillu
- 1 Department of Laboratory Medicine, Karolinska Institutet, Division of Clinical Pharmacology, Karolinska University Hospital , Huddinge, Sweden
| |
Collapse
|
27
|
Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:298-313. [PMID: 27729266 PMCID: PMC5093856 DOI: 10.1016/j.gpb.2016.03.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
The interindividual genetic variations in drug metabolizing enzymes and transporters influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision medicine, pharmacogenomics, the study of responses of individuals to medication based on their genomic information, enables the evaluation of some specific genetic variants responsible for an individual’s particular drug response. In this article, we review the contributions of genetic polymorphisms to major individual variations in drug pharmacotherapy, focusing specifically on the pharmacogenomics of phase-I drug metabolizing enzymes and transporters. Substantial frequency differences in key variants of drug metabolizing enzymes and transporters, as well as their possible functional consequences, have also been discussed across geographic regions. The current effort illustrates the common presence of variability in drug responses among individuals and across all geographic regions. This information will aid health-care professionals in prescribing the most appropriate treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects for a particular patient.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; International Center for Precision Medicine, Zhejiang California International NanoSystems Institute, Hangzhou 310058, China.
| |
Collapse
|
28
|
Pan X, Ning M, Jeong H. Transcriptional Regulation of CYP2D6 Expression. Drug Metab Dispos 2016; 45:42-48. [PMID: 27698228 DOI: 10.1124/dmd.116.072249] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023] Open
Abstract
CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism.
Collapse
Affiliation(s)
- Xian Pan
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Miaoran Ning
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Associations of cytochrome P450 oxidoreductase genetic polymorphisms with smoking cessation in a Chinese population. Hum Genet 2016; 135:1389-1397. [DOI: 10.1007/s00439-016-1728-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022]
|
30
|
Zeng WT, Xu Q, Li CH, Chen WY, Sun XT, Wang X, Yang YY, Shi H, Yang ZS. Influence of genetic polymorphisms in cytochrome P450 oxidoreductase on the variability in stable warfarin maintenance dose in Han Chinese. Eur J Clin Pharmacol 2016; 72:1327-1334. [PMID: 27488389 DOI: 10.1007/s00228-016-2098-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to investigate whether any of the single-nucleotide polymorphisms (SNPs) in the POR gene were significantly associated with CYP activity and expression, and could contribute to the total variability in stable warfarin maintenance doses in Han Chinese. METHODS A total of 408 patients treated at the First Affiliated Hospital of Sun Yat-Sen University were eligible for the study and had attained a stable warfarin maintenance dose at the start of the investigation. Demographics, warfarin maintenance doses, and concomitant medications were documented. Genomic DNA was extracted from peripheral blood samples and genotyped for ten SNPs (CYP 2C9*2 and *3, CYP4F2 rs2108622, VKORC1 -1639C>T, and potential POR genes of rs10239977, rs3815455, rs41301394, rs56256515, rs1057868, and rs2286823) using the Sequenom MassARRAY genotyping system. RESULTS A predictive model of warfarin maintenance dose was established and indicated that age, gender, body surface area, aspirin use, CYP2C9*3, CYP4F2 rs2108622, VKORC1 -1639C>T, and POR*37 831-35C>T accounted for 42.4 % of dose variance in patients undergoing anticoagulant treatment. The contribution of POR*37 831-35C>T to warfarin dose variation was only 3.9 %. CONCLUSIONS For the first time, the SNP POR*37 831-35C>T was confirmed as a minor but statistically significant factor associated with interindividual variation in warfarin maintenance dose in Han Chinese. The POR*37 gene polymorphism should be considered in future algorithms for faster and more reliable achievement of stable warfarin maintenance doses.
Collapse
Affiliation(s)
- Wu-Tao Zeng
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing Xu
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Cheng-Hsun Li
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wei-Yan Chen
- The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangdong Rd, Guangzhou, Guangdong, 510260, People's Republic of China
| | - Xiu-Ting Sun
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiang Wang
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yi-Ying Yang
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hui Shi
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhi-Sheng Yang
- The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Rd.2, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
31
|
The P450 oxidoreductase (POR) rs2868177 and cytochrome P450 (CYP) 2B6*6 polymorphisms contribute to the interindividual variability in human CYP2B6 activity. Eur J Clin Pharmacol 2016; 72:1205-1213. [DOI: 10.1007/s00228-016-2095-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023]
|
32
|
Zhang HF, Li ZH, Liu JY, Liu TT, Wang P, Fang Y, Zhou J, Cui MZ, Gao N, Tian X, Gao J, Wen Q, Jia LJ, Qiao HL. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver. ACTA ACUST UNITED AC 2016; 44:1193-200. [PMID: 27271371 PMCID: PMC4986620 DOI: 10.1124/dmd.116.069849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhi-Hui Li
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Yu Liu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ting-Ting Liu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ping Wang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming-Zhu Cui
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Tian
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jie Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin-Jing Jia
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
33
|
Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, Tien YC, Jeong H, Pan X, Shireman LM, Tay-Sontheimer J, Lin YS. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab Dispos 2016; 44:343-51. [PMID: 26681736 PMCID: PMC4767386 DOI: 10.1124/dmd.115.067900] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals.
Collapse
Affiliation(s)
- Timothy S Tracy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yun-Chen Tien
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xian Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Laura M Shireman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Jessica Tay-Sontheimer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| |
Collapse
|
34
|
Belotte J, Fletcher NM, Saed MG, Abusamaan MS, Dyson G, Diamond MP, Saed GM. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival. PLoS One 2015; 10:e0135739. [PMID: 26301412 PMCID: PMC4547699 DOI: 10.1371/journal.pone.0135739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates an association between enzymatic activity altering single nucleotide polymorphisms (SNP) with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxidant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer. Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identified as a predictor of ovarian cancer survival by the Cox regression model. The presence of this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95% confidence interval (CI): 1.149–11.836)) for ovarian cancer patients. Kaplan-Meier survival analysis demonstrated a significant median overall survival difference (108 versus 60 months, p<0.05) for those without the catalase SNP as compared to those with the SNP. Additionally, age at diagnosis greater than the median was found to be a significant predictor of death (HR of 2.78 (95% CI: 1.022–7.578)). This study indicates a strong association with the catalase SNP and survival of ovarian cancer patients, and thus may serve as a prognosticator.
Collapse
Affiliation(s)
- Jimmy Belotte
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nicole M. Fletcher
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mohammed G. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mohammed S. Abusamaan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Gregory Dyson
- Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
35
|
Xiao X, Ma G, Li S, Wang M, Liu N, Ma L, Zhang Z, Chu H, Zhang Z, Wang SL. Functional POR A503V is associated with the risk of bladder cancer in a Chinese population. Sci Rep 2015; 5:11751. [PMID: 26123203 PMCID: PMC4485255 DOI: 10.1038/srep11751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022] Open
Abstract
Human cytochrome P450 oxidoreductase (POR) plays important roles in the metabolism of exogenous carcinogens and endogenous sterol hormones. However, few studies have explored the association between POR variants and the risk of bladder cancer. In this study, we first sequenced all 16 POR exons among 50 randomly selected controls, and found three variants, rs1135612, rs1057868 (A503V) and rs2228104, which were then assessed the relation to risk of bladder cancer in a case-control study of 1,050 bladder cancer cases and 1,404 cancer-free controls in a Chinese population. People with A503V TT genotype have a decreased risk of bladder cancer in a recessive model (TT vs. CC/CT, OR = 0.73, 95% CI = 0.57–0.93), which was more pronounced among elderly male, non-smoking, subjects. Especially, A503V TT genotype showed a protective effect in the invasive tumor stage. Functional analysis revealed that A503V activity decreased in cytochrome c reduction (50.5 units/mg vs. 135.4 units/mg), mitomycin C clearance (38.3% vs. 96.8%), and mitomycin C-induced colony formation (78.0 vs 34.3 colonies per dish). The results suggested that POR A503V might decrease the risk of bladder cancer by reducing its metabolic activity, and should be a potential biomarker for predicting the susceptibility to human bladder cancer.
Collapse
Affiliation(s)
- Xue Xiao
- 1] Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China [2] State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Gaoxiang Ma
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China
| | - Shushu Li
- 1] Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China [2] State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Meilin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China
| | - Nian Liu
- 1] Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China [2] State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Lan Ma
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China
| | - Zhan Zhang
- 1] Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China [2] State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Haiyan Chu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China
| | - Zhengdong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China
| | - Shou-Lin Wang
- 1] Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue Nanjing 211166, P. R. China [2] State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| |
Collapse
|
36
|
Pulk RA, Schladt DS, Oetting WS, Guan W, Israni AK, Matas AJ, Remmel RP, Jacobson PA. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics 2015; 16:841-54. [PMID: 26067485 DOI: 10.2217/pgs.15.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM Determine the effect of the genetic variants beyond CYP3A5*3 on tacrolimus disposition. PATIENTS & METHODS We studied genetic correlates of tacrolimus trough concentrations with POR*28, CYP3A4*22 and ABCC2 haplotypes in a large, ethnically diverse kidney transplant cohort (n = 2008). RESULTS Subjects carrying one or more CYP3A5*1 alleles had lower tacrolimus trough concentrations (p = 9.2 × 10(-75)). The presence of one or two POR*28 alleles was associated with a 4.63% reduction in tacrolimus trough concentrations after adjusting for CYP3A5*1 and clinical factors (p = 0.037). In subset analyses, POR*28 was significant only in CYP3A5*3/*3 carriers (p = 0.03). The CYP3A4*22 variant and the ABBC2 haplotypes were not associated. CONCLUSION This study confirmed that CYP3A5*1 was associated with lower tacrolimus trough concentrations. POR*28 was associated with decreased tacrolimus trough concentrations although the effect was small possibly through enhanced CYP3A4 enzyme activity. CYP3A4*22 and ABCC2 haplotypes did not influence tacrolimus trough concentrations. Original submitted 19 December 2014; Revision submitted 2 April 2015.
Collapse
Affiliation(s)
- Rebecca A Pulk
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - David S Schladt
- Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA
| | - William S Oetting
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA
| | - Ajay K Israni
- Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA
| | - Arthur J Matas
- Division of Transplantation, Department of Surgery, University of Minnesota, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, MN, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
37
|
Tomková M, Panda SP, Šeda O, Baxová A, Hůlková M, Siler Masters BS, Martásek P. Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort. Pharmacogenomics 2015; 16:205-15. [PMID: 25712184 DOI: 10.2217/pgs.14.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Estimating polymorphic allele frequencies of the NADPH-CYP450 oxidoreductase (POR) gene in a Czech Slavic population. METHODS The POR gene was analyzed in 322 individuals from a control cohort by sequencing and high resolution melting analysis. RESULTS We identified seven unreported SNP genetic variations, including two SNPs in the 5' flanking region (g.4965C>T and g.4994G>T), one intronic variant (c.1899-20C>T), one synonymous SNP (p.20Ala=) and three nonsynonymous SNPs (p.Thr29Ser, p.Pro384Leu and p.Thr529Met). The p.Pro384Leu variant exhibited reduced enzymatic activities compared with wild-type. CONCLUSION New POR variant identification indicates the number of uncommon variants might be specific for each subpopulation being investigated, particularly germane to the singular role that POR plays in providing reducing equivalents to all CYP450s in the endoplasmic reticulum. Original submitted 15 September 2014; Revision submitted 17 November 2014.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Bhattacharya N, Basu N, Banerjee SK, Malakar D. Concern for Pharmacogenomics and Autologous Cell Therapy: Can This Be a Direction Toward Medicine for the Future? Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Meadows NA, Morrison A, Brindley DA, Schuh A, Barker RW. An evaluation of regulatory and commercial barriers to stratified medicine development and adoption. THE PHARMACOGENOMICS JOURNAL 2014; 15:6-12. [DOI: 10.1038/tpj.2014.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 11/09/2022]
|
40
|
Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 2014; 36:71-9. [PMID: 24061445 DOI: 10.1097/ftd.0b013e31829da6dd] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The P450 oxidoreductase (POR)*28 variant allele has been associated with altered cytochrome P450 3A enzyme activities. Both CYP3A5 and CYP3A4 are involved in the metabolism of calcineurin inhibitors and recent data show that POR*28 may explain part of the variability observed in tacrolimus (Tac) pharmacokinetics. The aim of this study was to investigate the impact of the POR*28 allele on Tac and cyclosporine A (CsA) immunosuppressive therapies. METHODS Kidney transplant recipients receiving either Tac (n = 184) or CsA (n = 174), participating in a prospective multicenter trial, were genotyped for POR*28, CYP3A4*22, and CYP3A5*3. RESULTS CYP3A5 expressers that were carriers of at least 1 POR*28 allele had a 16.9% decrease in dose-adjusted predose concentrations when compared CYP3A5 expressers that carried the POR*1/*1 genotype (P = 0.03), indicating an increased CYP3A5 activity for POR*28 carriers. In CYP3A5, nonexpressers carrying 2 POR*28 alleles, a 24.1% (confidence interval95% = -39.4% to -4.9%; P = 0.02) decrease in dose-adjusted predose concentrations was observed for Tac, suggesting higher CYP3A4 activity. For CsA, POR*28/*28 patients not expressing CYP3A5 and not carrying the CYP3A4*22 decrease-of-function allele showed 15% lower CsA dose-adjusted predose concentrations (P = 0.01), indicating also increased CYP3A4 activity. In both cohorts (ie, Tac and CsA), the POR*28 allele was neither associated with the incidence of delayed graft function nor with biopsy-proven acute rejection. These results were further confirmed in 2 independent cohorts. CONCLUSIONS Our results show that the POR*28 allele is associated with increased in vivo CYP3A5 activity for Tac in CYP3A5 expressers, whereas POR*28 homozygosity was associated with a significant higher CYP3A4 activity in CYP3A5 nonexpressers for both Tac and CsA.
Collapse
|
41
|
Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014; 5:103. [PMID: 24847272 PMCID: PMC4023047 DOI: 10.3389/fphar.2014.00103] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups.
Collapse
Affiliation(s)
- Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern Bern, Switzerland ; Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| | - Patrick Sproll
- Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| |
Collapse
|
42
|
Peng L, Cui JY, Yoo B, Gunewardena SS, Lu H, Klaassen CD, Zhong XB. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice. Drug Metab Dispos 2013; 41:2175-86. [PMID: 24080161 DOI: 10.1124/dmd.113.054635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.
Collapse
Affiliation(s)
- Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.P., X.B.Z.); Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (J.Y.C., C.D.K.); Kansas Intellectual and Developmental Disabilities Research Center, Kansas City, Kansas (B.Y., S.S.G.); Department of Pharmacology, Upstate Medical University, State University of New York, Syracuse, New York (H.L.)
| | | | | | | | | | | | | |
Collapse
|
43
|
Tan SL, Li Z, Zhang W, Song GB, Liu LM, Peng J, Liu ZQ, Fan L, Meng XG, Wang LS, Chen Y, Zhou XM, Zhou HH. Cytochrome P450 oxidoreductase genetic polymorphisms A503V and rs2868177 do not significantly affect warfarin stable dosage in Han-Chinese patients with mechanical heart valve replacement. Eur J Clin Pharmacol 2013; 69:1769-75. [DOI: 10.1007/s00228-013-1544-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/26/2013] [Indexed: 11/29/2022]
|
44
|
Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenet Genomics 2013; 22:812-9. [PMID: 23047293 DOI: 10.1097/fpc.0b013e328358d92b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The redox reaction of cytochrome P450 enzymes (CYP) is an important physiological and biochemical reaction in the human body, as it is involved in the oxidative metabolism of both endogenous and exogenous substrates. Cytochrome P450 oxidoreductase (POR) is the only obligate electron donor for all of the hepatic microsomal CYP enzymes. It plays a crucial role in drug metabolism and treatment by not only acting as an electron donor involved in drug metabolism mediated by CYP enzymes but also by directly inducing the transformation of some antitumor precursors. Studies have found that the gene encoding human POR is highly polymorphic, which is of considerable clinical significance as it affects the metabolism and curative effects of clinically used drugs. This review aims to discuss the effect of POR and its genetic polymorphisms on drug metabolism and therapy, as well as the potential mechanisms of POR pharmacogenetics.
Collapse
|
45
|
Qin Y, Chen M, Wu W, Xu B, Tang R, Chen X, Du G, Lu C, Meeker JD, Zhou Z, Xia Y, Wang X. Interactions between urinary 4-tert-octylphenol levels and metabolism enzyme gene variants on idiopathic male infertility. PLoS One 2013; 8:e59398. [PMID: 23555028 PMCID: PMC3598701 DOI: 10.1371/journal.pone.0059398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Octylphenol (OP) and Trichlorophenol (TCP) act as endocrine disruptors and have effects on male reproductive function. We studied the interactions between 4-tert-Octylphenol (4-t-OP), 4-n- Octylphenol (4-n-OP), 2,3,4-Trichlorophenol (2,3,4-TCP), 2,4,5-Trichlorophenol (2,4,5-TCP) urinary exposure levels and polymorphisms in selected xenobiotic metabolism enzyme genes among 589 idiopathic male infertile patients and 396 controls in a Han-Chinese population. Ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to measure alkylphenols and chlorophenols in urine. Polymorphisms were genotyped using the SNPstream platform and the Taqman method. Among four phenols that were detected, we found that only exposure to 4-t-OP increased the risk of male infertility (P(trend) = 1.70×10(-7)). The strongest interaction was between 4-t-OP and rs4918758 in CYP2C9 (P(inter) = 6.05×10(-7)). It presented a significant monotonic increase in risk estimates for male infertility with increasing 4-t-OP exposure levels among men with TC/CC genotype (low level compared with non-exposed, odds ratio (OR) = 2.26, 95% confidence intervals (CI) = 1.06, 4.83; high level compared with non-exposed, OR = 9.22, 95% CI = 2.78, 30.59), but no associations observed among men with TT genotype. We also found interactions between 4-t-OP and rs4986894 in CYP2C19, and between rs1048943 in CYP1A1, on male infertile risk (P(inter) = 8.09×10(-7), P(inter) = 3.73×10(-4), respectively).We observed notable interactions between 4-t-OP exposure and metabolism enzyme gene polymorphisms on idiopathic infertility in Han-Chinese men.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bin Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (YX); (XW)
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (YX); (XW)
| |
Collapse
|
46
|
Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet Genomics 2013; 23:148-55. [DOI: 10.1097/fpc.0b013e32835dc113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Øvrevik J, Refsnes M, Holme JA, Schwarze PE, Låg M. Mechanisms of chemokine responses by polycyclic aromatic hydrocarbons in bronchial epithelial cells: sensitization through toll-like receptor-3 priming. Toxicol Lett 2013; 219:125-32. [PMID: 23458896 DOI: 10.1016/j.toxlet.2013.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/08/2023]
Abstract
We have previously observed that 1-nitropyrene (1-NP) and its amine metabolite 1-aminopyrene (1-AP) induce differential chemokine responses in human bronchial epithelial cells (BEAS-2B) characterized by maximum responses for CXCL8 (IL-8) and CCL5 (RANTES), respectively. In the present study, we further explored the effects of 1-NP and 1-AP on chemokine responses. The results suggest that the differential effect of 1-NP and 1-AP on CXCL8 and CCL5 in BEAS-2B cells was mainly related to effects at higher concentrations, which in the case of 1-NP seemed to be linked to ROS-formation and/or metabolic activation by CYP-enzymes. However, at a low concentration (1 μM) where neither 1-NP, 1-AP nor unsubstituted pyrene had any effect on chemokine responses, we found that all three PAHs potentiated CXCL8 and CCL5 responses induced by the TLR3 ligand polyinosinic:polycytidylic acid (Poly I:C) in BEAS-2B cells. As neither benzo[a]pyrene nor β-naphthoflavone induced a similar effect in Poly I:C-primed cells, the response seemed independent of aryl hydrocarbon receptor-mediated mechanisms. The results show that priming cells with an inflammogenic stimuli like Poly I:C sensitizes the cells toward additional pro-inflammatory effects of certain PAHs. The study underscores that testing on healthy cells or animals may not be sufficient to fully evaluate chemokine responses and the pro-inflammatory potential of organic chemicals.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
48
|
Klein K, Zanger UM. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the "Missing Heritability" Problem. Front Genet 2013; 4:12. [PMID: 23444277 PMCID: PMC3580761 DOI: 10.3389/fgene.2013.00012] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/26/2013] [Indexed: 12/19/2022] Open
Abstract
CYP3A4 is the most important drug metabolizing enzyme in adult humans because of its prominent expression in liver and gut and because of its broad substrate specificity, which includes drugs from most therapeutic categories and many endogenous substances. Expression and function of CYP3A4 vary extensively both intra- and interindividually thus contributing to unpredictable drug response and toxicity. A multitude of environmental, genetic, and physiological factors are known to influence CYP3A4 expression and activity. Among the best predictable sources of variation are drug–drug interactions, which are either caused by pregnane X-receptor (PXR), constitutive androstane receptor (CAR) mediated gene induction, or by inhibition through coadministered drugs or other chemicals, including also plant and food ingredients. Among physiological and pathophysiological factors are hormonal status, age, and gender, the latter of which was shown to result in higher levels in females compared to males, as well as inflammatory processes that downregulate CYP3A4 transcription. Despite the influence of these non-genetic factors, the genetic influence on CYP3A4 activity was estimated in previous twin studies and using information on repeated drug administration to account for 66% up to 88% of the interindividual variation. Although many single nucleotide polymorphisms (SNPs) within the CYP3A locus have been identified, genetic association studies have so far failed to explain a major part of the phenotypic variability. The term “missing heritability” has been used to denominate the gap between expected and known genetic contribution, e.g., for complex diseases, and is also used here in analogy. In this review we summarize CYP3A4 pharmacogenetics/genomics from the early inheritance estimations up to the most recent genetic and clinical studies, including new findings about SNPs in CYP3A4 (*22) and other genes (P450 oxidoreductase (POR), peroxisome proliferator-activated receptor alpha (PPARA)) with possible contribution to CYP3A4 variable expression.
Collapse
Affiliation(s)
- Kathrin Klein
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart Stuttgart, Germany ; University of Tübingen Tübingen, Germany
| | | |
Collapse
|
49
|
Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 2013; 138:229-54. [PMID: 23353702 DOI: 10.1016/j.pharmthera.2013.01.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/18/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, 3004 Bern, Switzerland.
| | | |
Collapse
|
50
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2564] [Impact Index Per Article: 233.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|